
This is a repository copy of Identification of the neighborhood and CA rules from
spatio-temporal CA patterns .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/791/

Article:

Billings, S.A. and Yang, Y.X. (2003) Identification of the neighborhood and CA rules from
spatio-temporal CA patterns. IEEE Transactions on Systems Man and Cybernetics Part B:
Cybernetics, 33 (2). pp. 332-339. ISSN 1083-4419

https://doi.org/10.1109/TSMCB.2003.810438

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

332 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003

Correspondence__

Identification of the Neighborhood and CA Rules From
Spatio–Temporal CA Patterns

S. A. Billings and Yingxu Yang

Abstract—Extracting the rules from spatio–temporal patterns gener-
ated by the evolution of cellular automata (CA) usually produces a CA rule
table without providing a clear understanding of the structure of the neigh-
borhood or the CA rule. In this paper, a new identification method based
on using a modified orthogonal least squares or CA-OLS algorithm to de-
tect the neighborhood structure and the underlying polynomial form of the
CA rules is proposed. The Quine–McCluskey method is then applied to
extract minimum Boolean expressions from the polynomials. Spatio–tem-
poral patterns produced by the evolution of one-dimensional (1-D), two-di-
mensional (2-D), and higher dimensional binary CAs are used to illustrate
the new algorithm and simulation results show that the CA-OLS algorithm
can quickly select both the correct neighborhood structure and the corre-
sponding rule.

Index Terms—Cellular automata (CA), identification, spatio–temporal
systems.

I. INTRODUCTION

Cellular automata (CA) represents an important class of models that
evolve in time over a spatial lattice structure of cells. CAs have been
applied in image processing [1], pattern recognition [2], digital circuit
design [3], and robotics [4]. Many authors have demonstrated that rel-
atively simple binary CA rules can produce highly complex patterns
of behavior. These results illustrate the potential of CAs as a model
class and suggest that it may be possible to model even very complex
spatio–temporal behavior using CA models of a simple form. However,
very few studies have investigated how these rules can be extracted
from observed patterns of spatio–temporal behavior.

Ideally, the identification technique should produce a concise ex-
pression of the rule. This ensures that the model is parsimonious and
can readily be interpreted either for simulation or hardware realization
of the CA. Sequential and parallel algorithms for computing the local
transition table were presented by Adamatzky [5], and Richards [6] in-
troduced a method using genetic algorithms (GAs). However, no clear
structure of the related neighborhoods was obtained in either of these
studies and the detection process was complicated. GAs were also em-
ployed in [7] to determine the rules as a set of logical operators. Par-
simonious local rules were found for low-dimensional CAs, but when
CA with large-size neighborhoods are involved the search process can
be computationally demanding, sometimes taking several hours in a
single run. This is mainly because of the nature of the GA evolution. If
the CA model to be identified can be reconfigured into linear-in-the-pa-
rameters model, then the identification method would not have to be
restricted to a GA related approach, and this may allow the develop-
ment of a fast identification procedure. This is achieved in this paper.

Manuscript received February 13, 2000; revised July 11, 2000 and March
21, 2002. This work was supported by the University of Sheffield and the U.K.
EPSRC. This paper was recommended by Associate Editor B. J. Oommen.

The authors are with the Department of Automatic Control and Systems
Engineering, University of Sheffield, Sheffield S1 3JD, U.K. (e-mail:
s.billings@sheffield.ac.uk; yingxu@acse.shef.ac.uk).

Digital Object Identifier 10.1109/TSMCB.2003.810438

In this paper, a totally new approach is adopted to identify both the
neighborhood and the CA rule from complex patterns of high-dimen-
sional spatio–temporal behavior. Identifying the CA rule or model is
considered as a two-stage procedure. First, the neighborhood which
defines the spatial interaction of the cells over a temporal window is
determined and then the rules that specify the values of these cells is
estimated. Earlier studies [5]–[7] have attempted to devise solutions
to these problems based on the logical rule base which defines binary
CAs, but this involves determining the spatio–temporal rules as non-
linear combinations of cellular values.

In the present research, this problem is avoided by exploiting the
fact that the binary rules can be expressed as Boolean functions
and showing that these can be exactly represented using simple
polynomial models. The main advantage of this is that now the
problem is mapped into a linear-in-the-parameters model. A modified
orthogonal least squares algorithm, called the CA-OLS method, is
introduced which determines the neighborhood and the unknown
model parameters. The Quine–McCluskey algorithm can then be
applied to extract the minimum Boolean expression to produce the
final CA model. Mapping the problem into a polynomial model form,
determining the structure and parameters, and then mapping back to
a logical expression produces for the first time a powerful method
for determining the rules of high-dimensional CAs in the form of a
parsimonious model. This is achieved from just the observations of
the data and noa priori information.

II. CELLULAR AUTOMATA AND THE DIFFICULTIES

OF CELLULAR AUTOMATA

A cellular automaton is defined by three parts: 1) a neighborhood;
2) a local transition rule; and 3) a discrete lattice structure consisting of
a large number of cells which are occupied by states from a finite set of
discrete values. The local transition rule updates all cells synchronously
by assigning to each cell, at a given time step, a value which depends
only on the neighborhood. Attention in this paper is restricted to binary
CA where the cells can only take binary values. Although binary CAs
form one of the simplest classes of CAs, they have been the focus of
most investigations and are capable of generating complicated patterns
of global behavior and capturing the essential features of many complex
phenomena.

A. CA Neighborhoods

The neighborhood of a cell is the set of cells over both space and
time that are directly involved in the evolution of the cell. Sometimes
this includes the cell itself. The neighborhood structure varies de-
pending on the construction of the CA. Consider a one-dimensional
(1-D) 3-site CA for example. Denoting the cell at positionj at time
step t as cell(j; t), then the neighborhood ofcell(j; t) could be
a von Neumann neighborhood, illustrated in Fig. 1(a), or the two
exotic neighborhoods shown in Fig. 1(b) and (c), respectively. The
neighborhood can involve cells from different spatial and temporal
scales. The exotic neighborhood in Fig. 1(b) encompasses cells from
the same temporal scale but different spatial scale than the cells in
the von Neumann neighborhood while the neighborhood in Fig. 1(c)
involves cells from the same spatial scale but different temporal
scale from the cells in the von Neumann neighborhood. There are
many more possible neighborhood structures for two-dimensional
(2-D) CA. The most commonly used are the 5-site von Neumann

1083-4419/03$17.00 © 2003 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003 333

Fig. 1. Examples of 3-site neighborhoods for a 1-D CA. (a) von Neumann
neighborhood. (b) and (c) Exotic neighborhoods.

neighborhood and the 9-site Moore neighborhood. The neighborhood
structures for higher dimensional CA are much more complicated
and diverse than the 1-D and 2-D cases. Neighborhoods for 2-D and
higher dimensional CAs can also involve cells from temporal scales
other thant � 1. For example, a 5-site 2-D neighborhood could take
the formfcell(i; j � 1; t � 3); cell(i; j � 1; t � 2); cell(i; j � 1; t �
1); cell(i + 1; j; t � 1); cell(i; j + 1; t � 1)g. Clearly, the number
of possible cells in a multidimensional CA over a range of temporal
scales can be huge.

B. Local CA Transition Rules

Local transition rules can be defined in several equivalent ways. The
most common method is to use a transition table analogous to a truth
table where the first row describes the states of the neighborhood and
the second row indicates the next state of the cells. The rules are then
labeled by specifying which neighborhoods map to zero and which to
1. The standard form of a 3-site 1-D ruleR is shown below

000 001 010 011 100 101 110 111

r0 r1 r2 r3 r4 r5 r6 r7

whereri; i = 0; . . . ; 7 indicates the next-states of the cells. Every
componentri corresponds to a coefficient2i which is essential
in computing the numerical label associated with the rule. The
numerical labelD assigned to ruleR above is therefore given by
D(R) = 2 �1

i=0
ri2

i, which is simply the sum of the coefficients asso-
ciated with all the nonzero components. For example, the well-known
1-D 3-site ruleRule22 is defined asRule22 = (01101000). The
numerical label is given byD(Rule22) = 21 + 22 + 24 = 22. The
transition table of this rule is shown below

000 001 010 011 100 101 110 111

0 1 1 0 1 0 0 0
:

C. Difficulties in CA Identification

Many studies of CA have focused on demonstrating that relatively
simple CA rules can produce complex patterns of behavior. This
demonstrates the potential of CAs as a model class but shows that this
can only be realized if the simple underlying rules can be determined
from observed spatio–temporal behavior.

When identifying CA rules the onlya priori knowledge will be the
spatio–temporal patterns produced by the evolution of the CA. Realis-
tically, the neighborhood structure including the size will be unknown
and this means that the possible combinations can number into the
hundreds of millions. It may be possible to find simple CA rules by
searching through the rule space when only 1-D or 2-D CAs with very
small neighborhoods are involved. However, as the neighborhood size,
or the dimensionality, or both increase the combinational possibilities
become huge. The few authors that have studied this problem [5], [6]
have therefore focused on a very limited class of low-dimensional CAs.
However, there is a clear need to develop procedures which can op-
erate on observed data from CAs over higher dimensional spatial and

temporal neighborhoods with noa priori information. It is assumed
that a sequence of the CA that at least covers the spatial and temporal
neighborhood of the CA pattern is observed. This is the standard ob-
servability condition for all CA identification algorithms. In addition,
it is assumed that the CA rule is uniform over all the observed pattern.
Hybrid CAs, where more than one rule operates, cannot be dealt with
by any current CA identification algorithms.

III. I DENTIFICATION USING THE CA-OLS METHOD

In the present study, the problem of searching for the neighborhood
and then the parameter values associated with a nonlinear logical model
will initially be mapped into an equivalent polynomial representation.
While this relationship is well known it has not previously been ap-
preciated that the polynomial model can be reduced to a very simple
structure with integer parameters, even for high-dimensional and com-
plex CAs. Using this model form and introducing a modified orthog-
onal least squares routine, the CA-OLS method, both the CA neigh-
borhood and the unknown polynomial model parameters can easily be
determined. The equivalent polynomial model is then mapped back to
a minimal logical expression to yield the final parsimonious CA model.
The steps associated with this new procedure are introduced below.

A. Boolean Form of CA Rules

The local rule for a binary cellular automaton may also be considered
as a Boolean function of the cells within the neighborhood. For a 1-D
CA, denote the state of the cell at positionj at time stept ass(j; t) and
the states of the cells within the neighborhood of cellj at previous time
steps asN(j; j t) wherej t represents time steps beforet. The 1-D CA
can then be represented by

s(j; t) = f(N(j; j t)) (1)

wheref is the Boolean form of the local transition rule.
Two different ways of constructing Boolean rules are currently avail-

able. One formulation produces Boolean rules using only theNOT,
AND, andOR logical operators and rules for all 1-D CA with 3-site
neighborhoods are listed in [8]. The Boolean form ofRule30, for ex-
ample, is

s(j; t) = (s(j � 1; t� 1) � �s(j; t� 1) � �s(j + 1; t� 1))

k(�s(j � 1; t� 1) � s(j; t� 1))

k(�s(j � 1; t� 1) � s(j + 1; t� 1)) (2)

where�; � andk denoteNOT, AND, andOR operators respectively. The
alternative formulation uses only theNOT, AND, andXOR operators
instead. Lists of Boolean expressions of even number 1-D 3-site CA
rules based on this formulation can be found in [9]. Using these oper-
ators,Rule30 can also be represented as

s(j; t) = s(j � 1; t� 1)� s(j; t� 1)

� (�s(j; t� 1) � s(j + 1; t� 1)) (3)

where� denotes theXOR operator. Note that on the right side of (3)
logical terms are produced by connecting the “states” or the “NOT
states” of the cells within the neighborhood usingAND operators which
are then combined byXOR operators. It can easily be observed that
every 1-D binary rule can be reformulated into a Boolean form which
follows this principle. Furthermore, note that�a = 1 � a; 0 � a = a.
Hence, all 1-D binary CA can be represented by a Boolean function
with only AND andXOR operators. For example, a CA with ann-site

334 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003

neighborhood offcell(j + 1; t � 1); . . . ; cell(j + n; t � 1)g can be
expressed in the form

s(j; t) = a0 � a1s(j + 1; t� 1)� � � �

� aN(s(j + 1; t� 1) � � � � � s(j + n; t� 1)) (4)

whereai(i = 0; . . . ; N;N = 2n � 1) are binary numbers andai = 1
indicates that the corresponding term is included in the Boolean func-
tion whileai = 0 indicates that the corresponding term is not included.
Note that the number of possible expressions in (4) is22 which is ex-
actly the number of all possible 1-D rules with that particular neigh-
borhood. This implies that the representation in (4) is unique, one set
of fai; i = 0; . . . ; Ng corresponds to one and only one CA rule.

Equation (1) can be extended to higher dimensional CAs.
For a three-dimensional (3-D) CA, this would be denoted as
s(i; j; l; t) = f(N(i; j; l; j t)), wheres(i; j; l; t) is the state of the
cell at position(i; j; l) at time stept andN(i; j; l; j t) represents
the states of the cells within the neighborhood ofcell(i; j; l; t).
The unified expression in (4) can also be extended to multidimen-
sional CAs. For example any 3-D CA with a 5-site neighborhood
fcell(i � 1; j; l; t � 1); cell(i; j; l; t � 1); cell(i; j + 1; l; t �
1); cell(i; j; l � 1; t � 1); cell(i; j; l + 1; t � 1)g can be represented
by a Boolean expression

s(i; j; l; t) = a0 � � � � � a31(s(i� 1; j; l; t� 1)

� � � � � s(i; j; l+ 1; t� 1)): (5)

Extending this further, every CA with ann site neighborhood
fcell(x1; j t); . . . ; cell(xn; j t)g may be written as

s(xj ; t) = a0 � a1s(x1; j t)� � � �

� aN (s(x1; j t) � � � � � s(xn; j t)) (6)

whereN = 2n � 1 andcell(xj ; t) is the cell to be updated.
Equation (6) is important because it significantly reduces the com-

plexity of CA identification by using a reduced set of logical operators.
The difficulty in identifying multidimensional CAs is also decreased
because the higher dimensional CA rules are reduced to an equation
which depends on the size of the neighborhood not the dimensionality.

B. Polynomial Form of CA Rules

Every CA with ann site neighborhood can be reformulated from a
truth table to a Boolean function of the form of (6). However, the model
to be identified is defined in terms ofAND and XOR operators and
is therefore nonlinear in the parameters. However, it is often advanta-
geous to reconfigure the nonlinear model to be linear in the parameters
if this is possible. This will be investigated below for CAs.

If a; a1; a2 are binary integer variables taking the values 0 and 1 for
true and false, respectively, then there is an exact polynomial represen-
tation of each of the logical functions

�a = 1� a; a
�

1a2 = a1 � a2;

a1 � a2 = a1 + a2 � 2a1 � a2:

Therefore, all CA rules can be represented by exact polynomial expres-
sions. The 1-D von NeumannRule30, for example, can be written as
s(j; t) = 13

i=1
bi, whereb1 = s(j�1; t�1); b2 = s(j; t�1); b3 =

s(j + 1; t� 1); b4 = �2s(j� 1; t� 1)� s(j; t� 1); b5 = �2s(j�
1; t � 1) � s(j + 1; t � 1); b6 = �s(j; t � 1) � s(j + 1; t � 1);
b7 = 2s(j�1; t�1)�s(j; t�1)�s(j+1; t�1); b8 = �2s2(j; t�
1)� s(j + 1; t � 1); b9 = �2s(j; t � 1)� s2(j + 1; t � 1); b10 =
4s(j�1; t�1)�s2(j; t�1)�s(j+1; t�1); b11 = 4s(j�1; t�1)�

s(j; t� 1)� s2(j+1; t� 1); b12 = 4s2(j; t� 1)� s2(j+1; t� 1);
b13 = �8s(j � 1; t� 1)� s2(j; t� 1)� s2(j + 1; t� 1).

However, this equivalent expression will involve as many parame-
ters as the number of possible combinations of all the cells within the
neighborhood and little will be gained by using such a representation.
However, using the Principle of Duality and Absorption in Boolean
Algebra [10] where for every binary variablea; a � a = a, consid-
erable simplification can be achieved. Therefore, terms in the form of
sl (j�1; t�1)sl (j; t�1)sl (j+1; t�1)wherel1; l2; l3 are integers
can all be reduced to one terms(j�1; t�1)s(j; t�1)s(j+1; t�1).
Consequently, applying the Principle of Duality and Absorption to all
the terms results in a new expression for all 1-D CAs with von Neu-
mann neighborhood of the forms(j; t) = �1s(j�1; t�1)+�2s(j; t�
1)+�3s(j+1; t�1)+�4s(j�1; t�1)�s(j; t�1)+�5s(j�1; t�
1)� s(j+1; t� 1)+ �6s(j; t� 1)� s(j+1; t� 1)+ �7s(j� 1; t�
1)�s(j; t�1)�s(j+1; t�1), where the parameters�1; . . . ; �7 can
only take integer values ands(j�1; t�1); s(j; t�1); s(j+1; t�1)
are binary values. Applying this to (6) shows that a general polyno-
mial expression of all binary CA rules with ann-site neighborhood
fcell(x1; j t); . . . ; cell(xn; j t)g can be expressed by the exact polyno-
mial expression

s(xj ; t) = �1s(x1; j t) + � � � �ns(xn; j t) + � � �

+ �Ns(x1; j t)� � � � � s(xn; j t) (7)

whereN = 2n � 1 andcell(xj ; t) is the cell to be updated. Using
this important observation the number of parameters to be identified
can be substantially reduced to only2n�1. It can also be seen that the
most important factor is the size of the neighborhoodn, not the order of
the dimension. For example, a 2-D CA rule with a 5-site neighborhood
may have a simpler polynomial expression than a 1-D CA rule with
an 8-site neighborhood. These are important observations which sur-
prisingly have not previously been exploited and which together with
the CA-OLS algorithm introduced below provide a new and powerful
method of reconstructing the CA model even for high-dimensional
CAs.

C. Identification Using CA-OLS

A CA can be viewed as a nonlinear dynamical system. Although the
system has a spatio–temporal structure, a single time series can be mea-
sured at a single lattice site or a spatial series can be measured at a fixed
time and traditional methods can be applied to model either. However,
Diks [11] showed that studying only a time series or a spatial series
from a spatio–temporal system without any knowledge of the system
can easily lead to the incorrect conclusion that there is no spatio–tem-
poral structure. For a full characterization of the system structure time
and space have to be considered simultaneously. Determination of the
spatial and temporal span of the neighborhood is therefore very impor-
tant in identifying CA models.

In practice, the neighborhood structure will be unknown and it is
necessary to extend the assumed neighborhood to a more general case
which encompasses cells from different spatial and temporal scales.
Hence a set of models which are over-specified on both the spatial and
temporal spans will be introduced as the model set. For a 3-D CA, the
model set can be defined as

s(i; j; l; t) = f(s(i+ i1; j + j1; l + l1; t� 1); . . . ;

s(i� i2; j � j2; l� l2; t� 1); . . . ;

s(i+ i1; j + j1; l + l1; t� h); . . . ;

s(i� i2; j � j2; l� l2; t� h)) (8)

wherei1; i2; j1; j2; l1; andl2 denote the maximum space scale the 3-D
CA could possibly span andh denotes the maximum time scale the

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003 335

3-D CA could possibly span. Reducing the dimensions in (8) will yield
models for 1-D and 2-D CAs as special cases while increasing the di-
mensions will produce models for four-dimensional (4-D), five-dimen-
sional (5-D), and higher dimensional CAs.

Finding the neighborhood can now be defined as determining just the
relevant or significant terms in (8) for the 3-D case and analogously
for other dimensions. The neighborhood can therefore be thought of
as equivalent to the model structure in nonlinear system identification.
Using (8) and the 3-D case as an example, the neighborhood must be
determined from a set of2(i +i +1)(j +j +1)(l +l +1)h � 1 possible
candidate model terms. Consider, for example, a very simple 3-D CA
wherei1 = i2 = j1 = j2 = l1 = l2 = h = 1; this produces227 �
1 = 134217 727 candidate terms. This clearly shows the complexity
of the task even for a simple 3-D case. Higher dimensions produce even
more frightening numbers and clearly show why there are no existing
solutions to these important problems. To overcome these problems the
new CA-OLS algorithm is introduced below.

Initially using the 3-D case to illustrate the method, denote the states
of the neighborhoodfs(i+ i1; j+ j1; l+ l1; t� 1); . . . ; s(i� i2; j�
j2; l�l2; t�1); . . . ; s(i+i1; j+j1; l+l1; t�h); . . . ; s(i�i2; j�j2; l�
l2; t� h)g in (8) asfu1; . . . ; ung, where the size of the neighborhood
n = (j1 + j2 + 1)(i1 + i2 + 1)(l1 + l2 + 1)h. Then expanding (8)
into the polynomial form shown in (6) yields

s(i; j; l; t) = �1u1 + � � �+ �nun + � � �+ �Nu1 � � � � � un (9)

whereN = 2n � 1, and�1; . . . ; �N are a set of integers such that (9)
mapss(i; j; l; t) intof0; 1g. Note that (9) can be readily extended from
the 3-D case to be valid for all binary CAs.

The CA-OLS algorithm is derived by applying a modified
Gram–Schmidt orthogonal procedure to (9). The CA-OLS algorithm
is given in the Appendix.

The simple 3-D example above shows the number of possible can-
didate terms can be excessive, but simulations by many authors show
that often complex CA patterns can be produced using simple models.
If the appropriate terms that are significant can be selected therefore the
remainder can be discarded without any deterioration in model preci-
sion or prediction accuracy and a concise CA model can be obtained.
One way to determine which terms are significant or which should be
included in the model can be derived as a by-product of the CA-OLS
estimation algorithm and is very simple to implement. From the Ap-
pendix, the quantity[ct] is defined as

[ct]d =
~�2d �

M

t=1 e
2
d(t)

M

t=1 s
2(i; j; l; t)

and measures the contribution that each candidate term makes to the
updated states(i; j; l; t) and provides an indication of which terms
to include in the model. Using[ct] the candidate model terms can be
ranked in order of importance and insignificant terms can be discarded
by defining a value of[ct], below which terms are considered to con-
tribute a negligible reduction in the mean-squared error. The threshold
value of[ct] for the CA model can be set to zero because the polyno-
mial model is not an approximation but an exact representation of the
CA rules. The threshold value is set to zero to ensure that sufficient
terms are included and the prediction errors are reduced to zero. No-
tice that the forward-regression orthogonal algorithm [12] is used in the
Appendix, this provides a[ct] test which is independent of the order of
inclusion of terms in the model. The structure of the neighborhood is
therefore defined by retaining only the significant[ct] terms and the
CA rule can then be computed by linearly combining all the selected
terms with the estimated parameters.

Fig. 2. Evolution of the 1-D CARule30 with four different neighborhoods: (a)
Rule30 (01 111 000) von Neumann; (b)Rule30 left-shift; (c)Rule30 right-shift;
and (d)Rule30 temporal-shift.

D. Extracting the Boolean Form of the CA Rules

The polynomial form of the model can be determined using the or-
thogonal estimator which yields both the CA neighborhood and the
model parameters. Although the polynomial model can be used to di-
rectly reproduce the complex spatio–temporal patterns, hardware real-
ization of the CA may not be straightforward based on the polynomial
form and it is therefore important to extract the equivalent Boolean
rules. While it is straightforward to extract canonical forms [10] of
Boolean functions from truth tables constructed on the basis of polyno-
mial rules the canonical forms are often unwieldy and typically more
operations than are necessary are involved. However, this problem can
be solved by using the Quine–McCluskey [10] method to extract the
parsimonious Boolean expressions from identified polynomials. The
Boolean rules extracted using the Quine–McCluskey method involves
NOT, AND, andOR operators. To obtain rules employingNOT, AND,
andXOR instead, see details in [9, Ch. 1].

IV. SIMULATION STUDIES

Three simulation examples are included to demonstrate the appli-
cation of the new algorithm. Initially a simple 1-D example will be
discussed to show all the steps involved in a transparent manner. More
realistic 2-D and 4-D examples will then be discussed.

A. Identification of 1-D 3-Site CA Rule30

The spatio–temporal patterns generated by the evolution of
Rule30 on a 200� 200 lattice with four different neighborhoods,
a von Neumann neighborhoodfcell(j � 1; t � 1); cell(j; t �
1); cell(j + 1; t � 1)g, a left-shift neighborhoodfcell(j � 2; t �
1); cell(j � 1; t � 1); cell(j; t � 1)g, a right-shift neighborhood
fcell(j; t�1); cell(j+1; t�1); cell(j+2; t�1)g, and a temporal-shift
neighborhoodfcell(j � 1; t � 2); cell(j; t � 1); cell(j + 1; t � 1)g
are shown in Fig. 2(a), (b), (c), and (d), respectively. An initial
inspection of Fig. 2(a), (b), (c), and (d) shows that the structure of
the neighborhood corresponds to the pattern produced. The randomly
distributed triangle structures in Fig. 2(b) are simply the left half of the
triangles in Fig. 2(a), whereas Fig. 2(c) is composed of the right half
of the triangles in Fig. 2(a). The patterns demonstrate the difference
among these three neighborhoods. The pattern in Fig. 2(d) is produced
by operatingRule30 on a temporal-shift neighborhood which involves
cells from both time stepst � 1 and t � 2. However, the blurred
image and the rotated triangles that this produces barely shows any
resemblance to the patterns in Fig. 2(a), (b), or (c).

Because of the special construction of CA which are synchronously
updated using the same Boolean function over the whole lattice, the
data points that are available are redundant for identification purposes
and can be extracted in two ways as shown in Fig. 3(a) and (b), respec-
tively. In Fig. 3(a), data points are extracted row by row/spacewise,
while in Fig. 3(b), data points are extracted column by column/time-
wise. Since each cell is synchronously updated under the same Boolean
function, a change of the rows or columns when extracting the data is

336 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003

Fig. 3. Extracting data points from 1-D CA patterns.

not important. Assume initially that the largest possible neighborhood
is defined byfcell(j�2; t�1); cell(j�1; t�1); cell(j; t�1); cell(j+
1; t � 1); cell(j + 2; t � 1); cell(j + 1; t � 2)g and hence define the
neighborhood vector

a(t) = [s(j � 2; t� 1)s(j � 1; t� 1)s(j; t� 1)

� s(j + 1; t� 1)s(j + 2; t� 1)s(j + 1; t� 2)]T : (10)

The candidate model term set (MT) will initially be constructed as

MT =

1 0 0 0 0 0
...

6 0 0 0 0 0

1 2 0 0 0 0
...

5 6 0 0 0 0
...

1 2 3 4 5 6

where 1, 2, 3, 4, 5, and 6 denote the rows in the neighborhood vector.
For example, an entry of “4’” represents the fourth row in (10) and is
therefore associated withcell(j+1; t�1), and so on. The full model set
MT consists ofN = 63 terms/rows. Each row in this model represents
a candidate term which corresponds to a termsd; d = 1; . . . ; N in (11)
in the Appendix. For example, the first row (1 0 0 0 0 0) represents
s(j � 2; t � 1) only while the last row (1 2 3 4 5 6) corresponds to a
product of six statess(j � 2; t� 1)� s(j � 1; t� 1)� s(j; t� 1)�
s(j + 1; t� 1)� s(j + 2; t� 1)� s(j + 1; t� 2).

Five hundred data points were extracted from the patterns in
Fig. 2(a), (b), (c), and (d), respectively, and these were used to fit
the models. Noa priori information regarding the neighborhoods
or rules was assumed. In the simulation the threshold for the term
contribution[ct] values for the four models were all chosen as 0 and
the CA-OLS estimator searched through 63 possible candidate terms
for each model. Finally, four different models were selected which
were associated with four different neighborhoods. The models and
the corresponding parameters� are shown in models 1-(a), 1-(b),
1-(c), and 1-(d).

MT =

4 0 0 0 0 0

2 4 0 0 0 0

2 0 0 0 0 0

2 3 0 0 0 0

3 0 0 0 0 0

2 3 4 0 0 0

3 4 0 0 0 0

� =

1:0000

�2:0000

1:0000

�2:0000

1:0000

2:0000

�1:0000

Model 1-(a)

MT =

2 0 0 0 0 0

1 2 0 0 0 0

1 0 0 0 0 0

1 3 0 0 0 0

3 0 0 0 0 0

1 2 3 0 0 0

2 3 0 0 0 0

� =

1:0000

�2:0000

1:0000

�2:0000

1:0000

2:0000

�1:0000

Model 1-(b)

MT =

4 0 0 0 0 0

3 4 0 0 0 0

3 0 0 0 0 0

3 5 0 0 0 0

5 0 0 0 0 0

3 4 5 0 0 0

4 5 0 0 0 0

� =

1:0000

�2:0000

1:0000

�2:0000

1:0000

2:0000

�1:0000

Model 1-(c)

MT =

4 0 0 0 0 0

4 6 0 0 0 0

6 0 0 0 0 0

3 6 0 0 0 0

3 0 0 0 0 0

3 4 6 0 0 0

3 4 0 0 0 0

� =

1:0000

�2:0000

1:0000

�2:0000

1:0000

2:0000

�1:0000

Model 1-(d)

The terms in model 1-(b) represent the left-shift neighborhood be-
cause all the model entries are selected fromfcell(j�2; t�1); cell(j�
1; t � 1); andcell(j; t � 1)g. Notice how the CA-OLS algorithm has
correctly selected only the appropriate three cells and discarded the re-
mainder. Combining the terms with the corresponding parameters�,
the identified model describes the CA rule in the polynomial form:
s(j; t) = s(j � 1; t � 1) � 2s(j � 2; t � 1) � s(j � 1; t � 1) +
s(j � 2; t � 1) � 2s(j � 2; t � 1) � s(j; t � 1) + s(j; t � 1) +
2s(j � 2; t � 1) � s(j � 1; t � 1) � s(j; t � 1) � s(j � 1; t �
1)� s(j; t� 1). The terms in model 1-(a) represent the von Neumann
neighborhoodfcell(j � 1; t � 1); cell(j; t � 1); cell(j + 1; t � 1)g
while the terms in model 1-(c) correspond to the right-shift neighbor-
hoodfcell(j; t� 1); cell(j + 1; t� 1); cell(j + 2; t� 1)g. The result
in model 1-(d) covers entry 6, which in (10) represents a cell at time
stept � 2; cell(j � 1; t � 2). Model 1-(d) therefore defines a tem-
poral-shift neighborhood involvingcell(j � 1; t � 2); cell(j; t � 1),
andcell(j + 1; t � 1).

In each case, the CA-OLS algorithm has correctly determined the ap-
propriate neighborhood. Notice that the parameters� in models 1-(a),
1-(b), 1-(c), and 1-(d) are all exactly the same but that each operates on
a different neighborhood and hence produces a different CA pattern.
The measured output and the model predicted output (MPO) for the
von Neumann neighborhood are compared in Fig. 4 where the MPO is
defined as

ŝm(j; t) = f̂(ŝm(j + j1; t� 1); . . . ; ŝm(j � j2; t� 1); . . . ;

ŝm(j + j1; t� h); . . . ; ŝm(j � j2; t� h)):

The MPO is a more strict criteria for evaluating the performance of the
estimator than the one-step ahead prediction (OSA) which is defined
as

ŝm(j; t) = f̂(sm(j + j1; t� 1); . . . ; sm(j � j2; t� 1); . . . ;

sm(j + j1; t� h); . . . ; sm(j � j2; t� h)):

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003 337

Fig. 4. Comparison of the measured (solid line) and the model predicted output
(dashed line) forRule30 with a von Neumann neighborhood.

The comparison in Fig. 4 clearly shows that the measured output and
the predicted output using the estimated model are almost coincidental.
The dashed line follows the solid line without any deviation. The
variance is virtually zero because the polynomial expression is not an
approximation of the CA rules but an equivalent representation. The
MPOs for other neighborhoods also match the corresponding measured
outputs exactly. For simplicity, the comparisons are not shown in this
paper. The Quine–McCluskey [10] method was then used to extract
the minimum Boolean expression from the estimated polynomial form
for Rule30 with the left-shift neighborhood. The Boolean expression
obtained wass(j; t) = �s(j� 2; t� 1)� s(j; t� 1)� �s(j� 2; t� 1)�
s(j� 1; t� 1)� s(j � 2; t� 1) � �s(j� 1; t� 1) � �s(j; t� 1) which
corresponds exactly to the entry of the Boolean expression forRule30
in [8]. Similarly, applying the Quine–McCluskey method to models
1-(a), 1-(c), and 1-(d) will produce correct results, respectively.

B. Identification of a 2-D 5-Site CA Rule

The spatio–temporal patterns produced by a 2-D CA evolution on a
200� 200 lattice with a von Neumann neighborhood are illustrated in
Fig. 5. Assume initially that the largest possible neighborhood for this
2-D rule is the 9-site Moore neighborhood. Define the neighborhood
vector as

a(t) = [s(i� 1; j � 1; t� 1)

� s(i� 1; j; t� 1)s(i� 1; j + 1; t� 1)

� s(i; j � 1; t� 1)s(i; j + 1; t� 1)s(i+ 1; j � 1; t� 1)

� s(i+ 1; j; t� 1)s(i+ 1; j + 1; t� 1)s(i; j; t� 1)]T :

The initial model was constructed as

MT =

1 0 0 0 0 0 0 0 0
...

1 2 3 4 5 6 7 8 9

where 1, 2, 3, 4, 5, 6, 7, 8, and 9 representcell(i�1; j�1; t�1); cell(i�
1; j; t � 1); cell(i � 1; j + 1; t � 1); cell(i; j � 1; t � 1); cell(i; j +

1; t� 1); cell(i+ 1; j � 1; t� 1); cell(i+1; j; t� 1); cell(i+ 1; j +
1; t � 1); andcell(i; j; t � 1), respectively.

MT =

4 7 9 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

2 4 5 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

2 5 0 0 0 0 0 0 0

4 5 0 0 0 0 0 0 0

2 7 9 0 0 0 0 0 0

2 9 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

2 5 9 0 0 0 0 0 0

5 9 0 0 0 0 0 0 0

2 4 9 0 0 0 0 0 0

2 4 5 9 0 0 0 0 0

2 4 0 0 0 0 0 0 0

4 9 0 0 0 0 0 0 0

4 5 9 0 0 0 0 0 0

� =

�1:0000

1:0000

1:0000

1:0000

1:0000

�2:0000

�1:0000

1:0000

�2:0000

1:0000

2:0000

�1:0000

2:0000

�2:0000

�1:0000

�1:0000

1:0000

Model2-(a)

One thousand data points were extracted from the CA patterns in
Fig. 5 and the threshold for the[ct] cutoff was set to zero. The CA-OLS
estimator produced a model with only 17 rows after searching through
the whole model set ofN = 29 � 1 = 511 candidate terms. The
identified model 2-(a) clearly shows that the CA-OLS algorithm has
correctly selected cells 2, 4, 5, 7, and 9 which correspond to the
von Neumann neighborhoodfcell(i � 1; j; t � 1); cell(i; j � 1; t �
1); cell(i; j; t � 1); cell(i; j + 1; t � 1); andcell(i + 1; j; t � 1)g,
respectively. The MPO was exactly equal to the measured output over
the data points. For simplicity, this comparison is not shown in this
paper.

Applying the Quine–McCluskey method to model 2-(a), the fol-
lowing final prime implicants were obtained:

A:�s(i; j; t� 1) � �s(i; j + 1; t� 1) � s(i� 1; j; t� 1)

B:�s(i; j � 1; t� 1) � s(i; j + 1; t� 1) � �s(i� 1; j; t� 1)

C:�s(i; j; t� 1) � s(i; j + 1; t� 1) � �s(i� 1; j; t� 1)

D:�s(i+ 1; j; t� 1) � s(i; j; t� 1) � �s(i� 1; j; t� 1)

E:�s(i; j � 1; t� 1) � s(i; j; t� 1) � �s(i; j + 1; t� 1)

F :�s(i+ 1; j; t� 1) � s(i; j � 1; t� 1) � �s(i; j + 1; t� 1)

G:s(i; j � 1; t� 1) � �s(i; j; t� 1) � �s(i; j + 1; t� 1)

H:�s(i+ 1; j; t� 1) � s(i; j � 1; t� 1) � �s(i� 1; j; t� 1)

I:s(i; j � 1; t� 1) � �s(i; j; t� 1) � �s(i� 1; j; t� 1)

J :s(i; j � 1; t� 1) � �s(i; j; t� 1) � �s(i; j + 1; t� 1)

K:s(i; j � 1; t� 1) � �s(i; j + 1; t� 1) � s(i� 1; j; t� 1)

L:s(i+ 1; j; t� 1) � �s(i; j + 1; t� 1) � s(i� 1; j; t� 1)

M :s(i+ 1; j; t� 1) � �s(i; j � 1; t� 1) � s(i; j; t� 1):

Finally, the Boolean expression of this 5-site 2-D rule is theOR com-
bination of all the aboveA–M 13 items.

C. Identification of a 4-D CA

Data extracted from a 4-D 12� 12� 12� 12 cellular automaton
with null boundary conditions will be used to illustrate the iden-
tification. The initial neighborhood was assumed to encompass
fcell(i � 1; j; l; k; t � 1); cell(i + 1; j; l; k; t � 1); cell(i; j �

338 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003

Fig. 5. Evolution of a 2-D CA rule with a 5-site von Neumann neighborhood: (a)t = 0; (b) t = 1; (c) t = 10; (d) t = 20; (e) t = 30; (f) t = 40; (g) t = 50;
(h) t = 60; (i) t = 70; and (j) t = 80.

1; l; k; t � 1); cell(i; j + 1; l; k; t � 1); cell(i; j; l � 1; k; t �
1); cell(i; j; l + 1; k; t � 1); cell(i; j; l; k � 1; t � 1); cell(i; j; l; k +
1; t�1); cell(i; j; l; k; t�1)g. This, in turn, defines the neighborhood
vector asa(t) = [s(i� 1; j; l; k; t � 1)s(i+ 1; j; l; k; t � 1)s(i; j �
1; l; k; t � 1)s(i; j + 1; l; k; t � 1)s(i; j; l � 1; k; t � 1)s(i; j; l +
1; k; t�1)s(i; j; l; k�1; t�1)s(i; j; l; k+1; t�1)s(i; j; l; k; t�1)].
The initial model was constructed as

MT =

1 0 0 0 0 0 0 0 0
...

1 2 3 4 5 6 7 8 9

where 1, 2, 3, 4, 5, 6, 7, 8, and 9 representfcell(i � 1; j; l; k; t �
1); cell(i+1; j; l; k; t�1); cell(i; j�1; l; k; t�1); cell(i; j+1; l; k; t�
1); cell(i; j; l � 1; k; t � 1); cell(i; j; l + 1; k; t � 1); cell(i; j; l; k �
1; t�1); cell(i; j; l; k+1; t�1); andcell(i; j; l; k; t�1)g, respectively.
The [ct] threshold was again set to zero and the number of possible
candidate models was29�1 = 511. The CA-OLS estimator produced
a model with only 14 rows and the associated integer parameters given
in model 4-(a)

MT =

4 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

1 5 6 0 0 0 0 0 0

4 6 0 0 0 0 0 0 0

1 4 5 6 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 4 0 0 0 0 0 0 0

1 5 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

1 4 5 0 0 0 0 0 0

4 5 0 0 0 0 0 0 0

5 6 0 0 0 0 0 0 0

1 6 0 0 0 0 0 0 0

1 4 6 0 0 0 0 0 0

� =

1:0000

1:0000

1:0000

�1:0000

�1:0000

1:0000

�1:0000

�2:0000

1:0000

2:0000

�1:0000

�1:0000

�1:0000

1:0000

Model 4-(a).

A comparison of the measured output and MPO again produced vir-
tually coincidental results showing that the correct model of the CA
has been estimated. For simplicity, this comparison is not shown in this
paper. Comparing the estimated model 4-(a) with model 2-(a) shows
that the structure in model 4-(a) is much simpler than that in model
2-(a) although the former is extracted from a 4-D CA while the later is
from a 2-D CA. The computation time for both are approximately the
same. It can be seen that the efficiency of the CA-OLS estimator re-
lies largely on the size of the neighborhood, that is the number of cells
within the neighborhood, rather than the order or dimension of the CA
and this can dramatically simplify the problem of identifying higher
dimensional CA.

Applying the Quine–McCluskey method to the polynomial produced
from model 4-(a) the correct Boolean expression of theOR combina-
tion of nine prime implicants was obtained. For simplicity, the prime
implicants are not listed.

V. CONCLUSION

While many authors have demonstrated that simple CA models can
produce complex spatio–temporal patterns, few investigators have
studied how to recover such models given only the data patterns. One
possible solution to this important problem has been introduced in this
study using the new CA-OLS estimator.

The new estimator exploits the observation that binary CA rules can
be exactly represented as polynomial models which collapse to rela-
tively simple forms even for high-dimensional CAs. This transforms
the problem from a nonlinear-in-the-parameters to a linear-in-the -pa-
rameters formulation. The neighborhood of the CA can then be deter-
mined using a modified orthogonal least squares estimator. Identifying
the neighborhood of the CA is critical if the underlying rules are to
be estimated and it has been shown that the term contribution test is an
efficient solution to this problem. Once the neighborhood and the poly-
nomial model parameters have been obtained, the model can then be
mapped back to a Boolean form using the Quine–McCluskey method.

The only information required is to set the range of the largest ex-
pected neighborhood over which the algorithm searches for candidate
model terms. The CA-OLS estimator then searches through all the pos-
sible terms and discards all terms below the[ct] threshold to yield the
estimated model. The MPO is used as a metric of performance to vali-
date the model.

Several simulated examples show the power of the new approach
and demonstrate for the first time how CA models can be extracted
from data generated from high-dimensional CA systems.

Further research is required to address the case of hybrid CAs, where
more than one CA rule applies in a pattern, and to confirm that the
CA-OLS algorithm can be used to identifyn-dimensional CA rule
given the evolution over ann + 1-dimensional space.

APPENDIX

A. The CA-OLS Algorithm

Consider the polynomial expression for 3-D CAs in (9), for example.
Denote(u1; . . . ; un; . . . ; u1�� � ��un) as(s1; . . . ; sN). Equation (9)
can then be written as

s(i; j; l; �) =

N

d=1

sd(�)� �d = s(�)� �� (11)

where� indicates the order of the data point and

�� = [�1 �2 � � � �N]T

s(�) = [s1(�) s2(�) � � � sN(�)]:

Equation (11) can also be represented in a matrix form as

s(i; j; l) = S� �� (12)

where

s(i; j; l) = [s(i; j; l; 1) s(i; j; l; 2) � � � s(i; j; l;M)]T

S = [sT (1) s
T (2) � � � s

T (M)]T = [s1 � � � sN]

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003 339

andM denotes the number of data points in the data set. MatrixS can
be decomposed asS = E �Q, where

E =

e1(1) � � � eN(1)
...

...
e1(M) � � � eN(M)

= [e1 � � � eN]

is an orthogonal matrix, that is,ET�E = Diag[eT1 �e1 � � � eTN�eN]
andQ is an upper triangular matrix with unity diagonal elements

Q =

1 q12 q13 � � � q1N

1 q23 � � � q2N
. . .

. . .
...

1 qN�1N
1

:

Equation (12) can then be represented as

s(i; j; l) = E�Q� �� = E�
�~� (13)

where�~� = Q � �� = [~�1 � � � ~�N]T :
Therefore, (11) can be written as

s(i; j; l; �) =

N

d=1

ed(�)� ~�d: (14)

The contribution each termfsd; d = 1; . . . ; Ng in (12) makes to
s(i; j; l) can then be calculated as

[ct]d =
~�2d �

M

�=1 e
2
d(�)

M

�=1 s
2(i; j; l; �)

: (15)

The sum of all the[ct] values will be unity so if[ct] were multiplied by
100 this would give the percentage contribution that each term makes
to s(i; j; l). The orthogonalization ofS simplifies the term selection
process and allows each relevant term to be added to the identified term
set MT independently of other terms. The parameter vector�� can then
be estimated by computing each~�d one at a time. However, in the term
selection process,[ct]d may depend on the order in whichsd(�) enters
(11). A change of the position ofsd(�) in (11) may result in a change
of the associated[ct]d value. Consequently, simply orthogonalizing the
columns inS into (13) in the order in whichsd(�)s happen to appear in
(11) may produce the wrong information regarding the corresponding
contributions. To avoid this problem, the following forward regression
algorithm is used. This algorithm will forward add terms instead of
forward deleting terms and will therefore disregard the order thatsd(�)
enters (11).

The forward regression CA-OLS algorithm is given by the following.

1) Consider all thesd(�) as possible candidates fore1(�). Ford =
1; . . . ; N , calculate

e
(d)
1 (�) = sd(�)

~�
(d)
1 =

M

�=1 e
(d)
1 (�)s(i; j; l; �)

M

�=1 e
(d)
1 (�)

2

[ct]
(d)
1 =

~�
(d)
1

2
M

�=1 e
(d)
1 (�)

2

M

�=1 s
2(i; j; l; �)

:

Find and denote the maximum of[ct](d)1 as [ct]
(v)
1 =

maxf[ct]
(d)
1 ; 1 � d � Ng. The first relevant terme1(�)

is selected ase(v)1 (�) and ~�1 = ~�(v); [ct]1 = [ct]
(v)
1 . The

correspondingsv(�) is then included in the identified model set
MT.

2) All of thesd(�); d = 1; . . . ; N; d 6= v are considered as possible
candidates fore(v)2 (�). Ford = 1; . . . ; N; d 6= v; calculate

e
(d)
2 (�) = sd(�)� q

(d)
12 e1(�)

~�
(d)
2 =

M

�=1 e
(d)
2 (�)s(i; j; l; �)

M

�=1 e
(d)
2 (�)

2

[ct]
(d)
2 =

~�
(d)
2

2
M

�=1 e
(d)
2 (�)

2

M

�=1 s
2(i; j; l; �)

where

q
(d)
12 =

M

�=1 e1(�)sd(�)
M

�=1 e
2
1(�)

:

Find and denote the maximum of[ct](d)2 as [ct]
(g)
2 =

maxf[ct]
(d)
2 ; 1 � d � N; d 6= vg. The second term

e2(�) is therefore selected ase(g)2 (�) = sg(�)� q
(g)
12 e1(�) and

q12 = q
(g)
12 ;

~�2 = ~�(g); [ct]2 = [ct]
(g)
2 . The correspondingsg(�)

is then included in the identified model set MT.
3) The procedure is terminated at theNsth step either when1 �

N

d=1[ct]d < Co� (desired tolerance),Ns < N , or whenNs =
N .

4) From the selected orthogonal equations(i; j; l; �) =
N

d=1 ed(�)
~�d, it is then straightforward to calculate the

correspondingNs parameters� using �N = ~�N ; �m =
~�m � N

k=m+1 qmk�k;m = Ns � 1; . . . ; 1.

REFERENCES

[1] G. Hernandez and H. J. Herrann, “Cellular automata for elementary
image enhancement,”Graph. Models Image Process., vol. 58, no. 1, pp.
82–89, 1996.

[2] P. Tzionaset al., “Design and vlsi implementation of a pattern classifier
using pseudo 2d cellular automata,” inProc. Inst. Elect. Eng., Circuits,
Devices and Systems, vol. 139, 1992, pp. 661–668.

[3] E. Macii and M. Poncino, “Cellular automata models for reliablity
analysis of systems on silicon,”IEEE Trans. Rel., vol. 146, no. 2, pp.
173–183, 1997.

[4] S. Surka and K. P. Valavanis, “A cellular automata model for edge re-
laxation,”J. Intell. Robot. Syst., vol. 4, no. 4, pp. 379–391, 1991.

[5] A. I. Adamatzky, Identification of Cellular Automata. New York:
Taylor & Francis, 1994.

[6] F. C. Richards, “Extracting cellular automaton rules directly from exper-
imental data,”Phys. D, vol. 45, pp. 189–202, 1990.

[7] Y. X. Yang and S. A. Billings, “Extracting Boolean rules from CA pat-
terns,”IEEE Trans. Syst., Man, Cybern. B, vol. 30, pp. 573–580, Aug.
2000.

[8] S. Wolfram, Cellular Automata and Complexity, ser. MA. Reading:
Addison-Wesley, 1994.

[9] B. H. Voorhees,Computational Analysis of One-Dimensional Cellular
Automata, World Scientific Series on Nonlinear Science, Singapore:
World Scientific, 1996.

[10] R. Korfhage,Logic and Algorithms. New York: Wiley, 1996.
[11] C. Dikset al., “Spatio–temporal chaos: A solvable model,”Phys. D, vol.

104, pp. 269–285, 1997.
[12] S. A. Billings, S. J. Chen, and M. J. Korenberg, “Identification of mimo

nonlinear systems using a forward-regression orthogonal estimator,”Int.
J. Contr., vol. 49, no. 6, pp. 2157–2189, 1989.

