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On the space-time evolution of a cholera epidemic

E. Bertuzzo,1,4,5 S. Azaele,2,4 A. Maritan,2,6 M. Gatto,3 I. Rodriguez-Iturbe1,4

and A. Rinaldo1,5

Received 30 May 2007; revised 22 September 2007; accepted 5 October 2007; published 19 January 2008.

[1] We study how river networks, acting as environmental corridors for pathogens, affect
the spreading of cholera epidemics. Specifically, we compare epidemiological data from
the real world with the space-time evolution of infected individuals predicted by a
theoretical scheme based on reactive transport of infective agents through a biased
network portraying actual river pathways. The data pertain to a cholera outbreak in South
Africa which started in 2000 and affected in particular the KwaZulu-Natal province. The
epidemic lasted for 2 years and involved about 140,000 confirmed cholera cases.
Hydrological and demographic data have also been carefully considered. The theoretical
tools relate to recent advances in hydrochory, migration fronts, and infection spreading
and are novel in that nodal reactions describe the dynamics of cholera. Transport through
network links provides the coupling of the nodal dynamics of infected people, who are
assumed to reside at the nodes. This proves a realistic scheme. We argue that the
theoretical scheme is remarkably capable of predicting actual outbreaks and, indeed, that
network structures play a controlling role in the actual, rather anisotropic propagation of
infections, in analogy to spreading of species or to migration processes that also use rivers
as ecological corridors.

Citation: Bertuzzo, E., S. Azaele, A. Maritan, M. Gatto, I. Rodriguez-Iturbe, and A. Rinaldo (2008), On the space-time evolution of a

cholera epidemic, Water Resour. Res., 44, W01424, doi:10.1029/2007WR006211.

1. Introduction

[2] Cholera is an intestinal disease caused by the bacterium
Vibrio cholerae, which colonizes the human intestine. The
dynamics of cholera epidemics have been studied since the
1800s, when John Snow established the link between cholera
cases and exposure to contaminated water of a well in
London. V. cholerae is also a natural member of the aquatic
microbial community [Colwell, 1996; Lipp et al., 2002].
Thus the spatial and temporal patterns of cholera epidemics
are strongly related to the ecology of the bacterium in the
environment which is itself driven by meteorological and
climatic variability. Time series analyses of cholera cases in
endemic regions, such as Bangladesh, show a time variability
with subannual, annual, and interannual components. The
low-frequency variability has been established to be related
to long-term climatic oscillations [Pascual et al., 2000;
Koelle et al., 2005]. In nonendemic regions the annual
component is much more important. Also, the spatial distri-
bution of the disease plays a fundamental role, which is,

however, usually neglected in the existing cholera models.
The aim of this paper is to understand the spatio-temporal
evolution of cholera by explicitly accounting for the envi-
ronmental matrix within which the disease can spread.
[3] The model will be tested against a very well docu-

mented case. In 2000, after several years without cholera
outbreaks a new epidemic spread in South Africa, affecting
in particular the KwaZulu-Natal province. The epidemic
lasted for 2 years with only a few cases recorded during the
third year, and ultimately involved about 140,000 confirmed
cholera cases. The epidemic was caused by the 01 el Tor
strain [Mugero and Hoque, 2001], which is more easily
transmitted through contamination of aquatic environments
than the classical biotype of Vibrio cholerae.
[4] Models of cholera dynamics are relatively recent.

Capasso and Paveri-Fontana [1979] proposed a mathemat-
ical model to describe the 1973 cholera epidemic in Bari
(Italy) with two equations describing the dynamics of the
infected population and the free-living pathogens. Codeço
[2001] extended Capasso and Paveri-Fontana’s model, add-
ing an equation for the dynamics of the susceptible popu-
lation, and studied the role of the aquatic reservoir in the
endemic-epidemic dynamics of cholera. In the model pro-
posed by Pascual et al. [2002], another equation is added to
describe the temporal evolution of the volume of water
hosting the free-living bacteria. Recent laboratory findings
suggest that passage of the bacterium through the gastroin-
testinal tract results in a short-lived hyperinfectious state that
can enhance the human-to-human versus environmental-to-
human transmission of cholera. Hartley et al. [2006] incor-
porate the hyperinfectious state into Codeço’s model to
achieve a better explanation of explosive cholera outbreaks.
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[5] All the above models do not consider space explicitly.
They assume a unique community of people who interact
and share the same resources. We believe, however, that the
spatial distribution of the communities and how they
interact is crucial to understanding the spatial spreading of
the epidemic in a disease-free region, particularly if travel
times of pathogens are comparable with the characteristic
time of the virulent infection. The spatial distribution of
different communities, along with the distribution of their
population size and how they are interconnected, could
indeed affect the dynamics of the process, especially in
the case of a nonendemic region.
[6] V. cholerae can survive in the aquatic environment in

associations with chitinaceous zooplankton like copepods
and shellfish and also with the aquatic vegetation [Colwell,
1996]. Therefore V. cholerae (and the disease) can spread
from the coastal region, where it is autochthonous, to the
inland area through waterways and river networks. In the
same manner the infection can spread from inland regions
with epidemic outbursts into the surrounding areas.
[7] We propose a model that explicitly accounts for the

role of the river network in transporting and redistributing
V. cholerae between several human communities, and we
proceed to apply the model to the real conditions of the
2000 cholera epidemic in the KwaZulu-Natal province. The
model explicitly recognizes a role for network structures
acting as support for the infection, in analogy to recent
studies on migrating fronts constrained by landscape heter-
ogeneities or spreading of species along riparian ecological
corridors [Campos et al., 2006; Bertuzzo et al., 2007;
Muneepeerakul et al., 2007].
[8] The paper is organized as follows. Section 2 describes

the theoretical approach and the model used in detail. The
complete data set and the case study are presented in a
specific chapter (section 3). The main results and the

discussion are collected in section 4. A set of conclusions
closes the paper.

2. Theoretical Approach

[9] Spreading of epidemics in networks is addressed by
viewing the environmental matrix as an oriented graph (i.e.,
a directed graph having no symmetric pair of directed
edges). Nodes represent human communities (cities, towns,
and villages) in which the disease can be diffused and grow.
The edges represent links between the communities, typi-
cally hydrological links. Edge direction is chosen accord-
ingly to the flow direction. The model is assembled by
coupling two models: (1) a local epidemic model at nodes
of the graph and (2) a transport model for the spreading of
the disease vector through the edges of the support. Details
of the two models follow.
[10] As for the local dynamics, we use a continuous

model of the susceptible, infected, and recovered class with
a reservoir of free-living infective propagules. It is obtained
by a slight modification of the cholera epidemic model
introduced by Codeço [2001]. The model has three state
variables: the number of susceptibles (S), the number of
infected (I), and the concentration of V. cholerae in the
aquatic environment (B), whose respective temporal dy-
namics are described by the following system of first-order
differential equations:

dS

dt
¼ n H � Sð Þ � a

B

K þ B
S

dI

dt
¼ a

B

K þ B
S � r þ mþ nð ÞI

dB

dt
¼ nBBþ

p

W
I

ð1Þ

[11] Themeaning of the parameters is explained in Table 1.
The first equation describes the dynamics of susceptibles in

Table 1. Description of the Symbols Used in the Text

Symbol Description Value Note

Si number of susceptibles at node i equation (1)
Ii number of infected at node i equation (1)
Bi concentration of V. cholerae in aquatic environmenta equation (1)
Ci number of cumulated cases of node i equation (7)
Hi total human population size of node i at the disease-free equilibrium input data
n population natality and mortality rateb 5 � 10�5 estimated
a rate of exposure to contaminated waterb 1 estimated
K concentration of V. cholerae in water that yields 50% chance of being infected with choleraa

r rate at which people recover from cholerab 0.2 estimated
m mortality rate due to cholerab 4 � 10�4 estimated
nB net growth rate (usually negative) of V.cholerae in the aquatic environmentb �0.228 calibrated
p rate of production by one person infected of V. cholerae that reach the water bodyc

Wi volume of waterd at node I
SCi

critical threshold of node i equation (3)
b transport bias (Pout � Pin) 0.08 calibrated
l V. cholera mobilityb 3.5 calibrated
Vi vulnerability of node i: Hi/SCi

equation (6)
c per capita water volumee

HT threshold on the node population 29,000 calibrated
p/(Kc) combined parameters ratiob 4.76 � 10�6 calibrated

aMeasured in cells per m�3.
bMeasured per day.
cMeasured in cells per day per person.
dMeasured in m3.
eMeasured in m3 per person.
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a community of size H. Susceptible individuals are born and
die on average at rate n. Newborn individuals are considered
susceptible. Susceptible people become infected at a rate a
B/(K + B), where a is the rate of contact with contaminated
water and B/(K + B) is a logistic dose response curve that
links the probability of becoming infected to the concentra-
tion of vibrios B in water. Infected people (whose dynamics
are described by the second equation) die at a rate which is
the sum of natural mortality n and disease-caused mortality
m and recover with rate r. The third equation describes the
dynamics of the free-living infective propagules in the
reservoir. Infected people contribute to the concentration
of vibrios at a rate p/W, where p is the rate at which bacteria
are produced by one infected person and W is the volume of
the contaminated water body. The growth rate nB of the free-
living bacteria in the water body is usually negative because
bacteria mortality in natural environments exceeds reproduc-
tion. If nB is positive, the model would predict an exponential
growth of the vibrios concentration, and all the susceptible
population would be affected by the disease. The hidden
equation for the recovered is (dR/dt) = rI � nR. People
recovered from cholera are considered immune. The model
does not take into account any loss of immunity (i.e., a flux
from recovered to susceptibles) because immunity usually
lasts for a period longer than the 2 years of the epidemic we
consider here [Koelle et al., 2005]. Nevertheless, the immu-
nity loss could play an important role in the dynamics of
cholera in regions where it is endemic [Koelle et al., 2005].
[12] As long as we are not interested in the numerical value

of the concentration B of V. cholerae, we can introduce the
dimensionless concentration B* = B/K, thus obtaining from
equation (1) the system of equations

dS

dt
¼ n H � Sð Þ � a

B*

1þ B*
S

dI

dt
¼ a

B*

1þ B*
S � r þ mþ nð ÞI

dB*

dt
¼ nBB* þ

p

KW
I :

ð2Þ

Notice that equation (2) has the advantage of merging the
parameters K, p, and W (which can hardly be directly
estimated) into a unique ratio. This ratio will be the control
parameter of the process jointly with the V. cholerae growth
rate nB. On the contrary, the mortality rates, both natural (n)
and due to cholera (m); the recovery rate (r); and the exposure
rate (a) can reasonably be estimated from demographic and
epidemiological studies, as we show below.
[13] A linear stability analysis shows that, given an initial

condition of the type S(0) = H; I(0) > 0; B*(0) = 0, the
model predicts an epidemic outbreak only if the population
size is greater than a certain critical threshold SC given by
[Codeço, 2001]

H > SC ¼
� r þ nþ mð ÞKnBW

ap
; ð3Þ

otherwise the infected population decreases to zero. It is
important to remark on the dilution effect: The larger the
volume of the water body is, the higher the critical threshold
will be.

[14] We model the spreading of V. cholerae through the
network with a biased random walk process on oriented
graph [Bertuzzo et al., 2007]. For a detailed discussion of
the process, see also Johnson et al. [1995]. An infectious
propagule can move with some probability from a node to
one of the adjacent nodes, which are all the nodes that are
connected to it through an inward or outward edge. We
assign to each edge of the graph an orientation according to
the flow direction. Consider first a particular case of the
network in which every node has only one inward and one
outward edge (i.e., a one-dimensional lattice). We define as
Pout (Pin) the probability that a propagule leaving a node
moves to another node along an outward (inward) edge. We
have then Pout + Pin = 1.
[15] We now turn to the analysis of a random walk

process on a generic-oriented graph in which every node
can have an arbitrary number of inward and outward edges.
We assume that a propagule can move following an outward
or inward edge with a probability proportional to Pout and
Pin, respectively. In this case, the probability Pij for a
propagule to be transported from node i to node j can be
expressed as follows:

Pij ¼

Pout

dout ið ÞPout þ din ið ÞPin

if i! j

Pin

dout ið ÞPout þ din ið ÞPin

if i j

0 if i 6$ j;

8

>

>

>

>

>

<

>

>

>

>

>

:

ð4Þ

where dout(i) and din(i) are the outdegree and indegree
of node i, respectively (i.e., the number of outward and
inward edges of node i, respectively). Since Pout + Pin = 1,

one has
PN

j¼1 Pij = 1, where N is the total number of nodes.

We term b = Pout � Pin = 2Pout � 1 the bias of the transport.
[16] When we apply the local epidemic model at each

node of the network, we have 3N state variables Si, Ii, and
B*i, where the subscript i identifies the nodes. We assume
that vibrios are removed at every node with a certain rate
l (d�1) and transported through the network following the
transition probabilities from equation (4). Then the equa-
tions that describe the coupled process are

dSi

dt
¼ n Hi � Sið Þ � a

B*i

1þ B*i

Si

dIi

dt
¼ a

B*i

1þ B*i

Si � r þ mþ nð ÞIi

dB*i
dt

¼ nBB
*
i þ

p

KWi

Ii � lB*i þ
X

N

j¼1

l PjiB
*
j

Wj

Wi

;

ð5Þ

for i = 1, 2, . . ., N. Note that all the parameters are node-
independent except for the population size Hi and the water
volume Wi. The latter represents the whole set of water
supplies available for that community, not only the one
provided by the river. The network acts as a link through
which different sets of water supplies of different commu-
nities can be connected and contaminated. In order to
further minimize the number of parameters, we assume that
the water volume is a nondecreasing function of the
population size: Wi = f(Hi). Different choices of the function
f can lead to different scenarios of the epidemic. In fact,
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consider the ratio Vi between the population size and the
critical threshold equation (3).

Vi ¼
Hi

SCi

¼
Hi a p

� r þ nþ mð ÞK nBf Hið Þ
/

Hi

f Hið Þ
: ð6Þ

[17] This is an index of the node vulnerability to an
epidemic. Let us first analyze the case in which the water
availability is constant for all the nodes (Wi = constant).
This corresponds to assuming that the communities utilize
water resources that are quite uniformly distributed in space.
In this case, the vulnerability of the nodes increases linearly
with the population size, namely, Vi / Hi. In this scenario
then, if an epidemic occurs, the most affected communities
would be the most populated. Another different scenario
derives from assuming that larger communities manage to
increase their own water supply so that the per capita

available water is kept constant. This is equivalent to
assuming that the water volume of a node is proportional
to the population size: Wi / Hi, and then Vi = constant.
Under such a scenario an epidemic would affect, even if
with different dynamics, all the communities regardless of
their size. This assumption seems reasonable for large and
developed communities, but it is unsatisfactory for the
nodes with small population size because it would imply
a small water body associated with the node regardless of
the natural presence of water. A more general and realistic
hypothesis could derive from the combination of the two
assumptions described above. In particular, we assume that
the nodes with population size Hi smaller than a certain
threshold HT have a constant water volume associated with
them, whereas the nodes with Hi > HT have a constant per
capita water availability. Summarizing, we have Wi =
max(cHT, cHi) = c � max(HT, Hi), where c is the per capita
volume of water resources.
[18] Substituting the last relationship into the second term

of the right-hand side of the third equation of system (5), we
get pIi/(K c � max(HT, Hi)). Thus the parameters to be
separately estimated are the ratio p/(K c) and the population
threshold HT. These are parameters that depend on social
and environmental factors, like hygiene, health conditions,
eating habits, and lifestyle, and on how these variables vary
with population density. Nevertheless, the particular choice
of parameters that link vulnerability to the actual distribu-
tion of population has to be evaluated for each case.

3. Case Study

[19] We apply the model to a well-documented case of
cholera epidemics that occurred in South Africa. The data
were provided by the KwaZulu-Natal Health Department
and consist of a record of each single cholera case specified
by the date and health subdistrict where it occurred. The
spatial representation of the districts is shown in Figure 1a.
The record starts from August 2000 and runs continuously
until present time. Our analysis focuses on the two largest
epidemic outbreaks which occurred during the 2000–2001
and 2001–2002 summers and involved 135,000 cholera
cases. The data set also provides the population size of each
district. The total population of the province is about
8.5 million inhabitants. The temporal evolution of the
weekly cholera cases is reported in Figure 1b. The data
exhibit a clear seasonality with the outbreaks occurring
during the warmest months of the austral summer. This is
probably due to the increased growth rate of vibrios at warm
temperatures in association with plankton blooms. Evidence
for this phenomenon comes from the higher rates of
isolation of the bacterium in the environment during warm
periods [Lipp et al., 2002].
[20] In order to apply the model, we need to build the

network along which infection is transported. First of all, we
have derived the mathematical model of the river networks
from the hydrological geographic information systems data
provided by the South Africa Department of Water Affairs
and Forestry shown in Figure 2. All the channels of
perennial rivers are considered edges, and all the endpoints
of these channels are considered as nodes. Second, we had
to transfer the information from districts to network nodes.
This is done by assigning the population and the cholera
cases of a subdistrict to the nearest network node, with the

Figure 1. (a) Spatial representation of the health districts
of the KwaZulu-Natal province, South Africa. Colors
represent the percentage incidence of cholera cases over
the population size of each district. (b) Also shown is
temporal evolution of the new weekly cholera cases for the
whole province.
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distances being computed from the centroid of the subdis-
trict to the node. The results of this interpolation for the
population and the total cumulated cholera cases are shown
in Figure 3, where the color coding is obtained by spatial
linear interpolation of the node values. Comparing the
spatial distribution of population sizes and total cases in
the nodes, one can note that the high population density
areas recorded few cases of cholera as did the low-density
ones. The most affected nodes are those with intermediate
population size. This clearly appears by plotting the cholera
average incidence (i.e., the total number of cases divided by
the population size) as a function of the population size (see
Figure 4). The highest incidence was recorded for population
sizes between 2000 and 30,000. This is probably due to the
fact that the highest population density regions correspond, in
this particular case, with the most developed ones. These
cities can then rely on wastewater treatment and treated water
supply that help to reduce cholera transmission.
[21] The framework described in this paper addresses the

spread of an epidemic in a single river basin, and for the
time being we avoid any modeling of the flux of bacteria
across different catchments. For this reason, in order to test
the validity of the model, we have applied it to the basin of
river Thukela, the largest of the region (see Figure 2). The
29,000 km2 area drained by this river is populated by
1.5 million people, and cholera cases recorded there
amounted to 29,000 (21% of the total cases of the whole
province) during the two epidemic outbreaks considered.
[22] We estimated the birth and mortality rate of the

population as the inverse of the average lifetime for this
region (about 60 years), so n ’ 5 � 10�5 d�1. Because the
average duration of the cholera disease in an infected person
is approximately 5 d [Codeço, 2001; Hartley et al., 2006],
we set the recovery rate at r = 0.2 d�1. The deaths due to
cholera for the epidemic analyzed were 0.2% of the cholera

cases. Thus we can estimate the cholera mortality rate m by
assuming that after the duration of the disease, 99.8% of the
infected population survive, that is, exp(�m/r) = 0.998, and
then m = 4 � 10�4 d�1. From this simple analysis we
conclude that, given the order of magnitude of the parameters
involved, we can simplify the model setting r + m + n ’ r.
Following Codeço [2001], we assume that people ingest
contaminated water or food once a day (a = 1 d�1).
[23] To model the seasonality of the bacterium ecology as

discussed in section data, we let the net growth rate of
V. cholerae in the aquatic environment vary periodically in

Figure 2. Hydrographic map of KwaZulu-Natal province
with the Thukela river basin evidenced. The dot reports the
location of the first epidemic outbreak in the basin studied.

Figure 3. Spatial linear interpolation of network nodes
value of (a) cholera cases and (b) population size.
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time according to nB(t) = nB(1 + sin(2pt/365)) (with t in
days and t = 0 corresponding to 1 October) following the
water temperature cycle [Jury, 1998]. We implicitly assume
that the free-living bacteria are in demographic equilibrium
(nB(t) = 0) during the warmest season. After the above
considerations, the model parameters to be calibrated are the
mean net V. cholerae growth rate in the aquatic environment
(nB), the rate at which V. cholerae are removed and trans-
ported (l), the ratio (p/(K c)), the threshold (HT), and the bias
of the transport (b).

4. Results and Discussion

[24] In order to calibrate the model, we subdivided the set
of parameters into two groups: The first contains the
parameters related to the transport and spatial distribution
of cases (l, b, and HT), while the second set groups the
parameters closely related to the local model and the
temporal dynamics (nB and p/(Kc)). For every randomly
chosen combination of the three parameters of the first
group, we calibrated the two parameters of the second group
by minimizing the mean square error between the data of
the temporal evolution of cumulated cases in the whole
basin and the simulations. Note that the temporal evolution
of the cumulated cases for each node can be obtained via the
equation

dCi

dt
¼ a

B*i

1þ B*i

Si; ð7Þ

which takes into account only the flux of susceptibles that
actually become infected. By adding the cumulated cases at
time t throughout all the nodes, we get the cumulative
evolution for the entire catchment. Every simulation starts
with the initial conditions of one infected person in a single
node where, according to data, the first case of cholera was
recorded and runs continuously for 2 years (the location of
this node is reported on the map in Figure 2). Then, for each
combination of the five parameters (the triplet l, b, HT and
the corresponding calibrated pair nB, p/(K c)) we computed
the mean square error between the total cumulated cases of
cholera at each node after 2 years obtained from the

simulations and from the data. Note that the error from the
first calibration measures the likelihood of the temporal
patterns, while the second calibration compares simulated
and recorded spatial patterns of the epidemic. Finally, we
chose the combination of parameters that minimizes the
weighted sum of the two errors. The weight for each error is
computed as the inverse of the minimum value of the error
itself found among all the realizations. The values of the
calibrated parameters are listed in Table 1.
[25] Figure 5 shows the comparison between data (dots)

and model simulation (solid line) of the temporal dynamics
of the weekly (Figure 5a) and cumulated (Figure 5b) cholera
cases in the whole Thukela river basin. Figure 6 compares
the spatial distribution of data with that obtained via
simulation. It shows the distribution of the cumulated
cholera cases after the first and second epidemic outbreak.
As in Figure 3, the colors are graded via spatial linear
interpolation of nodal values.
[26] The model does well in reproducing the distribution

of the cholera cases during the two outbreaks as well as their
spatial spreading. It is interesting to note that cases from the
second outbreak are mainly located in new regions with
respect to the first one. This is related to the spread of
cholera from the regions involved in the first epidemic
outbreak into disease-free ones. This supports our hypoth-
esis that the dynamics of cholera epidemics in nonendemic
regions depend on the spatially anisotropic spreading along
an environmental matrix defined by river corridors as well
as on inner local dynamics. Similar results in a different
context were obtained by Campos et al. [2006], Bertuzzo et
al. [2007], and Muneepeerakul et al. [2007].

Figure 4. Average cholera incidence (i.e., total cholera
cases over population size). Nodes have been grouped in a
logarithmic bin on the basis of their population size.

Figure 5. Comparison between the data (dots) and
simulated (solid line) temporal evolution of (a) weekly
cholera cases and (b) cumulated cases for the Thukela river
basin of the KwaZulu-Natal province.
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[27] Finally, we have checked whether our model is able
to reproduce the relation discussed in section 3 between
cholera incidence and population size of each node. The
comparison for the Thukela river basin is reported in
Figure 7. It demonstrates that the model results regarding
the incidence distribution agree quite well with the data.

5. Conclusions

[28] The following main conclusions can be drawn from
our results:
[29] 1. Our model of cholera dynamics explicitly

accounts for the spatial distribution of the communities
and their interconnections, proving capable of reproducing
the main spatial and temporal patterns of the spreading for a
well-documented epidemic into a disease-free region in the
KwaZulu-Natal province of South Africa.
[30] 2. A significant role emerges for the ecological

corridors defined by waterways and river networks. Such
hydrologic control derives from the transportation and
redistribution of the free-living infective propagules. In
particular, because vibrios can spread along stream both
upstream and downstream with a slightly biased propaga-
tion downstream (which is to be expected, of course), the
infection patterns are anisotropic.
[31] 3. Despite its satisfactory performance, the model is

not completely reliable in reproducing secondary peaks of
infections in the tail of both annual outbreaks. We speculate
that they might be the combined results of seasonality in the
epidemiological parameters and the presence of short-lived
hyperinfectious bacteria. This hypothesis remains to be
tested and will be the object of future work.

[32] In conclusion, we suggest that this approach repre-
sents a first step toward understanding how hydrology and
population distribution along the water network control the
spreading of water-borne diseases.

Figure 6. Comparison between data and simulated spatial distribution of the cumulated cholera cases
after the first and second epidemic outbreak for the Thukela river basin. Colors are obtained via spatial
linear interpolation of the node values.

Figure 7. Comparison between data and simulated cholera
incidence (i.e., the ratio of total cholera cases to population
size) for the Thukela river basin. Nodes have been grouped
in a logarithmic bin on the basis of their population size.
Bars represent the mean incidence for each bin, while the
error bars represent the standard error of the mean. The
Kolmogorov-Smirnov goodness of fit test value is 0.0781,
and that leads us to accept the hypothesis that the model fits
the data with a significance level of 0.05.
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I-35131 Padova, Italy. (bertuzzo@idra.unipd.it)

M. Gatto, Dipartimento di Elettronica e Informazione, Politecnico di
Milano, via Ponzio 34, I-20133 Milano, Italy.

A. Maritan, Consorzio Interuniversitario per le Scienze Fisiche della
Materia, Istituto Nazionale Fisica della Materia, via Marzolo 8, I-35131
Padova, Italy.

8 of 8

W01424 BERTUZZO ET AL.: ON THE SPACE-TIME EVOLUTION OF A CHOLERA EPIDEMIC W01424


