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Dealing With Numerical Noise in CFD-Based Design Optimization 

 

C. A. Gilkeson, V. V. Toropov, H. M. Thompson, M. C. T. Wilson, N. A. Foxley and P. H. Gaskell  

 

 

SUMMARY 

 

Numerical noise is an inevitable by-product of Computational Fluid Dynamics (CFD) simulations which can lead to 

challenges in finding optimum designs. This article draws attention to the issue, illustrating the difficulties it can cause for 

road vehicle aerodynamics simulations. Firstly a benchmark problem is used to assess a range of turbulence models and grid 

types. Large noise amplitudes up to 22% are evident for solutions computed on unstructured tetrahedral grids whereas 

computations on hexahedral and polyhedral grid structures exhibit substantially less noise. The Spalart Allmaras turbulence 

model is shown to be far less susceptible to noise levels than two other commonly-used models for this application. 

Secondly, multi-objective aerodynamic shape optimization is applied to a fairing for a practical road vehicle which is 

parameterised in terms of three design variables. Moving Least Squares (MLS) metamodels are constructed from 50 high-

fidelity CFD solutions for two objective functions. Subsequent optimization is successful for the first objective, however 

numerical noise levels in excess of 7% give rise to difficulties for the second one. A revision to the problem leads to success 

and the construction of a small Pareto Front. Further analysis underlines the inherent capability of MLS metamodels in 

dealing with noisy CFD responses.  

 

KEY WORDS: Numerical noise, optimization, moving least squares, metamodel, CFD, aerodynamics. 

 

1. INTRODUCTION 

 

In the past twenty years the speed and power of computers has increased by between 1000 and 10,000 times 

which is facilitating the computation of increasingly complex fluid flow systems [1]. This capability is being 

exploited in the rapidly-growing research field of Computational Fluid Dynamics (CFD) optimization which is 

being utilised across a range of areas including aerospace engineering [2,3], tribology [4], polymer moulding [5], 

ship design [6], vehicle aerodynamics [7-10], hospital ward ventilation [11] and jet pump design [12]. Although 

these examples demonstrate the versatility of CFD-based optimization, there is one aspect which can prove 

problematic: the presence of numerical noise in the CFD responses [10,13-19]. 

 In fact, numerical noise has long been a hindrance for computation in general with problems first 

reported for finite element tidal simulations in 1974 [20] and other examples in the following decade [21-23]. 

There, numerically induced oscillations with small wavelengths were particularly troublesome. One of the 

earliest reported examples of numerical noise hindering CFD optimization was the investigation carried out by 

Giunta et al. [13] into the design of a high-speed civil airliner. Optimization on polynomial response surfaces 

was made difficult by spurious noise-induced local minima, which served to ‘trap’ the optimizer. A method of 

skipping over these local minima using large move limits in the initial stages of the optimization search was 
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beneficial, however this approach did not address the fundamental problem and no single optimum design was 

found. The impact of noise on response surfaces was also discussed by van Keulen et al. [14] for structural 

applications. 

 Later Madsen et al. [15] and Shyy et al. [16] commented that noise originating from numerical 

simulations is much less recognised than for physical experiments. An important point to appreciate is that 

numerical noise is an inherent by-product of computer simulation [15,24,25] and the observed behaviour is 

rather different from the noisy responses originating from experiments. In general, for a given physical 

experiment there will be statistical variation in the answer due to errors and uncertainties originating from both 

controlled and uncontrolled variables. In contrast, computer experiments produce the same output for a given set 

of input variables provided all aspects of the simulation are constant (i.e. identical initial/boundary conditions, 

solver version, hardware/architecture, grid structure etc.). The difference with numerical experiments is that the 

errors (and thus the noise) are repeatable due to their deterministic nature [18]. For optimization studies which 

require analysis of a wide range of designs (such as those for constructing response surfaces or metamodels) this 

characteristic can lead to problems in identifying optimum designs [10,13]. These issues have received attention; 

however, there are no studies dedicated exclusively to numerical noise and the negative impact it can have on 

CFD optimization. The purpose of this article is to draw attention to these in the context of road vehicle 

aerodynamics.  

The article is structured as follows: Section 2 considers the benchmark Ahmed body [26] as a test case 

for simulating vehicle aerodynamics; a simple method for characterising numerical noise both qualitatively and 

quantitatively is presented. The influence of turbulence model selection and grid type on noise levels are 

discussed and analysed in detail. Section 3 describes the results from a practical high-fidelity CFD optimization 

problem, highlighting the difficulty of metamodel-based optimization in the face of noisy CFD responses. 

Section 4 draws on the results from sections 2 and 3 and strategies are proposed for minimising the negative 

impact which numerical noise has on optimization. Finally, conclusions are drawn in section 5. 

 

2. NUMERICAL NOISE 

 

Previous studies have shown that numerical noise resulting from CFD simulations is sensitive to the choice of 

turbulence model employed [15,16] and the grid used in the computations [17]. Burman and Gebart [17] showed 

conclusively that the component of numerical noise which is attributable to the grid (i.e. discretisation error) can 

be minimized with adequate grid resolution. Whilst these studies are helpful, there are no attempts to quantify 

numerical noise nor to determine the relative contributions from the known sources. The remainder of this 

section addresses this by assessing a range of turbulence model-grid combinations for a relevant test case. 

 

2.1 Ahmed body 

Moving road vehicles induce a range of aerodynamic flow features which include: separation bubbles, edge and 

horseshoe vortices, separating shear layers and eddying turbulent wake structures [27,28]. The presence of a 
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moving ground plane (relative to the vehicle) and rotating wheels introduce further complexity which makes the 

simulation of road vehicle aerodynamics a non-trivial exercise. Ahmed [26] conducted an experimental study 

using a generic road vehicle shape (the Ahmed body) inside a wind tunnel to characterise salient features of the 

time-averaged wake structure. Up to 85% of the total vehicle drag is attributable to pressure drag with over 90% 

of the latter resulting from flow separation over the rear faces. In the base region, the time-averaged wake 

structure consists of a pair of horseshoe vortices stacked vertically within the separation bubble. The strength of 

these vortices is found to depend on the slant angle at the rear of the vehicle. Furthermore, for high slant angles 

of 30º or greater, an additional but small separation bubble exists immediately behind the transverse edge joining 

the roof to the slanted rear face. These  results  are still being used as a benchmark for comparing against 

numerical simulations (see e.g. [29,30]). The Ahmed body is particularly relevant to the present work and it 

represents a suitable test case for analysing numerical noise in the context of steady-state vehicle aerodynamics 

simulations.  

 

 

Figure 1: Illustration of the Ahmed body with relevant dimensions for a rear slant angle of ȥ = 30°. 

 

Figure 1 illustrates the Ahmed body which consists of a solid block with rounded leading edges of radius R = 

0.1m, a notch at the base and support pillars to lift the body above the ground. The size of the notch is governed 

by the slant angle, ȥ, which is kept constant at 30º. Other steady-state numerical studies cite poor results for 

smaller slant angles; when the slant angle is reduced to 25º for example, partial detachment of the flow behind 

the slant provides small scale structures which are inherently unsteady and these cannot be captured by steady-

state approaches which often lead to poor results [31]. In order to simulate the flow field around the vehicle, a 

solid model was generated using Ansys Design Modeler (version 13.0) [32] based on the dimensions shown. 

 The size and shape of the air volume surrounding the vehicle is defined using the dimensions of the wind 

tunnel originally used by Ahmed [26]. The closed-return open working section tunnel was supplied with airflow 

through a square nozzle of 3m x 3m. The vehicle was mounted on a ground board of length 5m with the vehicle 

centre located 2.13m downstream of the inlet. To reduce the computational effort a symmetry plane was 

employed and the working section was assumed to have a constant cross-section matching the dimensions of the 

inlet nozzle. No-slip boundary conditions were used on all solid walls, whereas the side and ceiling of the 
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domain were assigned a zero shear stress boundary condition which is appropriate given the original open-

section wind tunnel layout.  

 

2.2 Grid structure  

Recent CFD investigations of airflow past a bluff vehicle in a wind tunnel have demonstrated the importance of 

grid density, cell type and the choice of turbulence model for predicting aerodynamic drag [33,34]. In the present 

exploration three grid densities are considered for each of the following cell types: (i) hexahedral, (ii) tetrahedral 

and (iii) polyhedral. Each of these employ a boundary layer grid adjacent to solid walls (i.e. the vehicle and the 

ground) which consists of 12 layers of cells, a first cell height of 0.008m and a cell height expansion ratio of 1.2. 

A preliminary study showed that solutions computed using this boundary layer grid lead to average wall y
+
 

values of between 30 and 40 on the surfaces of the vehicle which is in the correct range for the standard wall 

functions used [35]. Table 1 summarises each grid and Figure 2 shows the local grid structure at the base of the 

vehicle for the coarse hexahedral, tetrahedral and polyhedral grids respectively. The hexahedral and tetrahedral 

grids were generated with AnsysMesh (version 13.0) [32] and the polyhedral grids were produced using an 

agglomeration procedure within Fluent (version 13.0.0-sp2) [32] which converts a standard tetrahedral grid into 

an equivalent polyhedral one.   

  

      

    Global Cell Count 

Grid type Local grid spacing (m) Hexahedral Tetrahedral Polyhedral 

Coarse 0.015 229512 396106 173934 

Medium 0.010 479865 703887 302074 

Fine 0.007 699314 1383917  583475 

 

Table 1: Grid statistics 

 

Figure 2: Local grid structure on the symmetry plane (dark cells) and the rear of the Ahmed body for (a) 

hexahedral, (b) tetrahedral and (c) polyhedral cells. 

 

2.3 Turbulence models  

In computing solutions to the governing incompressible Navier-Stokes equations, the choice of turbulence model 

is an important consideration. This is especially so for high Reynolds number turbulent flow such as the one 

being investigated because the dominant feature, flow separation, can be predicted somewhat differently 

depending on the turbulence model employed. In order to assess the impact of turbulence model on the amount 

of numerical noise present, three models suitable for simulating external aerodynamics, see [33], were chosen, 
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namely: (i) the Spalart Allmaras model (SA) [36], (ii) the realizable k-İ model (RKE) [37] and (iii) Menter’s 

shear-stress-transport k-Ȧ model (SSTKO) [38]. 

Steady-state solutions were computed using Fluent (version 13.0.0-sp2) [32] for each turbulence model 

on all 9 grids, giving 27 solutions in total. All solutions assumed a free-stream velocity of 60 m/s and turbulence 

intensity of 0.5% at the inlet [26] (Note that the relatively high inlet velocity is to compensate for the reduced 

scale of the vehicle which leads to a Reynolds Number of 4.3 million and is consistent with the original 

experiments [26]). Irrespective of the turbulence model-grid combination, every simulation employed second 

order discretisation of the flow equations in conjunction with the SIMPLE [39] pressure-velocity coupling 

algorithm. Although solution convergence was generally achieved in fewer than 1000 iterations, all simulations 

were run for a total of 5000 iterations to eliminate convergence errors.   

 

2.4 Quantifying numerical noise 

For each of the simulations described above, the drag coefficient of the vehicle, CD, was monitored throughout 

the 5000 iteration cycle. In all cases numerical noise was evident, characterised by a combination of structured 

periodic cycles with seemingly random oscillations superimposed. Interpreting these characteristics is difficult 

from visual inspection alone and so there is a need to quantify the noise levels. Figure 3 shows a typical noise 

sample from one of the simulations, taken from iterations beyond the point of solution convergence.  

 

Figure 3: Sample of numerical noise exhibited by a Spalart Allmaras solution on the fine hexahedral grid. 

 

The noise levels can be decomposed into the frequency and the amplitude of oscillation. The former is 

conveniently defined by the percentage oscillation frequency, fr, given by: 

n
f

n

i

i

r





 0100 ,      (1) 

where ȍi is the oscillation parameter evaluated for the i
th
 iteration for a sample size of n iterations. If CD 

increases monotonically from one iteration to the next, ȍ = 0. For a maximum or minimum point (i.e. oscillation 

peak in Figure 3) the sign of the gradient dCD/di changes and ȍ = 1. It follows that for fr = 0 the signal is likely 

to be stable with no oscillations present, whereas fr = 100 indicates a fully oscillatory signal where the gradient 

changes sign every iteration. It should be noted that fr accounts for all local gradient changes but it does not 

0 25 50 75 100 125 150

0.340

0.341

0.342

0.343

f
r
 = 42.0%      A

3

C
D

CFD Iteration Number

Oscillation peak



 

 

6 

 

consider low-frequency oscillations (e.g. on the order of 100’s of iterations). As CFD solutions for steady state 

problems are typically taken from the final iteration, low-frequency oscillations are far less influential and thus 

less relevant than the high frequency ones described by fr.  

In addition to the frequency, the amplitude of each individual oscillation accounts for the magnitude of 

the variations present. For a given sample size, three standard deviations, 3ı, (known as the three-sigma rule in 

statistics), is an adequate measure of the data spread because it accounts for 99.7% of the values recorded. This 

is used to define the percentage amplitude of noise, A3ı, (for the sample) relative to the mean value, namely: 

DC
A







3
1003

,      (2) 

where ı is the standard deviation and
DC  is the mean drag coefficient for a sample of size n. As with fr, small 

values of A3ı denote less noise whereas larger ones signify a noisy response. For the 150-iteration sample shown 

in Figure 3, fr = 42.0% and A3ı = 0.4%; i.e. the noise is frequent but its impact is minimal because of the small 

amplitude. 

 

2.5 Impact of grid type, cell type and turbulence model 

The parameters defined by equations (1) and (2) are used to analyse the numerical noise present in the data 

obtained for CD for the range of iterations: 2500-5000, per simulation. A sensitivity study showed that this 

sample size is large enough to adequately characterise both fr and A3ı and it only considers the converged region 

of each solution. Table 2 summarises these parameters along with the mean drag coefficient, 
DC , for the range 

of grid-turbulence model combinations tested. In all cases the computed drag coefficients are less than the 

equivalent experimental value of 0.378 [26]. Overall the SA model gives the most satisfactory result with the 

RKE and SSTKO models generally exhibiting the smallest drag values. The computed drag coefficients 

generally reduce as the grid density increases regardless of the turbulence model. As mentioned previously, 

Reynolds-Averaged Navier-Stokes (RANS) equations such as those employed in this study do have their 

limitations [31], however the results obtained are in reasonable agreement with physical experiments, and the 

primary focus here is on numerical noise.   

  

                  

    SA RKE SSTKO 

Grid type Cell type 
DC  fr (%) A3ı (%) 

DC  fr (%) A3ı (%) 
DC  fr (%) A3ı (%) 

Coarse Hexahedral 0.368 55.7 0.1 0.339 79.1 0.1 0.309 14.5 1.6 

Medium Hexahedral 0.353 8.6 0.2 0.313 13.8 0.0 0.298 24.0 1.1 

Fine Hexahedral 0.341 39.2 0.4 0.342 41.4 0.5 0.300 13.2 1.6 

Coarse Tetrahedral 0.367 95.1 0.4 0.377 9.4 22.6 0.324 28.0 7.6 

Medium Tetrahedral 0.354 100.0 0.0 0.308 16.3 2.3 0.304 39.8 0.0 

Fine Tetrahedral 0.351 96.2 0.8 0.317 75.2 8.3 0.332 76.4 7.2 

Coarse Polyhedral 0.354 100.0 0.0 0.318 49.8 0.0 0.327 100.0 0.0 

Medium Polyhedral 0.346 2.6 0.1 0.302 39.8 0.0 0.309 9.2 5.1 

Fine Polyhedral 0.344 3.2 0.3 0.296 23.0 0.1 0.299 13.6 3.2 
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           Table 2: Computed mean drag coefficients and associated numerical noise as a function of grid type, cell type 

and turbulence model. Note: from [26] the experimental drag coefficient, 378.0DC . 

 

It is interesting to note that both fr and A3ı vary considerably, depending on the grid and cell type and the 

turbulence model; clearly all three factors impact the noise levels which is consistent with earlier studies [15-17]. 

The differences in the observed values of fr illustrate that the noise levels are not in phase from one simulation to 

another. In terms of the amplitude of oscillations they are below 1% for all SA solutions, however variations as 

high as 22.6% and 7.6% are present in the solutions for the RKE and SSTKO models respectively. Clearly, the 

choice of turbulence model is instrumental in determining the noise levels for this particular application.  

 In the majority of cases the frequency and the amplitude of oscillations are greatest for solutions 

computed on the tetrahedral grids compared to the hexahedral and polyhedral ones. , however there is no 

apparent correlation with the grid density. In some cases the noise amplitude increases as the grid becomes finer, 

e.g. SA solutions on the hexahedral and polyhedral grids. However, for the remaining cases the largest 

amplitudes (per combination of cell type and turbulence model) can occur for either the coarse, medium or fine 

grid densities. Whilst there is a lack of generality for these results, the fine-grid solutions are inevitably closer to 

being grid independent and so these are more relevant to the overall discussion. 

  

2.6 Fine-grid solutions 

Figure 4 shows a 500-iteration sample of the relative drag coefficient (with respect to the mean value,
DC ) as a 

function of turbulence model and cell type for fine-grid solutions only. In all cases the noise levels exhibited by 

the tetrahedral-grid solutions are substantially greater than the equivalent hexahedral and polyhedral ones with 

multi-modal responses clearly seen. Solutions obtained on the hexahedral and polyhedral grids show noise levels 

with significantly smaller amplitudes and reduced frequencies in all cases. Considering the results for each 

turbulence model in turn, the noise levels are smallest for the SA model with a range of values generally within 

±0.5% of the mean with the exception of some local variations of the order ±1.0% for the tetrahedral-grid 

solutions, see Figure 4(a). For the RKE model, again both the hexahedral and polyhedral grid solutions show 

variations within ±0.5% of the mean value, however those for the tetrahedral grid are up to ±8.0%, Figure 4(b). 

The same trend is seen for the SSTKO model although the hexahedral and polyhedral-grid solutions exhibit 

larger variations of ±3.0% compared to those obtained with the other models. 
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Figure 4: Plots of the relative drag coefficient (
DD CC / ) as a function of steady-state iteration number per grid 

cell type for (a) SA, (b) RKE and (c) SSTKO turbulence models. Note the smaller y-axis scale for (a).  

 

The disparity in results between respective turbulence models is particularly noteworthy, especially when 

considering that the same grids and initial/boundary conditions are used throughout. One possible reason for this 

is that solutions produced by certain turbulence models may have large discretisation errors due to inadequate 

grid resolution. To investigate this, the Grid Convergence Index (GCI) [40] was employed to estimate the fine-

grid discretisation error, GCIFINE, namely: 
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r

eF
GCI ,      (3) 

 

where FS is the factor of safety, r is the grid refinement ratio (based on local grid spacing), p is the order of 

discretisation and e is given by: 

 
 FINED

FINEDMEDIUMD

C

CC
e



 
 .                                                               (4) 

 

For this study p = 2 (i.e. second order), r = 1.5 and FS = 1.25 based on the recommendations of [40,41]. It is clear 

that the discretisation errors vary significantly depending on the turbulence model and the grid cell type, see 

Table 3. 

 

      

  GCIFINE (%) 

Cell type SA RKE SSTKO 

Hexahedral 3.4 8.4 0.7 

Tetrahedral 0.9 3.1 8.4 

Polyhedral 0.6 2.0 3.2 

 

Table 3: Discretisation errors calculated for the fine-grid solutions using the Grid Convergence Index (GCI) [40].  

 

Overall, the errors are small for the SA model which may explain the small noise levels shown in Figure 

4a. Similarly, larger discretisation errors are evident for both the RKE and SSTKO models which correspond 

with the larger noise levels present in Figures 4b and 4c, respectively. Thus, on the whole, the lower the 

discretisation error, the smaller the level of numerical noise present in the solutions. 

 

2.7 Impact of noise 

It is clear from the results presented thus far that numerical noise can dramatically influence CFD solutions. 

Previous studies by Madsen et al. [15] and Forrester et al. [19] have highlighted the impact this can have when 

plotting functions of interest through a design region. The former study focussed on an extremely small segment 

of the design space where the CFD responses were oscillatory yet they should have shown a linear variation; 

noise levels of 1.0% were found to be responsible. This problem occurs because CFD solutions are typically 

taken from the final iteration (for steady state simulations) and this could correspond with any region of the 

noisy response. As some solutions will coincide with noise peaks and others nearer the mean value, each solution 

is essentially iteration dependent.  

In the present work this iteration dependency is investigated by varying the slant angle on the Ahmed 

body through the range ȥ = 30-31º in increments of 0.1º. From the fine-grid results already presented in Table 2, 

the largest noise levels occurred for solutions computed on the tetrahedral grid using the RKE model (A3ı = 

8.34%) with the smallest occurring for the SA model in conjunction with the polyhedral grid (A3ı = 0.28%). As 
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these two turbulence model-grid combinations produce both extremes of noise, they are suitable for investigating 

iteration dependency for small changes in ȥ. Corresponding simulations were run for 5000 iterations with the 

mean value for the drag coefficient,
DC , taken for the interval 2500-5000 iterations (as before) and the final 

value,
finalDC  , taken from the last iteration. Figure 5 shows how 

finalDC   (normalised with respect to 
DC ) 

varies as a function of ȥ for both cases. The variations are clearly seen when compared to the mean relative drag 

coefficient (
DD CC / ) which has error bars determined from the noise amplitude, A3ı, per simulation. 

  

 

Figure 5: Plots of the relative drag coefficient in terms of the mean (
DD CC / ) and the final iteration value (

DfinalD CC / ) for solutions computed by (a) RKE model on the tetrahedral-based grid and (b) SA models using 

the polyhedral grid. Error bars determined from A3ı (equation 2). Note the difference in the vertical scales. 

 

Figure 5a underlines the inherent variability of solutions computed using the RKE model in combination with 

tetrahedral-based grids. As an example, for ȥ = 30.2º the spread of solution values due to numerical noise is 

±13.6% (based on A3ı). More importantly, in a number of cases the range of final iteration solutions vary 

considerably from the mean: e.g. for ȥ = 30.1º the final iteration value, 
finalDC  , is almost 5% greater than the 

mean. Thus these iteration dependent solutions skew the final result by a considerable margin and the root cause 

of the discrepancy, numerical noise, should be treated with caution in other investigations.  

For the low noise case (Figure 5b), solutions computed on the polyhedral grid using the SA model lead 

to significantly smaller noise levels with a maximum spread of 1% observed for ȥ = 30.2º. In terms of the final 

iteration values, the largest discrepancy also occurs for ȥ = 30.2º with a solution 0.3% below the mean; however, 

discrepancies of 0.1% are typical. Another aspect of Figure 5 which deserves attention is the variation in noise 

levels observed between geometries, especially given the small (one-degree) range of slant angles considered. 

This shows that noise levels are sensitive to the exact geometry and this is particularly relevant to design 

optimization which typically requires solutions for a range of geometries.  
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3. CFD-BASED OPTIMIZATION 

 

The results presented above for the Ahmed body provide valuable insight into numerical noise and its impact on 

CFD solutions. Major contributing factors include the choice of turbulence model, the grid density and cell type. 

In combination, these three factors can lead to significant noise levels which dramatically affect solution values 

from iteration to iteration. While the Ahmed body represents a valuable test case, this is a simple, constrained 

geometry. As described in section 1, numerical noise can be extremely problematic in the context of design 

optimization which often requires CFD solutions for multiple geometries. As well as highlighting the problems 

associated with numerical noise, the purpose of this article is to show how noise levels can impact design 

optimization and to establish ways of dealing with it. Considered below is the effect this can have as part of an 

optimization problem for a practical engineering investigation.   

 

3.1 Small livestock trailers 

In the United Kingdom the majority of animals transported between farms, markets and abattoirs are carried in 

small box-shaped livestock trailers such as the one depicted in Figure 6.  

 

 

Figure 6: Illustration of a small livestock trailer and towing vehicle.  

 

These trailers are towed by off-road vehicles and ventilation of the trailer is achieved primarily by virtue of 

vehicle movement. This leads to air exchange between the internal environment and the external free-stream 

through a series of vents located on either side. Although this is effective at maintaining a stable micro-

environment in the upper deck, the lower deck exhibits reduced ventilation [33] with the potential for elevated 

temperatures and related animal welfare issues [34]. Modifying the trailer layout to improve these conditions is 

not viable due to practical limitations, however, implementing a retrofitted headboard fairing represents a 

feasible solution. One further advantage of adding such a fairing is that aerodynamic drag can be reduced leading 

to improved fuel economy [42,43]. It follows that the design of a headboard fairing with objectives of (i) 

minimising aerodynamic drag and (ii) maximizing ventilation is a suitable multi-objective optimization problem. 
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3.2 Problem formulation 

The proposed fairing is parameterised in terms of three design variables, namely the side radius, d1, the lower 

edge extension, d2 and the central extension of the fairing, d3, see Figures 7a and 7b. The purpose is to apply 

aerodynamic shape optimisation in satisfying the following criteria: 

 

min F1 (d) and max F2 (d),     (5) 

 

where                        3 ,2 ,1  ,  iddd U

ii

L

i
;           (6) 

 

F1 and F2 are the objective functions for the aerodynamic drag coefficient (dimensionless) and the ventilation 

rate (m
3
/s) respectively and di is the i

th
 design variable subject to relevant lower ( L

id ) and upper ( U

id ) physical 

constraints.  

 

Figure 7: Parameterisation of the headboard fairing viewed from (a) the side and (b) above the trailer and (c) plot 

of the Design of Experiments (DoE) together with four sample fairing designs. 

 

3.3 Design of Experiments and CFD methodology 
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The optimization procedure involves building metamodels for each objective function (F1 and F2) and then 

optimizing on these to obtain a Pareto front from which to determine the optimum fairing design. To achieve 

this, each metamodel is fitted to CFD responses from fifty fairing designs which are chosen by an Optimal Latin 

Hypercube (OLH) Design of Experiments (DoE) [44]. Figure 7(c) depicts the DoE and four sample fairings 

which exist within the design space. Though not immediately obvious from Figure 7(c), one of the defining 

characteristics of the DoE is the uniformity of point coverage which is governed by the Audze-Eglais potential 

energy criterion [45,46].  

Steady-state CFD solutions to the governing incompressible Navier-Stokes equations were used to 

assess each fairing by obtaining values of F1 and F2. A preliminary grid independence study carried out on the 

baseline trailer (Figure 6) showed that a hybrid hexahedral-tetrahedral grid consisting of 6.7 million cells led to 

small discretisation errors (equation 3) of 1.5% and 2.0% for F1 and F2, respectively [10]. As shown in section 2, 

solutions computed on both hexahedral and polyhedral cell types lead to reduced noise levels compared to 

tetrahedral cells. In practice, hexahedra are easier to implement than polyhedra and they are less susceptible to 

numerical diffusion. For this reason hexahedral cells were placed in as many regions of the solution domain as 

possible which included a structured boundary layer grid adjacent to the primary livestock trailer surfaces. 

Inevitably tetrahedral cells were required in the remaining volume due to the geometric complexity which 

illustrates one of the difficulties of practical CFD application. Despite this, the results from section 2 show that 

the noise amplitudes for solutions computed on fine grids using the SA model are 0.4% and 0.8% for hexahedra 

and tetrahedral respectively. As the SA model is used in this section (the justification is explained in the next 

paragraph) the negative impact of tetrahedral cells is relatively small. Figure 8 shows the local grid structure in 

the vicinity of the baseline trailer with the symmetry plane visible in the background. 

 

 

Figure 8: Illustration of the local grid structure (a) surrounding the trailer and (b) near the foremost upper vent 

opening. 

 

As shown in section 2, the Spalart Allmaras turbulence model generally exhibits small noise amplitudes 

for road vehicle aerodynamics simulations. Initial simulations of flow around the baseline configuration (Figure 



 

 

14 

 

6) verified that this model performs more satisfactorily than both the SSTKO and RKE models. Furthermore, the 

SA model has been shown to produce accurate results when validated against wind tunnel experiments of a 1/7
th
 

scale livestock trailer [33], and this was selected together with QUICK [48] discretisation. Computations were 

carried out using Fluent [32] for a total of 10,000 iterations and convergence of all quantities was observed after 

9000 of these, thus ensuring that no inaccuracies were present due to convergence error. The greater detail 

contained within this geometry required finer grids than those used for the Ahmed body (considered in section 2) 

which is why a larger number of iterations was required to reach convergence. The important point is that the 

solutions were converged.   

 

3.4 Optimization strategy 1: final value solutions 

Having obtained all fifty sets of CFD solutions, metamodels were built for each objective function using the 

Moving Least Squares (MLS) method [48,49] within HyperStudy (version 8) [50]. This technique caters for 

noisy responses by selecting an appropriate closeness of fit parameter, ș, which is contained within a Gaussian 

weight decay function, namely: 

 2exp jj rw  ,     (7) 

 

where rj is the Euclidean distance of the metamodel prediction location from the j
th
 DoE point [49]. High noise-

smoothing is achieved if ș is small because the fit is loose due to the approximation whereas high values of ș 

lead to interpolation and no smoothing. Each metamodel was tuned to give the optimum value of ș to ensure the 

best fit to the CFD responses, see [10] for more details.  

 For each CFD simulation, responses for F1 or F2 were taken from the final iteration. Satisfying the 

second objective of maximizing ventilation proved difficult because all fifty fairing designs resulted in poorer 

ventilation with respect to the baseline case (i.e. no fairing present). Further analysis showed that the presence of 

any given fairing streamlined the front of the trailer which guided airflow past the vents instead of through them 

thereby reducing the ventilation rate. Consequently, maximizing ventilation (equation 1) is not feasible with the 

current problem formulation. Instead, the second objective was changed such that the percentage reduction in 

ventilation rate could be minimized (min F2 (d)) which is equivalent to minimising the negative impact that the 

fairing has on ventilation [10]. 

 In order to find a fairing design for minimum drag (i.e. min F1 (d)), a Genetic Algorithm (GA) was 

employed to carry out a global search on the corresponding metamodel before using a local gradient search 

method, the Sequential Quadratic Programming (SQP) technique, to ‘home in’ on the proposed global minimum. 

This design (which resided in a corner point of the design space) was assessed using an additional CFD solution 

and the result was a net drag reduction of 6.6%. The drag metamodel was subsequently rebuilt with the 

additional data point but an optimization search did not yield a better design; the minimum drag design had been 

found in a single step. Figure 9 shows how this fairing design (labelled “Min-Drag”) compares with the original 

fifty DoE points. 
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Figure 9: Objective function plot for a range of fairing designs based on final value CFD solutions. 

 

The above optimization procedure was repeated for the ventilation metamodel in search of an optimum 

ventilation fairing. This proved to be problematic because the optimizer repeatedly predicted a fairing which was 

poorer than many of the DoE points. Nevertheless the design, which resides in another corner point of the 

parameter space, was tested with a CFD simulation. The result concurred with the metamodel in showing that the 

design exhibits poor performance, see “Max-Ventilation” label in Figure 9. Subsequent metamodel rebuilding 

with the additional data point made no difference to the predicted global optimum. In an effort to construct a 

Pareto front with the possibility of finding better ventilation designs, four additional points were suggested by 

the metamodel. Each of these was found by placing a constraint on F1 to give F2 for each design [10]. CFD 

solutions were obtained for each but the poor results shown in Figure 9 (see “Extra Points”) underline the 

difficulties of optimizing the fairing for ventilation. 

 

3.5 Optimization strategy 2: mean solutions 

The presence of numerical noise in each CFD solution for F2 was suspected as the root cause of the difficulties 

encountered above. This is explored in Figure 10a which shows a typical solution history where the drag 

coefficient, CD, and the ventilation rate, Q, are plotted as a function of the iteration number. Closer inspection of 

CD over the converged portion of the data (Figure 10b) shows that the noise frequency is relatively high at 

36.7%, although this is accompanied by a small amplitude of 0.6% (i.e. ± 0.3%). In contrast, Q, which is used in 

the calculation of F2, exhibits lower frequency noise of 1.3%, however, the amplitude is large at 7.0%.  

 This result underlines the inherent variability of solutions for F2 and the potentially large discrepancy 

between mean and final value CFD solutions. In light of this fact, the difficulties in optimizing F2 are 

unsurprising. A possible way of avoiding these problems is to mask the noise by building metamodels using 
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mean values which eliminate possible data spikes. Accordingly, each CFD solution was run for a further 2000 

iterations and the mean for F1 and F2 calculated. Both metamodels were updated using this revised data and the 

optimization procedure repeated (as above) in search of min F1(d) and min F2(d). As before, optimization 

identified the same optimum fairing for F1, however, the same sub-optimal design was predicted for the second 

objective function, F2, see “Max-Ventilation” point in Figure 11. Although some of the “Extra Points” show 

improvement in terms of drag (compared to Figure 9), the problems relating to F2 persist and optimization of this 

function was not successful using our approach. 

 

Figure 10: Plots showing typical noise levels for one CFD solution. 
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Figure 11: Objective function plot for a range of fairing designs based on mean value CFD solutions taken from 

2000 iteration cycles. 

 

3.6 Optimization strategy 3: problem revision 

The results in Figure 11 show that simply masking pronounced noise levels using mean solutions does not 

remedy optimization problems. Instead, the reliability of the objective function for characterising ventilation was 

investigated. Whilst ventilation is a suitable measure of the air quality within the trailer, its calculation is based 

on 2D surface integrals of the volumetric flow rate through each of the side vents in the lower deck (Figure 6). 

As these regions are oblique to the free-stream, large flow gradients are present and this leads to the high noise 

levels cited above. Further investigation revealed that the vent openings experiencing the greatest flow gradients 

produced the highest variability (and thus noise) from iteration to iteration as each solution progressed.  By 

basing the objective function on a 3D volume-averaged quantity, the impact of high flow gradients reduces 

substantially. Consequently, the temperature humidity index (THI) [51], which has units of ºF, was chosen. This 

is given by the relation: 

 

     8.268.10055.055.0328.1  dbdb TrhTTHI     (8) 

 

where Tdb is the dry bulb temperature (ºC) and rh is the relative humidity expressed as a percentage. By taking 

the volume-average of this quantity throughout the lower deck of the trailer, thermal comfort and thus animal 

welfare is considered instead of ventilation. Accordingly the problem was revised to: 

 

min F1 (d) and min F3 (d),     (9) 
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where F3 is the objective function representing THI. Using the isothermal solutions as a basis, all simulations 

were run for an additional 4000 iterations with extra transport equations for energy and species also solved; these 

account for thermal effects and humidity, respectively. Source terms for energy and moisture production were 

used to represent animal warmth and perspiration so that F3 could be calculated for hot (30 ºC) and humid (rh = 

95%) ambient conditions (see [10] for more details). With these new parameters incorporated into the CFD 

simulations, convergence was observed within the first 1500 iterations and so the means for F1 and F3 were 

calculated from the remaining 2500 iterations.  

Results from the revised simulations were found to be free of significant noise levels, justifying the 

problem revisions. Table 4 summarises the noise statistics for all 56 simulations with mean amplitudes of 0.3% 

and 0.2% evident for F1 and F3, respectively. Overall, the noise frequency is greater in the results for F3; 

however, the small amplitudes present for both objective functions underline the dramatic improvement; this is 

in complete contrast to the noisy responses seen earlier.  

 

        

  F1 F3 

Value fr (%) A3ı (%) fr (%) A3ı (%) 

mean 4.6 0.3 15.6 0.2 

max 10.8 6.5 33.0 0.6 

min 1.7 0.1 1.5 0.0 

Table 4: Noise statistics for all 56 simulations obtained using the problem revision. 

 

 In addition to the reduced noise levels, the “Extra Points” generated in the previous section show a 

considerable improvement in terms of the second objective function, in this case F3. This is evident in Figure 12a 

which displays all 56 points based on final value solutions. In terms of mean values the objective function plot 

retains the same features with all 56 points residing in broadly similar locations, see Figure12b. As mean values 

are more representative of the actual solutions, these were used to construct new metamodels from the revised 

data prior to optimizing. The drag metamodel predicted the same optimum fairing design as before, whereas the 

THI metamodel revealed a candidate for min F3(d). An additional CFD simulation verified that this design gave 

the smallest THI of all the designs tested, suggesting that the optimum for F3 had been found, see “Min-THI” in 

Figure 12b. This conclusion was verified from subsequent metamodel rebuilding and optimization with the 

additional point; it did not lead to a better design. Note that the small Pareto front was generated using a multi-

objective genetic algorithm (MOGA) [52] which was applied to both metamodels. Although this did suggest a 

possible improvement to the right of the “Min-THI” design, this is small and at the expense of extra drag. 
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Figure 12: Objective function plot for the revised problem using (a) final values and (b) mean quantities 

including the minimum-THI design and Pareto front. 

 

3.7 Advantages of Moving Least Squares metamodels 

Of all the data points shown in Figure 12, the locations of the “Extra Points” are particularly noteworthy. These 

four designs were predicted in the isothermal optimization (section 3.4) yet they exhibited sub-optimal 

performance in terms of ventilation and drag. With the above problem revision these very same designs now 

reside in the most promising region of the objective function landscape and, in terms of mean solutions, one of 

them is in fact Pareto optimal. Therefore, in spite of the pronounced noise levels seen in the isothermal study, the 

MLS metamodelling technique was in fact successful in filtering this noise and thus identifying optimal design 
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characteristics. It follows that the MLS metamodels in this study were in fact more accurate than the high-

fidelity CFD solutions used in the initial problem formulation. This stems from the inherent noise-handling 

capability of the approximation-based technique employed and is consistent with the earlier findings of Papila 

and Haftka [53]. 

  

3.8 Optimum design 

Taking the results from Figure 12 into consideration the “Min-THI” design was chosen as the overall optimum; 

it produces the greatest benefit in terms of THI and offers drag reduction which is close to the minimum-drag 

design. Compared to the baseline trailer, the optimum design offers 5.3% less drag and a small but clear 0.02% 

lower THI. Closer inspection of the benefits gained from the fairing show that the surface pressure distribution is 

the determining factor. Figure 13 shows a comparison of the surface pressure distribution (expressed in terms of 

the pressure coefficient, Cp) for the baseline and optimum designs. The optimum fairing reduces 

 the size of both the high and low pressure regions which are present around the front of the bluff, baseline 

design. Furthermore, the fairing effectively extends the side of the trailer upstream (circled) and the 

accompanying low pressure (which is absent in the baseline design) serves to extract warm, humid air through 

the foremost lower vent opening, thereby lowering the animal welfare indicator (THI) as desired. Finally, figure 

14 illustrates how much more compact the wake behind the trailer is with the addition of the fairing. Each wake 

is represented by an iso-surface of constant velocity magnitude (U = 5.0 m/s) with the optimum fairing reducing 

the length of the wake by 22%.  

  

 

 

Figure 13: Surface contour plots of the pressure coefficient, Cp for (a) the baseline trailer and (b) the optimum 

version. 
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Figure 14: Wake structure comparison for (a) the baseline trailer and (b) the optimum one. Wake represented 

using iso-surfaces of constant velocity magnitude of 5 m/s. 

 

  4. DISCUSSION 

 

4.1 Numerical noise within CFD solutions 

The results presented in this article demonstrate how numerical noise can affect CFD solutions for road vehicle 

aerodynamics simulations. Noise levels are shown to be dependent on the grid density, cell type and turbulence 

model which agrees with previous investigations for aerospace applications [15-17]. Flow solutions around the 

Ahmed body [26] which are computed on tetrahedral grid structures are by far the noisiest compared to those for 

hexahedral and polyhedral grids, regardless of the grid density and turbulence model used. Interestingly, noise 

levels do not necessarily reduce as the grid becomes finer and in fact the opposite trend is evident in some cases 

(e.g. solutions computed using the Spalart Allmaras turbulence model, Table 2). This is more a result of the 

interaction between the turbulence model and the grid type and not due to incomplete simulations; only the fully 

converged portion of each simulation was considered in the noise analysis. On the whole, solutions obtained 

using the Spalart Allmaras turbulence model have far less noise than those for the realizable k-ɸ and SST k-Ȧ 

models.  

 In terms of solution accuracy, discretisation errors were computed for the fine-grid solutions and on the 

whole, solutions with small errors lead to reduced noise levels although this is not true for all cases. It should 

also be noted that for more complicated geometries, it is often necessary to employ hybrid grid structures which 

combine tetrahedral cells with hexahedra or polyhedra. The flexibility of tetrahedra comes with the disadvantage 

of greater numerical noise levels being present in the solutions obtained.  

 Section 2 highlighted how noise levels are conveniently described in terms of the frequency and 

amplitude (equations 1 and 2) with variations in the latter essentially placing an error band on each solution. As 

steady-state solutions develop, large amplitudes lead to iteration dependence and this can be particularly 

problematic when multiple designs are tested. Incremental changes in the slant angle of the Ahmed body 
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highlighted the great variability of solutions and this sensitivity was also evident to a lesser degree in a separate 

parametric study of flow past an aerofoil [19]. In fact the true solution per geometry should be taken from the 

average of a suitably large sample using solution monitors (post convergence); this serves to remove the 

fluctuations which make up numerical noise.   

 

4.2 Optimizing with noisy solutions 

Although mean values are an effective way of masking noise levels, they cannot address fundamental problems 

with the choice of objective function. The livestock trailer optimization study detailed in the previous section 

illustrated how an inappropriate objective function can in fact prevent optimization. Here, high flow gradients 

led to pronounced noise levels in each CFD solution for the ventilation rate within the trailer. Optimization of the 

ventilation rate was attempted using both final value and mean solutions but neither approach succeeded; a series 

of designs proposed by an MLS metamodel were shown to be ineffective. In spite of this, a subsequent change to 

the choice of objective function showed that these apparently sub-optimal designs resided in the most promising 

region of the objective function landscape (Figure 12). The difference with the revised problem was that the 

objective function was based on a volume-averaged quantity, the temperature humidity index, which yielded 

solutions exhibiting low noise levels. Whilst it took the problem revision to identify an optimum design, the 

earlier MLS metamodels had in fact found optimal design characteristics despite noise levels in excess of 7%.  

 

 

4.3 Noise-smoothing metamodels 

The conclusion that MLS approximations can deal with significant noise levels and still manage to identify 

optimum designs is one of the key points of this article. Allied to this, it has long been known that 

approximation-based metamodels can handle numerical noise; the study by Giunta et al. in 1994 demonstrated 

this [13] and other authors have discussed the advantages of approximations when applied to CFD optimization 

[7,10,17,53]. More traditional interpolation-based techniques such as Radial Basis Functions [54] and Kriging 

[54] can force metamodels into unnatural behavior, particularly when fitting to noisy data [19]. Clearly, the MLS 

metamodelling technique used in this study was well-suited to the noisy CFD responses and interpolation would 

not have been inappropriate.  

 Although approximations have their advantages, the criterion used to fit to data points is extremely 

important. For the MLS methodology adopted in this study, the closeness of fit parameter, ș, was optimized for 

the given data set using a build-validate-rebuild technique [10]. This is only made possible by decomposing the 

DoE into a primary model building DoE and a smaller validation DoE [44]. The purpose is to build an initial 

metamodel from the build DoE before minimising the RMS error between the metamodel prediction and the 

responses at the validation locations. This yields the optimal ș value to be used in the merged metamodel which 

consists of both the build and validation points. Such an approach ensures the accuracy of the final metamodel 

which cannot be guaranteed if ș is specified by the user a priori. Thus the choice of DoE is another important 

consideration is seeking optimum designs.  
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4.4 Control of simulation errors and validation 

In addition to the optimization strategy, the quality of the CFD methodology is equally important. Maximizing 

solution quality can be achieved by following verification and validation (V&V) procedures such as the widely 

adopted guidelines from the AIAA [55], ERCOFTAC [56] and ASME [41]. They advocate great care in 

preparing CFD simulations to minimize the errors present. The simulations described in this study utilised 

double precision real-number representation to reduce round-off error, they were run to full convergence so that 

convergence errors could be eliminated and discretization errors were calculated using the Grid Convergence 

Index [40] as part of a rigorous grid independence study. Grids were also produced using as many structured 

hexahedral cells as possible (in section 3) to limit the negative impact of numerical diffusion. Considering the 

fact that discretisation errors are generally the most dominant in CFD solutions [59] it is essential that great care 

is taken in producing high-quality grid structures.  

 As well as reducing errors, the quality of CFD solutions can be improved using experimental data which 

is useful for minimizing uncertainties when prescribing boundary conditions for example. Although physical 

experiments are also subjected to errors, data obtained from them can be extremely valuable for validating the 

performance of individual numerical models including those designed for simulating turbulence, multiphase and 

combustion [59]. In the present work the Spalart Allmaras turbulence model was selected based on favourable 

comparison with relevant physical wind tunnel tests [33].   

 

5. CONCLUSIONS AND RECOMMENDATIONS 

 

A number of steps can be taken to improve the chances of success in metamodel-based CFD optimization. As 

already described, it is essential to base any optimization on the highest quality CFD responses which require 

minimizing the errors where possible. Double-precision real number representation helps reduce round-off error, 

convergence errors can be avoided altogether if simulations are run for a sufficient number of iterations and grid 

independence studies can be used to select the most appropriate grid density and to provide an estimate of the 

discretization error (e.g. using the Grid Convergence Index [40]). Furthermore, validation data from relevant 

experiments is extremely valuable in ensuring that the fundamental flow physics is being adequately represented 

by the computations. 

Whilst these steps are beneficial, the aforementioned errors contribute to fluctuations in a given solution 

which can be defined as numerical noise. As such, noise levels should be monitored for quantities of interest (i.e. 

objective functions) and the degree of variation observed. In this study it was necessary to run simulations for 

more than 2000 iterations (post convergence) to visualise both high and low frequency oscillations. Although it 

is difficult to quantify how much noise will cause optimization difficulties in other investigations, the 7% 

variations seen in the present work had a negative impact. In the event of optimization problems it is advised, 

following [15], that a small region of the design space is explored to determine the sensitivity of the CFD 

responses to slight changes in the design variables. For a small enough region this procedure should result in 
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almost linear variations; strong non-linearity (as was the case in Figure 5) may be a sign of potentially 

destructive levels of numerical noise. 

 Emphasis should also be placed on the problem formulation and particularly on the choice of objective 

functions to be used in optimization studies. Basing these quantities on flow parameters which are measured in 

regions exhibiting high flow gradients can dramatically skew solutions. Where possible, such quantities should 

be based on solutions from a number of cells so that the average of these is representative of the objective 

function whilst retaining an element of stability (i.e. less noise). Finally, the benefits of approximation-based 

metamodels such as MLS are ideally suited to dealing with numerical noise and they can be readily incorporated 

into optimization studies.  
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