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Identification of Probabilistic Cellular Automata
Stephen A. Billings and Yingxu Yang

Abstract—The identification of probabilistic cellular automata
(PCA) is studied using a new two stage neighborhood detection al-
gorithm. It is shown that a binary probabilistic cellular automaton
(BPCA) can be described by an integer-parameterized polynomial
corrupted by noise. Searching for the correct neighborhood of a
BPCA is then equivalent to selecting the correct terms, which con-
stitute the polynomial model of the BPCA, from a large initial term
set. It is proved that the contribution values for the correct terms
can be calculated independently of the contribution values for the
noise terms. This allows the neighborhood detection technique de-
veloped for deterministic rules in [14] to be applied with a larger
cutoff value to discard the majority of spurious terms and to pro-
duce an initial presearch for the BPCA neighborhood. A multiob-
jective genetic algorithm (GA) search with integer constraints is
then evolved to refine the reduced neighborhood and to identify the
polynomial rule which is equivalent to the probabilistic rule with
the largest probability. A probability table representing the BPCA
can then be determined based on the identified neighborhood and
the deterministic rule. The new algorithm is tested over a large set
of one-dimensional (1-D), two-dimensional (2-D), and three-dimen-
sional (3-D) BPCA rules. Simulation results demonstrate the effi-
ciency of the new method.

Index Terms—Genetic algorithms (GAs), identification, proba-
bilistic cellular automata (PCA), spatio–temporal systems.

I. INTRODUCTION

PROBABILISTIC cellular automata (PCA), which are re-
ferred to as stochastic cellular automata (SCA) by some

authors, are constructed by introducing probabilistic elements
into deterministic local CA rules. The probabilistic elements are
generally regarded as a form of noise, which unlike the classical
definition of noise in other systems, is essential in investigating
the dynamical behavior of PCAs. Deterministic CAs can have a
large number of attractors, but the inclusion of noise can cause
jumps between attractors and leads to the selection of a small
number of physical states [2]. Noise also plays an important role
in phase transitions when CAs are employed as a modeling tool
to approximate both equilibrium and nonequilibrium systems.

PCAs have been widely studied in recent years. The com-
bined simplicity of PCA rules together with the rich dynamical
behavior exhibited in the spatio–temporal patterns produced
in the evolution of these systems has attracted the attention
of many researchers. This has made the PCA a prototype in
the study and testing of certain aspects of complex systems
including oscillations in reaction-diffusion processes [3],
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population growth [4], and the spread of damage [5]. However,
a review of the literature shows that the study of PCA has
largely been focused on simulating dynamical systems [6]–[8]
and investigations of the dynamical behavior revealed by
PCA models [9]–[11]. However, an important problem of
identification of PCA rules from given patterns of data seems
to have been largely ignored.

The identification problem consists of determining the prob-
abilistic local transition rules and the associated neighborhood
over which the rule is operated, from a given set of spatio–tem-
poral patterns generated by the PCA evolution. The identified
PCA rule should be parsimonious so that the rule set is as small
as possible and the size of the neighborhood is minimal. Only
a few authors have studied this problem. In [12], a genetic al-
gorithm (GA) was designed in search of an appropriate proba-
bilistic CA rule through a space of possible PCAs constructed
over a number of dimensions. However, the neighborhood selec-
tion process was complicated and it was unclear if the neighbor-
hood obtained was minimal. Both sequential and parallel algo-
rithms were introduced in [13] for the identification of PCAs.
The neighborhood was found by incrementing the radius by
one at each iteration until a preformulated condition was sat-
isfied. Although this produced small neighborhoods the search
process was not very flexible or efficient. The simulation results
in [1] suggested that the correct neighborhood and local tran-
sition rules may still be obtained under certain levels of noise
when the GA search developed in the paper for deterministic
rules was applied. However, the rule space was constructed over
the complete assumed neighborhood and this can involve an ex-
ceptionally large number of possible rules, and the search time
can be extremely long.

This paper considers binary probabilistic cellular automata
(BPCA) and shows for the first time that a class of BPCA can
be described by simple integer-parameterized polynomials cor-
rupted by noise (the probabilistic elements). It is proved that
the contribution values for cell terms that define the neighbor-
hood can be calculated without a knowledge of the noise. This
is important because this will allow the neighborhood detection
scheme developed in [14] for deterministic rules to be employed
as a preliminary neighborhood detection tool in the presence of
noise. By increasing the cutoff value for the contributions the
preliminary neighborhood detection technique can be used to
discard most of the spurious terms included in the selected term
set and therefore to produce a much reduced neighborhood. As
a result the number of terms in the candidate term set can be dra-
matically reduced. A multiobjective GA with integer constraints
is then introduced to refine the preselected neighborhood to the
minimum and to find the polynomial that best represents the
BPCA rule with the largest probability. It is shown that the effi-
ciency of the search is considerably improved because the GA
now only has to search through the reduced candidate term set.

1083-4419/03$17.00 © 2003 IEEE



226 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003

Fig. 1. Three-dimensional neighborhood.

The paper is organized as follows. In Section II, a class
of BPCAs and the polynomial representation are introduced.
Section III discusses the preliminary neighborhood selection
process. A multiobjective GA with integer constraints is
constructed in Section IV and Section V provides the simu-
lation results and some discussions. Section VI contains the
conclusions.

II. PROBABILISTIC CELLULAR AUTOMATA

Background knowledge regarding the basics of cellular au-
tomata are well-documented in many standard CA text books
and publications [1], [15]. For simplicity this is not repeated in
the present paper where only the details specific to the current
study are introduced (see [1, Sect. 2.0 and 3.1] or [15] for a more
detailed introduction to CAs).

A BPCA comprises a lattice of cells, each taking only zero or
one as the state, and a probabilistic local transition rule which
specifies at any discrete time step the state of a cell as a func-
tion of the states in previous time steps of the cells within a given
neighborhood. An example of a three-dimensional (3-D) PCA
neighborhoods is shown in Fig. 1. Note the neighborhoods only
involve cells from time step although BPCA neighborhoods
can take cells from various spatial and temporal scales. For sim-
plicity, this paper only considers neighborhoods composed of
cells from time step , but the results are not restricted to
this case. The probabilistic local rule is composed of( is
the size of the neighborhood) rule components, where each rep-
resents a possible state of the neighborhood. The probabilistic
rule is constructed by specifying one or more (not all) of the rule
components to be one or zero with probability(denoted as
or , respectively), and zero or one with probability
[denoted as or , respectively] while the other
components are deterministic (zero only or one only). Varying
the probability between one and zero leads to a transition from
one deterministic rule (corresponding to ) to another rule
(corresponding to ). A typical rule of a one–dimensional
(1-D) 3-site BPCA with von Neumann neighborhood is shown
in Table I. This probabilistic rule causes a transition fromRule
60 (following Voorhees’ nomenclature scheme [15]) toRule 40.
It can be seen that the noise is added toRule 60 through making
rule components 010 and 100 dependent on the probability pa-
rameter . For Rule 60, the states that are governed by these
two rule components are no longer exclusively updated to one
at time step , but may be flipped to 0 with probability .
These flipped states represent the noise.

TABLE I
EXAMPLE OF 1-D BPCA

III. PRELIMINARY NEIGHBORHOODDETECTION

Determining the neighborhood which defines the spatial and
temporal connections that specify the CA rule is an important
first step in CA identification. Even complex patterns can be
generated from simple neighborhoods and it is important to
develop procedures that can identify parsimonious CA model
forms from CA pattern data. This problem will be addressed in
the following sections by introducing an algorithm which shows
the contribution that each term makes to the CA rule.

A. Representations of BPCA

Every deterministic binary CA rule with a neighborhood of
size consisting of a set of cells within the CA pattern denoted
as , where is the lo-
cation of the cell, can be expressed by a Boolean function of the
form [1]

(1)

where
, cell to be updated;

state of at time step ;
next state in at time step ;

subscript used to indicate the rule is deterministic.
are binary numbers and indicates that

the following term is included in the Boolean expression while
indicates that the following term is not included.and

denote and operators, respectively. To simplify the
notation, will be replaced by throughout the present
study.

The and operators can be represented using the
normal algebraic plus and multiplication operators to give

, . Applying
this to (1) shows that every binary deterministic CA rule with a
neighborhood can be represented by
a polynomial of the form

(2)
where and are a set of integers
such that (2) maps into .

According to the definition, a BPCA can be represented by
with probability

with probability
(3)

where , is the probability pa-
rameter; is the probability with which the probabilistic com-
ponents will appear in the spatio–temporal pattern; and the
subscript indicates that the rule is defined in terms of probabil-
ities. is related to and smaller than.

Equation (3) shows that a probabilistic rule is equivalent to
the deterministic rule defined by specifying all the probabilistic
components to be one, with a probability and the conju-
gate deterministic rule constructed by assigning zero to all the
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probabilistic components, with a probability. Since ,
, and are all temporally dependent,

the probabilistic rule can also be viewed as a binary time se-
ries defined by (2) where the data is corrupted by a time depen-
dent noise signal which occasionally flips the updated state. To
make later discussions clearer, temporal symbols are introduced
into the notation and , , and
can then be denoted as , , and

, respectively.
The noise signal is defined as

(4)

so that substituting (3) into (4) and using the new notation above
yields

.
(5)

It can be seen that is a signal with only three states1, 0,
and 1 and the nonzero states appear with probability.

The statistics of the noise signal are unknown and difficult to
predict since the occurrence of the nonzero states is dependent
on the initial conditions and the evolution of the BPCA. The
noise signal can therefore be assumed to be nonstationary and
nonlinear. According to [16, eq. (26.3)], can be expanded
as

(6)

where the s are a set of nonlinear functions
and is a white noise sequence. The nonstationary nature of

is denoted by the temporal dependence of the parameters
.

From the discussions above, every binary probabilistic CA
rule with a neighborhood can be rep-
resented by

(7)

where and are a set of integers
the combinations of which in (7) map into .

Before moving on to the next section, the relationships be-
tween a cell, a neighborhood, a term, and a CA rule need to be
clarified. A neighborhood is composed of one or more cells. An
assumed neighborhood normally includes other cells that are not
within the real neighborhood to be identified. A term is a product
of the states of one or more cells within a neighborhood. A CA
rule is constructed over one or more terms. The correct term set
for a CA rule is the collection of only those terms that define
the CA rule. For example, 1-DRule 60 over the von Neumann
neighborhood can be written as

The correct term set for this rule therefore consists of three terms
, , and .

B. Orthogonalization and the Noise Model

Equation (2) can also be expressed as

(8)

where

and

Or in matrix form

(9)

where

and is the total number of time steps in CA evolution. Matrix
can be decomposed as , where

...
...

is an orthogonal matrix

and is an upper triangular matrix with unity diagonal ele-
ments

...
...

...

Equation (9) can then be represented as

(10)

where .
Equation (2) can therefore be expressed as

(11)

Substituting (11) into (7) gives

(12)

The neighborhood detection algorithm should be designed
to select the correct neighborhood
from an initial large neighborhood ,

of size . The algorithm proposed
in [14] selects the relevant ( ) terms from the initial
term set by calculating
the contribution

(13)

each term in (9) makes to . This guarantees that all the cor-
rect terms are in the assumed term set and without the corruption
of noise, is able to select a correct set of terms that represent the
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rule and cover the correct neighborhood. However, terms not in-
cluded in the correct term set but constructed over cells within
the neighborhood and terms constructed over cells out of the
neighborhood may also be chosen if noise is introduced (see the
simulated examples in Section V). This means that the effects
of the noise can be restrained to two parts:

1) inclusion of terms out of the correct term set but con-
structed over cells within the real neighborhood

2) terms constructed over cells within the assumed neigh-
borhood but out of the real neighborhood.

Following an analogous procedure as above but now for
yields

(14)
where the first and second sum represent the orthogonalized
noise terms constructed over cells within and out of the real
neighborhood, respectively. The nonstationary nature of
exhibited in in (6) is now expressed by the time depen-
dence of and .

C. The Effects of Noise on Term Contribution

The term contribution defined in (13) is important in the term
selection process. For deterministic rules the correct term set can
be selected by calculating the contributions . In this subsec-
tion, the effects of noise on term contribution will be discussed.

Although all the terms of
are present in (12) assume that only define the correct
BPCA model. The irrelevant terms are assumed to correspond
to s which are zero in (7). Therefore, (12) can be rewritten as

(15)

Squaring both sides of (15) and taking the expected value gives

(16)

Because the s are orthogonal,
, and

(17)
Substituting (17) into (16) yields

(18)

where

(19)

Replacing in (19) by (14)

Substituting back into (18) produces

(20)

From the definition of in (13), (20) can finally be expressed
as

(21)

where the subscripts and superscripts, , and are used to
indicate the terms that are in the real term set, the noise terms
that are only related to cells within the correct neighborhood
and the noise terms that are related to both cells within, and
out of the correct neighborhood. Equation (21) implies that the

values for terms that are in the correct term set () and
noise terms that are out of the correct term set but constructed
over cells within the correct neighborhood ( ) can be calcu-
lated independently of the noise terms that are constructed over
cells out of the correct neighborhood ( ). This suggests that
the neighborhood detection algorithm in [14] can still be em-
ployed to detect the neighborhood. The problem is the cutoff
point because any noise term which has a value larger
than will be incorrectly included if is still set to zero

as in [14]. Ideally, should be set to
and learned online in order to determine the appropriate cutoff
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and hence the exact correct term set. However, because the sta-
tistics of are unknown and the signal : noise ratio is 100%
occurring with probability , which makes it difficult to use
conventional methods to minimize the effects of the noise, it is
not easy to calculate online. However, (21) is still a valuable
result because even if the correct cutoff cannot be easily found
the application of can still be employed to eliminate many
inappropriate terms. However the test results in Section V-A
suggest that the correct or almost correct neighborhood can still
be found if is chosen within the range .

IV. RULE SELECTION USING MULTIOBJECTIVE GAS

WITH INTEGERCONSTRAINTS

The full neighborhood search can be dramatically reduced
by examining the terms selected using in Section III above.
Denote the selected terms as and the associated
neighborhood as . The
deterministic rule which is equivalent to the probabilistic rule
with probability can then be assumed as

(22)

where are integers.
Although the size of the assumed neighborhood and the

number of terms in the assumed polynomial have both been
considerably reduced, the noise effect is not completely
eliminated when using data extracted from BPCA patterns
to determine the polynomial model in (22). A further noise
reduction technique is therefore required.

Equation (2) shows that the parameters in the polynomial
model of a CA must be integers. In fact, a large number of simu-
lation tests suggest that the parameters in the polynomial model
of a CA are often integers within a finite range, for example

6 6 . This suggests that it may be possible to find the correct
equivalent deterministic rule from the noise contaminated data
by constraining the parameters to be integers within a limited
range.

However, most of the available optimization methods treat
the variables as continuous and are therefore not appropriate
when the parameters are integers. Although some of these algo-
rithms may produce integer solutions by first solving the con-
tinuous problem and then employing round-off techniques the
solutions may be far from optimal. The optimal integer solu-
tion can only be obtained by an exhaustive search. However,
this is impractical due to time and memory constraints even for
small scale problems. Various methods [17]–[19] have been de-
signed to solve the integer optimization problem, but each has
drawbacks including low efficiency, limited reliability and be-
coming trapped at a local optimum. GAs, however, seem to be
appropriate and allow integer constraints to be added to polyno-
mial rule selection. GAs will therefore be briefly introduced in
the following sections.

A. Population

The objective of the GA search is to select the appropriate
terms from the reduced term set, which has been determined
using contribution in Section III, and to determine the asso-
ciated integer parameters so that the resulting polynomial repre-
sents a parsimonious model representation of the BPCA pattern.

TABLE II
RELATIONSHIP BETWEEN THE BINARY VECTORS AND THE

CORRESPONDINGINTEGERS

Each term and associated parameter is represented by a
binary vector. The length is determined by the range of in-
teger parameters which define the search space. For example
for the mapping between the binary vectors and the
corresponding integers is shown in Table II. The leading zero
in the binary vectors denotes plus and the leading one means
negative. For integer polynomial parameters of CAs with a di-
mension under four our results suggest that a range of6 6 ,

is large enough. If higher dimensional or more com-
plex BPCAs are involved, may need to be increased to give

, where and represent the largest
and the smallest possible integer parameters, respectively. The
length of the binary GA chromosome can therefore be com-
puted from . The th GA chromosome will be
defined as a binary vector so that starting from the first
bit, every bits in the chromosome represent an integer param-
eter and correspond to a term in (22)

If the parameter which is represented by
is identified as zero, then the corresponding

term is not included in (22). Define

where is the population size and is the decoding function
which maps the binary vectors back to integers according to
Table II. The whole population is initialized by assigning each
chromosome as a randomly generated binary vector withbits.

B. Multiobjective Fitness Function

The fitness function is designed to measure the performance
of polynomial rules represented by the chromosomes in regener-
ating the observed spatio–temporal patterns. An important mea-
sure in the present problem is the modulus of errors function
defined as: , where is the
number of data points in the data set extracted from the BPCA
patterns, is the original measured state at data pointfor
chromosome, and is the predicted state. If

is chosen as the fitness function the GA search will find a
solution with the least modulus of errors. However it is not guar-
anteed that the associated neighborhood is correct and minimal.
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The preliminary neighborhood detection technique in Sec-
tion III produces the reduced neighborhood

for the GA search, which should be consider-
ably smaller than the original neighborhood

, but this may still be
larger than the true neighborhood .

Notice that there may be more than one model that produces
a minimum modulus of errors. However the principle of par-
simony implies that the best model will have the least terms.
Therefore another search objective must be added to direct the
GA evolution to produce a parsimonious polynomial with min-
imal modulus of errors.

In the present study the two search objectives are to minimize
the modulus of errors and to minimize the number of terms in
all models with the same . An efficient way of combining
these two search objectives is to construct a multiobjective fit-
ness function based on a ranking scheme according to the con-
cept of Pareto optimality [20]. This will guarantee equal prob-
ability of reproduction to all nondominant chromosomes and
should generate a solution nearest to the optimal. The multiob-
jective fitness function is constructed as follows.

i) For the current population with size , each chromo-
some is ranked with respect to . The chromosome
with the least error occupies the first position, the chro-
mosome with the second least error occupies the second
position and so on. Chromosomes with the same error
share the same rank, so that

with
.

ii) Map the binary vectors back to integer parameters using
Table II and define the structure function for the
th chromosome as the number of nonzero integers in the

chromosome. Resort the orders of chromosomes sharing
the same rank in proportion to the associated and
keep the ranking of the remainder unchanged. Thus

with
.

iii) The multiobjective fitness function of theth chromo-
some is finally defined as

To avoid the GA search becoming trapped at a local optima two
subpopulations will be introduced which evolve in parallel with
the main population [21]. The subpopulations are evolved sepa-
rately under two different search objectives. One is to minimize
the modulus of errors , the other to minimize the struc-
ture function . The main population will then evolve syn-

chronously with the subpopulations under an objective jointly
determined by the two objectives. Each candidate in the main
population is produced by genetic communication between the
two subpopulations and is subject to evaluation by the ranking
technique.

C. Reproduction

In the reproduction process, chromosomes are first selected
as parents to reproduce offspring according to the corresponding
fitness values. The purpose of parent selection is to give more
reproductive chances to those chromosomes that are the most
fit. This paper uses the roulette wheel parent selection technique
from [20]. The selected population is then used for genetic op-
erations in the breeding process. There are two principle genetic
operators for producing new chromosomes during the breeding
process. The crossover operator cuts segments from both parents
and combines these segments to produce new chromosomes.
The mutation operator arbitrarily alters the bits in a chromosome
according to a predetermined probability, the mutation rate (see
[22] and [23] for details).

The new multiobjective GA search for polynomial rules with
integer constraints can be summarized as follows.

1) Initialize the two subpopulations and the main population
on the basis of the preliminary neighborhood obtained in
Section III.

2) Evaluate the three populations according to , , and
combined with , respectively, using the ranking

technique.
3) Apply the parent selection technique to the two subpopu-

lations.
4) Employ crossover and mutation to the two subpopulations

separately.
5) Employ crossover and mutation to the two subpopulations

combined to produce new candidates for the main popu-
lation.

6) Repeat 2) and insert new populations to replace the three
old populations, respectively.

7) If all chromosomes in the new main population converge
to a single individual then stop, otherwise return to 3) and
repeat.

After the deterministic model, which is corrupted by noise, is
found the minimal neighborhood can be retrieved. The proba-
bilistic elements and the associated probability can then easily
be found from the data set by collecting a probability table.
For every rule component which is determined by the minimal
neighborhood, the occurrences of zero and one in are
recorded. For the deterministic rule components the occurrences
of zero and one in cannot be both nonzero. This prob-
ability table represents the identified BPCA.

V. SIMULATION STUDIES

A. Preliminary Neighborhood Detection

Three examples, for 1-D, 2-D, and 3-D BPCAs, will be used
to demonstrate the preliminary neighborhood detection and the
crucial role the increased plays in reducing the number of
insignificant terms in the selected term set. The initial neigh-
borhoods used in the three examples are defined in Table III.
To simplify the notation all the neighborhoods are assumed to
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TABLE III
INITIAL NEIGHBORHOODSUSED IN EXAMPLES 1–3

be 9-site neighborhoods. The candidate term set which is
determined from the initial neighborhoods is therefore the same
for all the three examples, and is constructed as

...

where denote the cells in the assumed
neighborhoods. The mappings between entries in and
cells in the neighborhoods are illustrated in Table III. For
example, entry 5 is associated with in Example 1,

in Example 2, and in Example
3, and so on. The whole consists of rows.
Each row represents a candidate term which corresponds to an

in matrix in (9). For example, the first row
(1 0 0 0 0 0 0 0 0) represents only in Example 1,
in Example 2, and in Example 3, while the last row
( 1 2 3 4 5 6 7 8 9)corresponds to a product of nine states,

in Example 1,

in Example
2, and

in Example 3. Note that an entry in
denotes a cell while a row in denotes the product of
the states of one or more cells, that is, a candidate term

.
1) Example 1: Example 1 uses the 1-D BPCA rule given

in Table I. This rule is equivalent toRule 60 occurring with
probability and Rule 40 occurring with probability .
The spatio–temporal patterns produced by the evolution of this
BPCA rule with varying are shown in Fig. 2. All the patterns
were developed on a 200200 lattice with time evolution from
top to bottom and a periodic boundary condition. That is the lat-
tice is taken as a circle in the horizontal dimension, so the first
and last sites are identified as if they lay on a circle of finite
radius. The evolution started from an initial condition of a ran-
domly generated binary vector where the state initial densities of
ones and zeros are both 0.5. Fig. 2(a) and (b) can be considered
as patterns produced by the evolution ofRule 60 with noise at
two levels defined by the probability . It can be seen that the
introduction of noise/probabilistic elements results in consider-
able changes in the patterns, from a distribution of triangles in
Fig. 2(a) to a random tree structure in Fig. 2(b) where the noise
level is . The noise is introduced by flipping the

(a)

(b)

Fig. 2. Spatio–temporal patterns produced from Example 1 for the evolution
of a 1-D BPCA with varyingp. (a)p = 0:9; (b) p = 0:7

states of the updated cells governed by rule components 010 and
100 in Rule 60 from one to zero and therefore only takes two
values, 1 and 0. The impact of the noise is by no means trivial
as can be seen in the pattern changes in Fig. 2. This is because
the signal/noise ratio is 100% at each point the noise appears.
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Data extracted from a noise free simulation of theRule 60 was
used for detecting the term set of the deterministic rule.
was chosen as zero and the result is shown in model .
The last entry in each row represents the normalized value of
the contribution the term in that row makes to. The sum of
all the values will be unity so if were multiplied by
100 this would give the percentage contribution the term in that
row makes to . The same also applies to the other models.
In model only three terms have been selected from the

of 511 terms and the neighborhood that is determined by
these terms is , which is the same as listed
in [15, Appendix 1] and is minimal and correct.

Data extracted from Fig. 2(b) was used in determining the
neighborhood when noise was introduced at a level defined by

. Model shows the result from this data
set when is set as zero. Although only 23 out of 511 terms
have been selected, the neighborhood covered by these terms is
exactly the same as the 9-site neighborhood assumed and little
can be gained from this result. Model shows the chosen
terms when is chosen as . The neighborhood determined
by these terms is ,
which fully covers the correct neighborhood but is much smaller
than the initial neighborhood. When is increased to 0.2, the
three terms selected in model are exactly the same as the
correct terms in model . This suggests that increasing the
cutoff value can reduce the number of irrelevant terms included
in the identified model and in some cases, for example in model

, can even discard all the spurious terms.

Model

Model

Model

Model

2) Examples 2 and 3: The data used for preliminary neigh-
borhood detection in Example 2 was produced by the evolu-
tion of a 2-D BPCA which was constructed by specifying the
states of the updated cells governed by rule components 0010,
0110, 1000, and 1101 inRule 24 235 to be zero with prob-
ability and one with probability over the neighbor-
hood

. Model shows the result when and
is set as zero. The nine terms selected constitute the determin-
istic Rule 24 235 and referring back to Table III, determine the
correct and minimal neighborhood. When the noise is intro-
duced by setting as 0.7, the cutoff value was incremented to
decrease the number of spurious terms included in the iden-
tified model. The result for is given in model

, where 18 terms were selected. A close inspection shows
that these 18 terms cover all the nine correct terms in model

. The remaining terms are composed of two types: 1)
five terms made up of cells within the correct neighborhood
and 2) four terms made up of cells within the correct neigh-
borhood but including a cell outside the correct neighborhood,

. Example 3 illustrates the preliminary neigh-
borhood detection for a 3-D BPCA. This probabilistic rule was
created over a 6-site neighborhood defined by ,

, , ,
, by specifying the states of the updated

cells governed by rule components 000010, 000101, 000111,
001100, 010010, 010101, 010111, 011100, 100001, 100110,
101001, 101111, 110001, 110011, 110111, and 111 110 in a de-
terministic rule (01 111 110 11 010 111 11 100 110 11 011 110
01 000 100 01 011 110 01 110 110 01 010 110) to be one with
probability and zero with probability .

Model
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Model

Model

Model
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Model gives the 54 selected terms when and
was chosen as 0.095. The 54 terms were composed of three

parts:

1) 36 correct terms in model selected for the deter-
ministic rule when ;

2) 11 terms which are constructed only over the cells within
the correct neighborhood;

3) seven terms which are composed of cells within the cor-
rect neighborhood but also one cell out of the correct
neighborhood, .

Both Model and Model define a neighborhood
larger than the correct neighborhood. However, the number of
candidate terms in both models are considerably reduced com-
pared to the original term set. Only 18 and 54 out of a possible
511 terms are selected in Examples 2 and 3, respectively. This
shows that although it is difficult to calculate the exact cutoff
value when noise is present, can take a range of values so
that most of the spurious terms are excluded. In some cases, for
instance in model in Example 1, the chosen is even
capable of selecting only the correct terms and hence the correct
and minimal neighborhood.

Note that within each of Models , , and
there is a set of terms which are not in the corresponding correct
term set {see Models , , and , respectively)
but which are constructed over the correct cells (cells within the
correct neighborhood). The inclusion of a term set of this kind
demonstrates the probabilistic characteristic of the rule since
these terms may well be from other deterministic rules with a
similar component structure but with a different. For instance
in Example 1, the result in model also includes the three
terms , , and

, which constitute exactly the deterministicRule 40.
This is because the BPCA rule is equivalent toRule 60 occurring
with probability andRule 40 occurring with probability

.
These three examples also demonstrate that when using the

neighborhood detection algorithm in [14], the values for
terms that are in the correct term set and noise terms that are
out of the correct term set but constructed over cells within the
correct neighborhood can be calculated independently of the
values for noise terms that are constructed over cells out of the
correct neighborhood.

The preliminary neighborhoods for Examples 1–3 can then
be retrieved from the selected term set in models , ,
and as ,

and
, ,

, respectively. These
neighborhoods can be refined using the GAs described in the
next section.

B. Rule Selection Using GAs With Integer Constraints

The terms selected in Section V-A will be used as initial
term sets for the application of the GA algorithm described in
Section IV. The algorithm was tested over a large set of 1-D,
2-D, and 3-D BPCA rules with various neighborhoods of ran-

domly chosen radius. A sample of the results is summarized in
Table IV. For each rule, 100 trials were conducted with different
initial populations. The data used for the GA search were ex-
tracted from spatio–temporal patterns generated by evolving the
BPCA rules constructed by specifying the states of the updated
cells governed by a quarter of all the rule components in the as-
sociated deterministic rules to be one with probability
and zero with probability . The numerical labels for
these deterministic rules are listed in the “Rule” column. Only
the deterministic rules with small neighborhoods will be enu-
merated. This is due to the fact that the numerical label and the
component form of the deterministic rules can be very cum-
bersome when the neighborhood size is larger than four. For
simplicity only the average and standard deviation (std.dev.)
values are listed in Table IV. The rules labeled withRule
( ; ) have neighborhood size larger
than four and the rule numbers were randomly generated in the
CA simulation tool developed by the authors.

Inspection of Table IV shows that the modulus of errors did
not converge to zero because the data used for the GA search
are corrupted by probabilistic noise. The number of errors is
actually the number of contaminated data points.

Rules in Table IV are selected from a set of no more than
possible rules. For example, when , for the

1-D 3-site rules in Table IV, the rule set for the GA search with
preliminary neighborhood detection comprises a maximum of

possible rules. In particular, in Example
1 when is chosen as , the number of possible rules de-
termined by model which is used to prime the GA search
is dramatically reduced to only . In comparison
when ( is the size of the initial neighborhood) the rule
set for the GA search with no preliminary neighborhood detec-
tion which generates the results in [1, Table VI] consisted of
a massive rules. Hence, the average run
time in Table IV is considerably smaller than in [1, Table VI].

The preliminary neighborhood detection and the GA search
with integer constraints are insensitive to the dimensionality of
the BPCA rules because what matters is the number of terms
searched, not the dimensionality. Identification of rules of the
same construction but different dimensions should therefore be
able to produce the same and similar and average run
times. These properties are demonstrated in the results for the
two 1-D 4-site rulesRule 16 798 andRule 24 235 and the two
2-D 4-site rules of the same rule number. The slight discrepancy
in and the average run time is caused by the different initial
conditions and the randomness of genetic operations in the GA
evolution.

Each identified polynomial produces a correct truth table that
matches the component form of the deterministic rule which
represents the probabilistic rule with probability . This
polynomial also determines a correct and minimal neighbor-
hood for the corresponding probabilistic rule. The probabilistic
rule components and the associated probability can then easily
be identified from the data set by collecting a probability table.
This is achieved by recording the occurrences of zero and one in

for every rule component which is determined by the
identified neighborhood. This collected probability table repre-
sents the identified BPCA. The probability table for the BPCA
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TABLE IV
SUMMARY OF RESULTS OBTAINED IN EVOLVING SOME 1-D, 2-D, AND 3-D BPCA POLYNOMIAL RULES WITH VARIOUS SIZES OF

NEIGHBORHOODSUSING THE GA ROUTINE OF SECTION IV

TABLE V
PROBABILITY TABLE FOR THE BPCA RULE IN EXAMPLE 2

rule in Example 2 was collected from a data set of 1000 data
points and is presented in Table V. For simplicity the proba-
bility tables for other BPCA rules discussed are not included in
the paper. Table V shows that zero appeared in the updated cells
governed by rule components 0010, 0110, 1000, and 1101 with
a occurrence of 19 times out of 27, 54 times out of 78, 28 times
out of 41 and 69 times out of 98, and 1 appeared with a occur-

rence of eight times out of 27, 24 times out of 78, 13 times out
of 41, and 69 times out of 98, respectively, while the updated
cells governed by the other rule components are either occu-
pied by zero only or one only. This shows that rule components
0010, 0110, 1000, and 1101 are probabilistic and the probability

is approximately 0.7 ( , ,
, ).
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VI. CONCLUSIONS

Despite the fact that PCA have been widely used in generating
complex spatio–temporal patterns, very few investigators have
studied how to identify the PCA rules given only the patterns. A
two-step solution to this important problem has been developed
in the present study based on a mapping of the PCA rules to a
polynomial rule space. It has been shown that a class of BPCA
can be represented as integer-parameterized polynomials con-
taminated by noise. On the basis of these polynomials it has then
been proved that the contribution values for the correct terms
that are related only to the cells within the neighborhood can be
calculated independently of the noise terms that are also associ-
ated with cells out of the neighborhood. This allows the neigh-
borhood detection technique, originally developed for determin-
istic rules, to be used to select a preliminary neighborhood even
in the presence of noise by increasing the contribution cutoff
value. This preliminary neighborhood detection stage can yield
significant improvements in efficiency by reducing the number
of candidate rules from to less than . For ex-
ample, as shown in Example 1 where , , and ,
the number of possible rules are reduced from to
only 2048. However, the choice of an exact contribution cutoff
value that discards all of the spurious terms still needs further
study. Integer constraints were added to the GA search to re-
strain the preliminarily selected neighborhood to the minimum
and to direct the search so that the deterministic polynomial rule
which represents the probabilistic rule with the largest proba-
bility can be retrieved. Several simulated examples of 1-D, 2-D,
and 3-D PCA rules demonstrated the effectiveness of the new
approach.
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