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A class of three-colorable triangle-free graphs

Marko Radovanović ∗and Kristina Vušković †

4th November 2011

Abstract

The chromatic number of a triangle-free graph can be arbitrarily
large. In this paper we show that if all subdivisions of K2,3 are also
excluded as induced subgraphs, then the chromatic number becomes
bounded by 3. We give a structural characterization of this class of
graphs, from which we derive an O(nm) coloring algorithm, where n

denotes the number of vertices and m the number of edges of the input
graph.

Key words: coloring; decomposition; clique cutsets; star cutsets; triangle-
free graphs; induced subdivisions of K2,3.

AMS Subject Classification (2010): 05C20, 05C75, 05C85

1 Introduction

Throughout the paper all graphs are finite and simple. We say that a graph
G contains a graph F , if F is isomorphic to an induced subgraph of G, and
it is F -free if it does not contain F . For a family of graphs F we say that
G is F-free if G is F -free for every F ∈ F .

It is a well known fact that triangle-free graphs can have arbitrarily
large chromatic number. The coloring problem remains difficult even when
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seemingly a lot of structure is imposed on a triangle-free graph. For ex-
ample determining whether a graph is 3-colorable remains NP-complete for
triangle-free graphs with maximum degree 4 [8].

A family of graphs G is χ-bounded with χ-binding function f if, for every
induced subgraph G′ of G ∈ G, χ(G′) ≤ f(ω(G′)) (where χ denotes the
chromatic number of a graph and ω the size of its largest clique). This con-
cept was introduced by Gyárfás [6] as a natural extension of perfect graphs,
that are a χ-bounded family of graphs with χ-binding function f(x) = x.
A natural question to ask is: what choices of forbidden induced subgraphs
guarantee that a family of graphs is χ-bounded? Much research has been
done in this area, for a survey see [9]. We note that most of that research
has been done on classes of graphs obtained by forbidding a finite number
of graphs. Since there are graphs with an arbitrarily large chromatic num-
ber and girth [4], in order for a family of graphs defined by forbidding a
finite number of graphs (as induced subgraphs) to be χ-bounded, at least
one of these forbidden graphs needs to be acyclic. In this paper we consider
a class of graphs defined by excluding only cyclic graphs, namely the class
of graphs that do not contain triangles nor subdivisions of K2,3 as induced
subgraphs. (A K2,3 is the complete bipartite graph with 2 nodes on one side
of bipartition and 3 nodes on the other side, and a subdivision of a graph is
obtained by subdividing its edges into paths of arbitrary length). We show
that the chromatic number for this class is bounded by 3, and we give an
O(nm) algorithm for coloring graphs in this class.

In Section 1.1 we introduce the terminology and notation used through-
out the paper. In Section 1.2 we state the key results of this paper about
the class of graphs defined by excluding triangles and subdivisions of K2,3

as induced subgraphs, whose proofs are given in Section 2. In Section 1.3 we
show how it follows from the work of Kühn and Osthus [7] that the class of
graphs that do not contain subdivisions of K2,3 is χ-bounded. The method
relies on Ramsey numbers, and so the bound is quite large.

1.1 Terminology and notation

A hole in a graph is an induced cycle of length at least 4. For A ⊆ V (G),
G[A] denotes the subgraph of G induced by A. A clique is a graph in which
every pair of nodes are adjacent. A clique on k nodes is denoted by Kk.
A K3 is also referred to as a triangle, and is denoted by ∆. A Ks,t is a
complete bipartite graph with s nodes on one side of the bipartition and
t nodes on the other. The complete bipartite graph K4,4 with a perfect
matching removed is called a cube. This graph is indeed the skeleton of a
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3-dimensional cube.
Subdivisions of K2,3 appear under different names in literature. For

example, they are referred to as 3PC(., .)’s in [2] (as one of the three types
of 3-path-configurations introduced by Truemper in [11]) and as thetas in
[1]. In this paper we find it convenient to use the 3PC(., .) notation. More
specifically, a 3PC(x, y) is a structure induced by three paths that connect
two nonadjacent nodes x and y in such a way that any two of the paths
induce a hole. We say that a graph G contains a 3PC(., .) if it contains a
3PC(x, y) for some x, y ∈ V (G).

A wheel (H,x) consists of a hole H and a node x called the center that
has at least three neighbors on the hole H. A wheel (H,x) is even if x has
an even number of neighbors on H.

In a connected graph G, a subset S of nodes and edges is a cutset if its
removal disconnects G. A cutset S is a clique cutset if S induces a clique,
and it is a star cutset if S contains a node that is adjacent to all other
nodes of S. A clique cutset S is a K1 cutset (resp. K2 cutset) if |S| = 1
(resp. |S| = 2). For x ∈ V (G), N(x) is the set of all neighbors of x in G,
and N [x] = N(x) ∪ {x}. A cutset S is a full star cutset of G, if for some
x ∈ V (G), S = N [x].

1.2 (∆, 3PC(., .))-free graphs

In this paper we obtain the following characterizations of (∆, 3PC(., .))-free
graphs, that lead to a coloring algorithm for this class. Our results generalize
the work in [3] where the class of (∆, 3PC(., .), even wheel)-free graphs is
considered.

Theorem 1.1 A connected (∆, 3PC(., .))-free graph that has a cube is ei-
ther equal to that cube or has a K1 or K2 cutset.

An analogous result is proved in [3] for (∆, 3PC(., .), even wheel)-
free graphs. From Theorem 1.1 it follows that if we know how to
color (∆, 3PC(., .), cube)-free graphs, then we can color the entire class of
(∆, 3PC(., .))-free graphs. Next we concentrate on (∆, 3PC(., .), cube)-free
graphs.

Theorem 1.2 If a connected (∆, 3PC(., .), cube)-free graph contains a
wheel, then it has a full star cutset.

In [3] it is shown that if a (∆, 3PC(., .), even wheel, cube)-free graph
contains a wheel (H,x), then for any two distinct neighbors xi and xj of x on
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H, {x, xi, xj} is a cutset. In the case of (∆, 3PC(., .), cube)-free graphs, this
is not true, since the wheels interact in more complex ways. To decompose
wheels we need to use more powerful cutsets, as well as be careful about the
order in which the wheels are considered for decomposition.

The following decomposition theorem is proved in [2]. In fact a more gen-
eral decomposition theorem is proved in [2]; here we only state its corollary
that we will need in this paper.

Theorem 1.3 [2] A connected (∆, 3PC(., .), wheel)-free graph is either a
K1, a K2 or a hole, or it has a K1 or K2 cutset.

Theorem 1.4 A connected (∆, 3PC(., .))-free graph is either a K1, a K2,
a hole or a cube, or it has a K1 or K2 cutset or a full star cutset.

proof — Follows directly from Theorem 1.1, Theorem 1.2 and Theorem
1.3. 2

This decomposition theorem does not help in coloring (∆, 3PC(., .))-free
graphs, since it is not clear how to use star cutsets in a decomposition based
coloring algorithm. Instead we use Theorem 1.4 to prove the existence of
a node of small degree, which is a property that can be used in a coloring
algorithm.

Theorem 1.5 If G is a (∆, 3PC(., .))-free graph, then G has a vertex of
degree at most 3.

We note that this result is best possible since a cube is an example of
a (∆, 3PC(., .))-free graph all of whose vertices have degree 3. It follows
from Theorem 1.5 that (∆, 3PC(., .))-free graphs G can be 4-colored in time
O(n2) by coloring greedily on a sequence of nodes x1, . . . , xn such that for
every i = 1, . . . , n, xi is of degree at most 3 in G[{x1, . . . , xi}]. We can do
better than that by considering cube-free graphs.

Theorem 1.6 If G is a (∆, 3PC(., .), cube)-free graph, then G has a vertex
of degree at most 2.

An analogous result is proved in [3] for (∆, 3PC(., .), even wheel)-free
graphs. By Theorem 1.6 we can color (∆, 3PC(., .), cube)-free graphs with
at most 3 colors, by constructing a sequence of nodes x1, . . . , xn such that for
every i = 1, . . . , n, xi is of degree at most 2 in G[{x1, . . . , xi}] and coloring
greedily on this sequence. Putting all the results together we obtain the
following theorem that will be proved in Section 2.
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Theorem 1.7 If G is a (∆, 3PC(., .))-free graph, then χ(G) ≤ 3. Further-
more, there exists an O(nm) algorithm for coloring graphs in this class,
where n denotes the number of vertices and m the number of edges of the
input graph.

Observe that this bound on the chromatic number is tight, i.e. there
are (∆, 3PC(., .))-free graphs whose chromatic number is 3. We note that
although the class of (∆, 3PC(., .))-free graphs can be recognized in O(n11)
time, since 3PC(., .)’s can be detected in that time by the algorithm of
Chudnovsky and Seymour [1], it is in fact not necessary to recognize the
class before applying the coloring algorithm. The algorithm given in the
proof of Theorem 1.7 is robust in the following sense: given any graph G,
the algorithm either verifies that G is not in our class, or it properly colors
the graph. This means that the algorithm will properly color all graphs in
our class, as well as some graphs that are not in our class. In case a proper
coloring is not returned, we are given a certificate that the input graph is
not in our class.

It is a well known result that ∆-free planar graphs are 3-colorable [5].
We observe that there are (∆, 3PC(., .))-free graphs that are not planar, as
shown in Figure 1.

Figure 1: A (∆, 3PC(., .))-free graph that has a K5-minor.
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1.3 χ-boundedness of 3PC(., .)-free graphs

We now show how it can be derived from the following theorem of Kühn
and Osthus that 3PC(., .)-free graphs are χ-bounded. This was pointed out
to us by Trotignon, and it was pointed out to him by Scott.

Theorem 1.8 (Kühn and Osthus [7]) For every graph H and every s ∈
N there exists d = d(H, s) such that every graph G of average degree at least
d contains either a Ks,s as a subgraph or a subdivision of H as an induced
subgraph.

Corollary 1.9 3PC(., .)-free graphs are χ-bounded.

proof — Let G be a 3PC(., .)-free graph. Let s be the Ramsey number
R(ω(G)+1, 3), and let c = d(K2,3, s) be the constant from Theorem 1.8 (with
H = K2,3). We now show that G is c-colorable. Suppose not. Without loss
of generality we may assume that χ(G) > c and for every proper induced
subgraph G′ of G, χ(G′) ≤ c.

We prove that the degree of every node of G is at least c. Suppose on
the contrary that deg(v) ≤ c − 1 for some v ∈ V (G). By the choice of
G, χ(G − v) ≤ c, and therefore χ(G) ≤ max{χ(G − v),deg(v) + 1} ≤ c, a
contradiction. So every node of G has degree at least c, and therefore G has
average degree at least c.

Since G is 3PC(., .)-free, it cannot contain a subdivision of K2,3 as an
induced subgraph, and so by Theorem 1.8 G contains a Ks,s as a subgraph.
By the choice of s, both sides of the bipartition of Ks,s contain a stable
set of size 3. In particular, G contains a K2,3 as an induced subgraph, a
contradiction. 2

We note that the bound one gets for the chromatic number in this corol-
lary, is rather large. It follows from the proof of Theorem 1.8 that it is at

least max{22225+1, 228R(ω(G)+1,3)
}.

2 Proofs

A path P is a sequence of distinct nodes p1, . . . , pk, k ≥ 1, such that pipi+1 is
an edge, for all 1 ≤ i < k. These are called the edges of the path P . Nodes
p1 and pk are the endnodes of the path. The nodes of V (P ) that are not
endnodes are called the intermediate nodes of P . Let pi and pl be two nodes
of P , such that l ≥ i. The path pi, pi+1, . . . , pl is called the pipl-subpath of
P . A cycle C is a sequence of nodes c1, . . . , ck, c1, k ≥ 3, such that the nodes
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c1, . . . , ck form a path and c1ck is an edge. The edges of the path c1, . . . , ck

together with edge c1ck are called the edges of cycle C. The length of a path
P (resp. cycle C) is the number of edges in P (resp. C).

Given a path or a cycle Q in a graph G, any edge of G between nodes
of Q that is not an edge of Q is called a chord of Q. Q is chordless if no
edge of G is a chord of Q. As mentioned earlier a hole is a chordless cycle
of length at least 4.

Let A and B be two disjoint node sets such that no node of A is adjacent
to a node of B. A path P = p1, . . . , pk connects A and B if either k = 1 and
p1 has neighbors in both A and B, or k > 1 and one of the two endnodes of
P is adjacent to at least one node in A and the other endnode is adjacent to
at least one node in B. The path P is a direct connection between A and B

if in G[V (P ) ∪ A ∪ B] no path connecting A and B is shorter than P . The
direct connection P is said to be from A to B if p1 is adjacent to a node of
A and pk is adjacent to a node of B.

Throughout the paper, for a wheel (H,x) we will denote the neighbors
of x in H with x1, . . . , xh assuming that they appear in this order when
traversing H. For i = 1, . . . , h, the subpath of H from xi to xi+1 (where
index h+1 is taken to be 1) that does not contain an interior node adjacent
to x is called a sector of (H,x) and is denoted by Si. We denote by x′

i

(respectively x′′
i ) the neighbor of xi in Si (respectively Si−1).

For a subgraph F of G, we say that a node u ∈ V (G) \ V (F ) is strongly
adjacent to F if u has at least two neighbors in F .

Proof of Theorem 1.1: Assume that G contains a cube M induced by the
nodes u1, . . . , u4, v1, . . . , v4 where ui is adjacent to vj whenever i 6= j and
no other edges exist. Also assume that G does not have a K1 or K2 cutset.

We first show that no node of G is strongly adjacent to M . Assume
a node w is strongly adjacent to M . W.l.o.g. w is adjacent to u1, and
since G is ∆-free, w is not adjacent to v2, v3 nor v4. If w is adjacent to
ui, then w.l.o.g i = 2, and hence the node set {u1, u2, v3, v4, w} induces a
3PC(u1, u2). Therefore, N(w)∩M = {u1, v1}. But then (M \{u4, v4})∪{w}
induces a 3PC(u1, v1). Therefore, no node of G is strongly adjacent to M .

Assume G 6= M and let C be a connected component of G \ M . Note
that, since no node is strongly adjacent to M , the nodes of C that have a
neighbor in M , have a unique neighbor in M . Since G has no K1 nor K2

cutset, nodes of C must have two nonadjacent neighbors in M . Therefore,
C contains a chordless path P = p1, . . . , pk, k ≥ 2, such that the neighbors
of p1 and pk in M are two nonadjacent nodes. Among all such paths in
C, let P be minimum. Therefore, at most one node of M is adjacent to
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an intermediate node of P , and if such a node exists, then it is adjacent to
both of the neighbors of p1 and pk in M . We now consider the following two
cases.

Case 1: No node of M is adjacent to a node pi, 2 ≤ i ≤ k − 1.
By symmetry we may assume that p1 is adjacent to u1 and that pk is
adjacent to either u2 or v1. If pk is adjacent to u2, then the node set
V (P )∪{u1, u2, v3, v4} induces a 3PC(u1, u2). Otherwise, pk is adjacent to v1,
and hence the node set V (P )∪ {u1, u2, u4, v1, v2, v4} induces a 3PC(u1, v1).

Case 2: One node of M is adjacent to an intermediate node of P .
W.l.o.g. we may assume that p1 is adjacent to u1, pk to u2, and v3 has a
neighbor in the interior of P . Note that the nodes of M \{u1, u2, v3} have no
neighbor in P , and hence the node set V (P )∪ {v1, v2, v4, u1, u2, u4} induces
a 3PC(u1, u2). 2

Lemma 2.1 Let G be a (∆, 3PC(., .), cube)-free graph. Let (H,x) be a wheel
of G such that out of all wheels of G, (H,x) has the fewest number of edges.
Then no node is strongly adjacent to (H,x).

proof — Assume that y is strongly adjacent to (H,x). We consider the
following cases.

Case 1: y is adjacent to x.
Since G is ∆-free, x and y do not have a common neighbor in H. If y has
a unique neighbor y′ in H, say in sector Si, then V (Si) ∪ {x, y} induces
a 3PC(x, y′). If y has exactly two neighbors in H, say y ′ and y′′, then
since G is ∆-free, y′y′′ is not an edge, and hence V (H) ∪ {y} induces a
3PC(y′, y′′). Therefore (H, y) is also a wheel. Let S be a sector of (H, y)
that contains a neighbor of x. If S contains exactly one neighbor of x, say xi,
then V (S) ∪ {x, y} induces a 3PC(y, xi). Otherwise, V (S) ∪ {x, y} induces
a wheel with center x that contradicts our choice of (H,x).

Case 2: y is not adjacent to x.
As in Case 1, y cannot have exactly two neighbors in H, and hence (H, y)
is a wheel. Let S be a sector of (H, y) that contains a neighbor of x. If
S contains exactly two neighbors of x, say xi and xi+1, then V (S) ∪ {x, y}
induces a 3PC(xi, xi+1). If S contains at least three neighbors of x, then
V (S) ∪ {x, y} induces a wheel with center x that contradicts our choice of
(H,x). Therefore, each sector of (H, y) contains at most one neighbor of
x. If x and y have three common neighbors in H, say xi, xj and xk, then
{x, y, xi, xj, xk} induces a 3PC(x, y). Therefore some sector S of (H, y)
contains exactly one neighbor of x, say xi, and xi is in the interior of S.
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Let y1 and y2 be the endnodes of S. For j = 1, 2, let y ′
j be the neighbor of

yj in H \ S. Since G is ∆-free, y cannot be adjacent to y ′
1 nor y′2, and in

particular, y has a neighbor in V (H)\ (V (S)∪{y ′
1, y

′
2}). If x has a neighbor

in V (H) \ (V (S) ∪ {y′
1, y

′
2}), then G[(V (H) \ (V (S) ∪ {y′

1, y
′
2})) ∪ {x, y}]

contains a chordless path P from x to y, and hence V (S) ∪ V (P ) induces a
3PC(xi, y). Therefore N(x) ∩ V (H) = {xi, y

′
1, y

′
2}. If xiy1 is not an edge,

then V (S) ∪ {x, y, y′
1} induces a 3PC(xi, y1). So xiy1 is an edge, and by

symmetry so is xiy2. Let y′ be the neighbor of y in H \ S that is closest to
y′2. If y′1y

′ is not an edge, then the subpath of H \ S from y ′ to y′2 together
with the node set {x, y, xi, y1, y

′
1} induces a 3PC(x, y1). So y′1y

′ is an edge.
Since V (H) ∪ {x, y} cannot induce a cube, y ′y′2 is not an edge. But then
{x, y, xi, y2, y

′
2, y

′
1, y

′} induces a 3PC(x, y2). 2

A chordless path P = p1, . . . , pk of G\ (H ∪{x}) is an ear of (H,x) if for
some i ∈ {1, . . . , h}, no node of P is adjacent to x, N(p1) ∩ V (H) = {x′′

i },
N(pk) ∩ V (H) = {x′

i}, and no intermediate node of P has a neighbor in
H \ {xi}. (Note that xi may be adjacent to an intermediate node of P , and
in fact must be in the case of a 3PC(., .)-free graph). In this case we say
that P is an xi-ear.

Lemma 2.2 Let G be a (∆, 3PC(., .))-free graph and (H,x) a wheel of G.
Then there are nodes xi and xj , i 6= j, such that there is no xi-ear and no
xj-ear.

proof — Assume not and w.l.o.g. let Pi be an xi-ear, for i = 2, . . . , h.
Let G′ be the subgraph of G induced by ∪h

i=3
V (Pi) ∪ (V (H) \ (V (S1) ∪

{x3, . . . , xh}))∪{x1, x2}. Clearly G′ is connected. Let P be a chordless path
from x1 to x2 in G′. By definition of ears, no node of (V (S1)\{x1, x2})∪{x}
has a neighbor in P , and hence V (P )∪V (S1)∪{x} induces a 3PC(x1, x2).2

Theorem 2.3 Let G be a (∆, 3PC(., .), cube)-free graph. Let (H,x) be a
wheel of G such that out of all wheels of G, (H,x) has the fewest number
of edges. Then for some i, j ∈ {1, . . . , h}, i 6= j, S = N [x] \ ({x1, . . . , xh} \
{xi, xj}) is a star cutset separating the interior nodes of the two xixj-
subpaths of H. In particular, N [x] is a full star cutset of G.

proof — By Lemma 2.1 no node is strongly adjacent to (H,x). By Lemma
2.2 there are some 1 ≤ i < j ≤ h such that there is no xi-ear and no xj-ear.
Let S′ (resp. S ′′) be the xixj-subpath of H that contains Si (resp. Si−1). We
will show that S = N [x]\ ({x1, . . . , xh}\{xi, xj}) is a star cutset separating
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S′ \ {xi, xj} from S′′ \ {xi, xj}. Assume not and let P = p1, . . . , pk be a
direct connection from S ′ \{xi, xj} to S′′ \{xi, xj} in G\S. Let s′ (resp. s′′)
be the neighbor of p1 (resp. pk) in S′ \ {xi, xj} (resp. S ′′ \ {xi, xj}). Note
that the only nodes of (H,x) that may have a neighbor in P \ {p1, pk} are
xi and xj.

A node of {xi, xj} must have a neighbor in P \ {p1, pk}, since otherwise
V (H) ∪ V (P ) induces a 3PC(s′, s′′). If both xi and xj have a neighbor in
P \ {p1, pk}, then there is a subpath P ′ of P \ {p1, pk} such that xi, P

′, xj

is a chordless path, and hence V (H) ∪ V (P ′) induces a 3PC(xi, xj). So
w.l.o.g. we may assume that xi has a neighbor in P \ {p1, pk}, and xj does
not. If both xis

′ and xis
′′ are edges, then P is an xi-ear, contradicting

our assumption. So w.l.o.g. xis
′ is not an edge. Let pl be the node of

P \ {p1, pk} with smallest index adjacent to xi. Then V (H) ∪ {p1, . . . , pl}
induces a 3PC(xi, s

′).
Therefore S is a star cutset of G separating S ′\{xi, xj} from S′′\{xi, xj}.

Observe that since G is ∆-free, S ′\N [x] and S ′′\N [x] are nonempty graphs,
and hence N [x] is a full star cutset of G. 2

Proof of Theorem 1.2: Follows from Theorem 2.3. 2

Theorem 2.4 If G is a (∆, 3PC(., .), cube)-free graph, then for every x ∈
V (G), either V (G) = N [x] or G contains a vertex y ∈ V (G) \ N [x] whose
degree is at most 2.

proof — Assume not and let G be a counterexample with fewest number
of nodes. Observe that since G is ∆-free, if C is a connected component of G

that is a star, i.e. V (C) = N [x] for some x ∈ V (G), then either |V (C)| = 1
(and hence x is of degree 0) or every node of N(x) has degree 1. So by
minimality of G, it follows that G is connected. Also G is not a star. We
say that a node y is a mate of node x, if y is not adjacent to x and is of
degree at most 2. Since the theorem obviously holds when G has at most
two nodes or is a hole, by Theorem 1.4, since G is cube-free, it follows that
G has a K1 or K2 cutset, or a full star cutset.

First suppose that G has a K1 cutset, say {u}. Let C1, . . . , Ck be the
connected components of G \ {u}, and for i = 1, . . . , k, let Gi = G[V (Ci) ∪
{u}]. Since V (G) 6= N [u], w.l.o.g. V (G1) 6= NG1 [u]. By minimality of G

it follows that some c1 ∈ V (G1) \ N [u] has degree at most 2 in G1 (and
hence in G as well). So for every x ∈ V (G) \ V (C1), c1 is a mate of x. If
|V (C2)| = 1 then the node of C2 is of degree 1 in G, and otherwise by the
same argument C2 contains a node of degree at most 2. So C2 contains a
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node c2 of degree at most 2 in G. But then c2 is a mate of every node of
C1, a contradiction. Therefore G cannot have a K1 cutset.

Next assume that {u, v} is a K2 cutset of G. Let C1, . . . , Ck be the
connected components of G\{u, v}, and for i = 1, . . . , k, let Gi = G[V (Ci)∪
{u, v}]. Since neither {u} nor {v} can be a K1 cutset, for i = 1, . . . , k, both
u and v have a neighbor in Ci. So since G is ∆-free V (G1) 6= NG1 [u], and
hence by minimality of G, u has a mate c1 in G1. Since c1 ∈ V (C1), node c1

is of degree at most 2 in G as well, and hence it is a mate in G of all nodes
of V (G) \ (V (C1) ∪ {v}). By analogous argument v has a mate c2 in G2,
that is a mate in G of all nodes of V (C1) ∪ {v}, a contradiction. Therefore
G cannot have a K2 cutset.

So G has a full star cutset S = N [x]. Let C1, . . . , Ck be the connected
components of G \ S, and for i = 1, . . . , k, let Gi be the subgraph of G

induced by V (Ci) ∪ {x} and all the nodes of N(x) that have a neighbor in
Ci. By minimality of G, for i = 1, . . . , k, x has a mate ci in Gi, and since
ci ∈ V (Ci), it is a mate of x in G as well. Then c1 is a mate in G of all
nodes of V (G)\(V (C1)∪N(x)), and c2 is a mate in G of all nodes of V (C1).
Hence all nodes of G except possibly the nodes of N(x) have a mate in G.
Since G is a counterexample, some x′ ∈ N(x) does not have a mate in G,
and hence x′ is adjacent to ci for every i = 1, . . . , k. Since {x, x′} cannot
be a cutset of G separating C1 from the rest of G, G1 cannot be a star,
and hence by minimality of G, x′ has a mate x′′ in G1. Node x′′ 6∈ V (C1),
since otherwise it would be a mate of x′ in G as well. So x′′ ∈ N(x), and
since x′′ ∈ V (G1), it follows that x′′ has a neighbor in C1. Since x′′ is not
a mate of x′ in G, w.l.o.g. x′′ has a neighbor in C2. For i = 1, 2, let Pi be
a chordless path from x′ to x′′ in G[V (Ci) ∪ {x′, x′′}] (since both x′ and x′′

have a neighbor in Ci, and Ci is connected, such a path exists). But then
V (P1) ∪ V (P2) ∪ {x} induces a 3PC(x′, x′′), a contradiction. 2

Proof of Theorem 1.6: Follows from Theorem 2.4 and the assumption of
being ∆-free. 2

Proof of Theorem 1.5: The proof is obtained in analogous way to the proof of
Theorem 2.4. One just needs to replace all “degree at most 2” with “degree
at most 3” and observe that if G is a cube then for every x ∈ V (G) there
exists a node y ∈ V (G) that is not adjacent to x and is of degree at most 3.
2

Proof of Theorem 1.7: Let G be a (∆, 3PC(., .))-free graph. Since graphs
whose chromatic number is at most two can be recognized and properly
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colored in linear time, it suffices to show how to 3-color G. Clearly we may
also assume that G is connected.

Let S be a clique cutset of a graph G, and let C1, C2, S be a vertex
partition so that no node of C1 is adjacent to a node of C2. We define the
blocks of decomposition by clique cutset S to be graphs Gi = G[V (Ci) ∪ S],
for i = 1, 2. The first step of our algorithm constructs a decomposition tree T

using clique cutsets as follows. The root of T is the input graph G, for every
internal node G′ of T , the children of G′ are the blocks of decomposition of
G′ with respect to some clique cutset such that at least one of the children
has no clique cutset, and all the leaves of T are graphs that have no clique
cutset. Such a decomposition tree can be constructed in O(nm) time and it
has at most n − 1 leaves [10].

The second step of our algorithm 3-colors the leaves of T as follows. Let
L be a leaf of T . By Theorem 1.1, L is either a cube or is cube-free. If L

is a cube, then it is bipartite and hence can be 2-colored. Otherwise, by
Theorem 1.6, there is an ordering x1, . . . , xl of vertices of L such that for
every i = 1, . . . , l, xi is of degree at most 2 in G[{x1, . . . , xi}], and hence
L can be 3-colored by coloring greedily on this ordering of vertices. Such
an ordering can be constructed in O(|V (L)|2) time. Let L1, . . . , Lk be the
leaves of T , and for i = 1, . . . , k let ni = |V (Li)|. Since the clique cutsets
in ∆-free graphs are of size at most 2, the sum of the nodes of children of
an internal node G′ of T is at most 2 greater than |V (G′)|. Recall that
every internal node of T has exactly two children, one of which is a leaf. It
follows that Σk

i=1ni ≤ 3n, and hence, since Σk
i=1n

2
i ≤ (Σk

i=1ni)
2, step 2 can

be implemented to run in O(n2) time.
In the third step of our algorithm we backtrack along T to obtain a

3-coloring of G from the 3-colorings of leaves of the decomposition tree as
follows. Let H be an internal node of T , and H1, . . . ,Hk its children in T .
So H1, . . . ,Hk are blocks of decomposition of H with respect to some clique
cutset S. Since S is a clique, nodes of S must have different colors in all
of these colorings. So we can permute the colors of the colorings of Hi’s so
that they all agree on the colors of the nodes of S, and by putting together
such colorings we get a 3-coloring of H.

This algorithm can clearly be implemented to run in O(nm) time. 2

Observe that the algorithm given in the proof of Theorem 1.7 can easily
be turned into a robust algorithm as discussed in Section 1.2. In step 1, if a
clique of size greater than 2 is used in the construction of the decomposition
tree, then output “G is not (∆, 3PC(., .))-free” and stop. In step 2, in case
a leaf that is considered is not a cube and does not have the desired ordering
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of vertices, then output “G is not (∆, 3PC(., .))-free” and stop.
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