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We describe the predictions of an analytically tractable stochastic model for cholera epidemics following a

single initial outbreak. The exact model relies on a set of assumptions that may restrict the generality of the

approach and yet provides a realm of powerful tools and results. Without resorting to the depletion of suscep-

tible individuals, as usually assumed in deterministic susceptible-infected-recovered models, we show that a

simple stochastic equation for the number of ill individuals provides a mechanism for the decay of the

epidemics occurring on the typical time scale of seasonality. The model is shown to provide a reasonably

accurate description of the empirical data of the 2000/2001 cholera epidemic which took place in the Kwa

Zulu-Natal Province, South Africa, with possibly notable epidemiological implications.

DOI: 10.1103/PhysRevE.81.051901 PACS number�s�: 87.18.Tt, 87.19.X�, 05.40.�a

I. INTRODUCTION

Large-scale public health projects that involve infectious

disease, such as cholera, pose a major practical problem in

the need to provide models of the epidemic reliably account-

ing for real-life epidemiological and environmental complex-

ity in a reliable predictive fashion. Deterministic models of

the susceptible-infected-recovered �SIR� type �1,2� are the

standard framework for a wide array of spreading diseases,

including cholera. They have a great deal of usefulness in

coping with different epidemiological situations in dealing

with both epidemic and endemic situations �3,4�. In spite of

these achievements, however, there still exists a lack of com-

plete analytical predictability �of, say, total infected individu-

als or times to infection peaks� which may allow one to

handle the temporal dynamics governing a spreading disease

in a given region. Unless at the cost of additional, parameter-

riddled modeling efforts, deterministic models of the SIR

type �1� cannot directly cope with a range of epidemiological

situations dominated by environmental fluctuations in the

forcings or in the controlling parameters, which are intrinsic

to the phenomenon �4,5�. To that end, stochastic SIR models

have proved valuable in estimating asymptotic expressions

for the probability of occurrence of a major outbreak and for

the expected time of extinction �6�, including the probability

that an infectious disease will eventually disappear �7�.
Especially in recent years, upon notable increase in the

extent of suitable observational databases, it has been also

stressed that cholera epidemics exhibit complex spatial-

temporal patterns mostly encoded in environmental forcings

and in the constraints of the ecological corridors provided by

the river networks where the pathogens disperse from the
autochtonous regions �8–12�. Seasonality, endogenous oscil-
lations, and climate variability may dynamically interact to
produce regular or irregular disease cycles �13–15�. Further-
more, the interplay between nonlinearity and noise can yield
stochastic amplifications which may give rise to population
oscillations that are comparable to those due to seasonal
forcing in deterministic systems �16�.

In this paper, we focus on the role of stochasticity within
a single cholera outbreak and propose a different mechanism
for the turn-around of the epidemic, which contrasts with the
prevailing idea that the waning of the disease is substantially
due to the depletion of susceptibles. We will assume that the
number of susceptible individuals is always very large, i.e.,
comparable to the population of the spatial region taken into
account, and suggest that infected individuals are depleted
because of the demographic stochasticity of the disease. The
source of this variability rests on the highly unpredictable
spatial and environmental pathways coupled to the intrinsic
discreteness of the population, which can potentially jeopar-
dize the predictions of classical deterministic approaches.
The presence of a susceptible pool of individuals as well as
the seasonal factors related to environmental drivers still re-

main crucial for the onset of the outbreak, but they may

become less important, compared to stochasticity, for the ex-

tinction of the disease. Indeed, there exist relevant time

scales corresponding to seasonal factors and we suggest that

below the smallest seasonal time scale stochastic dynamics

dominates the evolution of the disease.

In order to test this hypothesis, we set up a minimalist

stochastic model derived from a traditional picture of cholera

dynamics and compare it to the empirical data of an epi-

demic which took place in South Africa. Our approach im-

plicitly accounts for the spatial distribution of the disease and

is valid when the following hypotheses hold: �i� the number

of susceptibles is much larger than that of the infected ones;
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�ii� a well-defined separation of time scales occurs allowing

the decoupling of the infected individuals and the vibrions,

i.e., the causative organisms of cholera; �iii� the spatial re-

gional patterns of infection may be collapsed to yield a

meaningful regional temporal evolution, an assumption

whose validity is assessed by computing the speed of travel-

ing waves of infection �10�. Our model describes the time

evolution of the infected individuals following a single initial

outbreak and takes into account only a minimal number of

key ingredients for epidemic spreading in order to keep it

analytically tractable. Although the assumed flux of suscep-

tibles suggests a demographic dynamics untenable in the ab-

sence of cholera and the presence of asymptomatic cases is

troublesome toward model calibration against data, the exact

nature of the proposed solutions is believed to provide clues

relevant to various epidemiological matters.

II. THEORETICAL BACKGROUND

We proceed to a derivation of the framework starting from

a deterministic model which is a traditional picture of chol-

era dynamics �17�. This will allow us to give a physical

interpretation to the parameters of the stochastic setting. It is

well known that the causative organism of cholera, in the

present case the Vibrio choleræ 01 El Tor Ogawa, thrives in

warm waters �18,19�, thus we assume that there exists an

environmental reservoir of vibrions which is coupled to the

dynamics of infected and susceptible individuals according

to the following system of deterministic differential equa-

tions:

dS

dt
= n�H − S� − a

V

V + V0

S , �1a�

dI

dt
= a

V

V + V0

S − rI , �1b�

dV

dt
= − �V + e�H�I , �1c�

where I, S, and V are the numbers of infected individuals,

susceptible individuals, and the vibrion concentration �cells/

ml�, respectively, n is the human birth and death rate, and H
is the population size of the region in which the disease is

present. The system �1� explains a cholera epidemic accord-

ing to the following mechanisms. Susceptible individuals in-

gest contaminated water at a rate a and have the probability

of 50% to catch cholera when the concentration of vibrions

in water is V0. When infected, people recover at a rate r but

simultaneously shed vibrions into water at a rate e�H�, in-

creasing the concentration of contaminated water on the ba-

sis of the total population H �see Refs. �9,10��. In the aquatic

environment, vibrions have a mean lifetime �−1.

Interestingly, from a numerical integration of the system

�1� with the realistic parameters listed in Table I, one can see

that vibrions and infectives can roughly be considered pro-

portional to each other. As a first approximation, we can

substitute Eq. �1c� simply with V�eI /�. This means that

vibrions’ dynamics is fast and the V. choleræ concentration

is driven by infectives. In this case, we can focus on the

coupled dynamics of susceptible and infected individuals,

considering the concentration of vibrions proportional to the

number of infectives. Thus, the system �1� now reads

dS

dt
= n�H − S� − a

I

I + J
S , �2a�

dI

dt
= a

I

I + J
S − rI . �2b�

Equation �2b� indicates that an infection will be able to

spread through a population in a full-blown outbreak only

when the number of susceptibles is greater than Jr /a, so that

the basic reproductive number is R0=aH /rJ, being the entire

population supposedly susceptible. Unfortunately, in the sys-

tem of Eqs. �2�, the estimation of J is a hard task because it

strongly depends on the epidemiological characteristics of

the particular V. choleræ strain as well as its coupling to

human beings and environment. However, from the available

literature �see Table I�, we can roughly estimate J�105 �in-

dividuals�. As the number of infectives is usually much

smaller than J, we can assume that Eq. �2b� is simply

TABLE I. Model parameters and values.

Description Symbol Value Reference

Total human population H 3.3�106 ind �27�
Population natality and mortality rate n 5�10−5 day−1 �9�
Rate of ingestion of contaminated water a variable �28�
V. choleræ concentration that yields 50% chance

of catching cholera V0 �106 cell /ml �17�
Rate of recovery from cholera r 0.2 day−1 �20,28�
�Net� Mortality rate of V. choleræ in the aquatic

environment � 0.033 day−1 �20,28�
Contribution of infecteds to V. choleræ
concentration in the aquatic environment e �0.1 cell /ml day individuals �9,17,28�

Characteristic population J�
�V0

e �3�105 individuals
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dI�t�
dt

= �aS�t�
rJ

− 1	rI�t� . �3�

This equation shows that infected individuals grow whenever

S�rJ /a, such that within this deterministic framework, the

number of infectives blows up if S�H�rJ /a, which is one

of our main assumptions. However, in the following, we will

show that by introducing some meaningful stochastic and

deterministic terms, the divergence disappears.

III. STOCHASTIC MODEL

In this section, we define the stochastic model which we

will compare to data in order to validate our previous as-

sumptions. First, we assume that at the beginning of the out-

break, the infected individuals increase with the constant rate

b=k�aH /J−r�=rk�R0−1�, where k is a constant of order 1.

This is simply inferred from Eq. �3� when assuming that

initially the entire population is susceptible to the disease.

Second, we present the characteristic time scale, �, of the

epidemic outbreak related to the balance of �i� the rate of

infection of susceptibles due to the contact with one infected

individual and �ii� the loss rate of infected individuals owing

to recovery, death, or isolation. We will assume that the con-

tribution of these factors always result in the loss of infected

individuals. Finally, we bring stochasticity in the evolution of

infectives: the nature of disease transmission is intrinsically

discrete, involving at least pairs of individuals. The discrete-

ness of the process naturally brings about stochasticity,

whose effects can be described, within a first rough approxi-

mation, by a birth and death process �21�. At least when the

population of infectives is large, a natural choice for the rate

of producing �depleting� an infected individual is bI
=bI�dI=dI� because one expects that the larger the infected

population, the more likely to get one new infected indi-

vidual within the next small time interval and, correspond-

ingly, one new recovered or dead individual. These rates de-

fine a discrete Markov process whose fluctuations are

proportional to 
I in the continuum approximation �21�.
Therefore, if we want to accommodate stochastic effects in

the dynamics of the infectives, we should introduce in our

framework the fluctuating term 
DI�t���t�, where ��t� is a

delta-autocorrelated Gaussian noise. More general functions,

e.g., Ic with c�1 /2, can certainly be used to describe the

fluctuations. They are not considered here as they usually

weaken the analytical tractability as well as the physical

transparency.

When adding all these terms, one obtains the following

Langevin equation, which combines both the deterministic

and the stochastic contributions:

dI

dt
= b −

I

�
+ 
DI��t� . �4�

In this equation, ��t� is a Gaussian white noise with zero

mean and autocorrelation function ���t���t���=2��t− t��.
Equation �4� defines our stochastic model which we will use

to test whether stochastic effects may be responsible for the

waning of the outbreak. Notice that had we used DI�t���t� in

Eq. �4�, the second moment of the infected individuals could

diverge; if we use a repulsive potential or no potential at all

�instead of the current potential�, all moments �at least from

the second one� diverge. Additionally, note that for Eq. �4� to

hold, we need the number of susceptibles to be much larger

than that of infected ones for avoiding finite size effects dur-

ing the evolution. In addition, note that when setting D=0,

one gets a trivial deterministic evolution for the infecteds. In

this sense, the combination of both deterministic and sto-

chastic terms gives rise to the interesting behavior which we

will show �22,23�.
This equation is analytically tractable and depends on

three free parameters, namely, b, D, and �: b takes into ac-

count a constant immigration rate of new infected individu-

als and/or a flow of water contaminated with vibrions that a

given delimited region may experience—hence it summa-

rizes the overall connectivity provided to water-borne infec-

tive agents by the network of waterways. Interestingly, the

deterministic condition for an outbreak to occur, R0�1,

translates into a positive flux of infectives, b�0, which we

will estimate from empirical data. D is a positive constant,

assumed to be independent of time, which accounts for the

stochasticity arising from largely unpredictable factors such

as environmental fluctuations and intrinsic variability

�18,19,25�. It measures the strength of the noise in the in-

fected population.

Equation �4� is a stochastic differential equation with a

multiplicative noise which should be interpreted a là Itô, i.e.,

equivalent to the Fokker-Planck equation

ṗ = �I��I/� − b�p� + D�I
2�Ip� , �5�

where p� p�I , t  I0 ,0� is the conditional probability distribu-

tion function �PDF� of finding I-infected individuals in a

spatially delimited �and epidemiologically connected� region

at time t, given that at time t=0, there were I0 infectives

therein. Because in this framework recovered individuals do

not participate in the evolution of the infection and we are

interested only in the dynamics of epidemics after a single

initial outbreak, we consider the evolution of the infected

population until the number of infected reaches zero for the

first time. This is equivalent to study the absorbing solution

of Eq. �4�, without taking account of any effect due to sea-

sonality or endogenous frequency. By assuming that the epi-

demics initially commences with I0 infected individuals, one

obtains the following distribution �24� which is amenable to

statistical analysis:

p�I,tI0,0� =
�D��−1

1 − e−t/�exp�−

1

D�
�I + I0e−t/��

1 − e−t/� �
�� I

I0

et/�	b/2D−1/2

I1−b/D�
2

D�

I0Iet/�

et/� − 1
� , �6�

where I��z� is the modified Bessel function of the first kind

�26�. In order that Eq. �6� exists, it must be b /D	1, which

interestingly translates into an upper bound for the basic re-

productive number of the disease, i.e., R0	1+D /kr. The

fact that the above solution is obtained with absorbing
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boundary conditions is proved by the fact that P�I , t  I0 ,0�
tends to zero at large times, i.e., the infected population,

sooner or later, gets extinct.

IV. STOCHASTIC MODEL VS DATA

Now we benchmark our model against the empirical data

pertaining to the 2000/2001 cholera epidemics that spread

through the eastern and northeastern parts of South Africa.

The causative organism Vibrio choleræ 01 El Tor Ogawa
mostly affected the Kwa Zulu-Natal province, where the first

case was confirmed as well. The epidemic data were gath-

ered within sub health districts �SHDs�, where the number of

new cholera cases was daily updated. The time at which the

first infected case occurred varies from district to district

depending on the spatial spreading of the epidemic. Thus, in

order to compare the data to the exact solution, we shifted all

the times of the onset of the local epidemics so as to obtain

a unique initial time for all the SHDs. This allowed us to get

an ensemble average which is coherent with the type of spa-

tial coarse-graining postulated by the model. On the other

hand, in order to get the actual number of infected individu-

als per day, we assigned a mean lifetime for the disease

throughout the population. According to epidemiological

studies �20�, the lifetime varies from 3 to 6 days, but it is

more likely confined to be between 4 and 5 days. Thus we

assigned to each case a disease period of 3 or 6 days with

probability 0.30 �0.15+0.15� and a duration of 4 or 5 days

with probability 0.7 �0.35+0.35�. After these manipulations,

the initial probability distribution of the infected individuals

throughout the SHDs is found to be well represented by a

power law �Fig. 1�, i.e.,

p0�I0� = c�I0/Ī0�−
, �7�

where c= �
−1� / Ī0, Ī0=1, and 
=2.87. This initial PDF

summarizes the information about the highly heterogeneous

spatial distribution of infectives across the SHDs and has to

be encapsulated in our aggregated description of the disease.

Accordingly, the time dependent-distribution of infectives is

modified into the new PDF which reads

q�I,t� � �
0

�

p�I,tI0,0�p0�I0�dI0.

Notably, the total infected individuals of a given district are

poorly correlated ���0.05� with the respective total popula-

tion. This means that one can find very populated SHDs with

a small number of infecteds as well as SHDs with small

populations and a lot of infected individuals. Although it

may be somehow surprising at a first sight, this pattern might

stem from better sanitary conditions present in populated

SHDs. On the other side, this observation also points out that

the stochasticity involved in the outbreak is not trivially re-

lated to the actual total population of a SHD. Under the

previous initial conditions, the average number of infectives

at time t in a given district is simply

�I�t�� = �
0

�

Ip�I,tI0,0�p0�I0�dI0dI ,

which can be calculated by exploiting the analytic solution in

Eq. �6�. In order to be more restrictive on the model valida-

tion and obtain a more reliable set of parameters, we studied

also the probability that a given district has at least one in-

fected individual at time t, which reads

q�t� � �
0

�

p�I,tI0,0�p0�I0�dI0dI .

Least-square errors statistics were carried out on all SHDs so

as to yield the parameters of the model. By resorting to a

weighted mean of the 2 statistics, we simultaneously best

fitted the data of the mean value of the infected individuals

per SHD at time t and the empirical probability that a given

district has at least one infected individual at time t with the

corresponding quantities predicted by the model. The ob-

tained parameters are b=0.48 individuals /day, D
=0.69 individuals /day, and �=19.1 days. The comparative

results are shown in Fig. 2.

V. DISCUSSION

The model correctly explains the time scales for the peak

and the extinction of the epidemic ��I�tend���1 when tend
�200 days� without resorting to the depletion of susceptible

individuals as customary in deterministic SIR models

�11,17�. Assuming that k�1, we obtain R0�3.4 which is

consistent with previous works �9,10,13,25,29�, but smaller

than the one suggested by Hartley et al. �28�, who explained

a cholera epidemic by incorporating a state of hyperinfectiv-

ity in the Codeço model �17�. In addition, the human-

environment coupling captured by the parameter a
�0.07 �days�−1 turns out to be quite small compared to the

previously suggested range of values �17,28�.
Unlike deterministic SIR frameworks, within our sce-

nario, the epidemic peaks and declines even though the num-

ber of susceptible individuals is always larger than a critical

threshold, i.e., rJ /a. While the epidemiological significance

2 5 10 20

100

10-1

10-2

I
0

p 0
(x
>
I 0
)

FIG. 1. In the log-log plot, dots represent the empirical prob-

ability that a given SHD has an initial infected population greater

that I0. The empirical data pertain to the 2000/2001 cholera epidem-

ics which took place in South Africa. The straight line is the best

fitted power law �see Eq. �7�� with slope 
=2.87.

AZAELE et al. PHYSICAL REVIEW E 81, 051901 �2010�

051901-4



of seasonality on the onset of the outbreak is present and

well recognized �19�, we suggest here that stochasticity itself

may be able to automatically provide a mechanism, occur-

ring at the same time scale, for the extinction of the epidem-

ics. Indeed, the Codeço model in the form of the system of

deterministic Eq. �1� is not able to explain quantitatively the

initial behavior of the disease and predicts a final endemic

state of about 800 infected individuals for the present epi-

demics. The model we have discussed here also shows how

one can analytically explain the dynamical evolution of an

epidemic outbreak without explicit reference to the complex

spatial patterns which may exist in the presence of factors

such as a structural network underlying the spatial dynamics

�8,9�. Such environmental matrix, however, has to be taken

into account to provide a suitable connection between spatial

and temporal scales of the epidemics �10�. Indeed SHDs are

connected by several possible infectious processes and V.
Choleræ is a water-borne disease native to coastal ecosys-

tems where it thrives in warm waters of limited salinity

�18,19�. Such strong correlation reasonably suggests that an

infection network related to the spatial connectivity of the

SHDs is needed to fully understand the spatial spreading of

the cholera outbreak including the role of infective corridors

played by the river network should the time needed by the

traveling cholera wave to reach all susceptibles be compa-

rable �or larger� than the intrinsic disease lifetime �9�. Under

certain conditions which we have made explicit here, how-

ever, networks involving a large number of nodes, i.e., in-

fected individuals within a spatially extended region, may

exhibit a markedly coherent behavior extending well beyond

the local scale. In this manner, when a large number of in-

teracting factors leads to substantial mutual influences, the

result may be that the impact in the evolution due to the

interactions is smoothed out and a collective dynamics

emerge. Under such circumstances, the spreading of infec-

tions may indeed be described by models with an aggregated

dynamics which does not explicitly take into account com-

plex spatial patterns. These conditions allow analytical pre-

dictions of peaks and duration of infections of the type pre-

sented herein and suggest powerful developments on general

approaches related to network dynamics.
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FIG. 2. Dots show the mean value, �I�t��, of the infected indi-

viduals per SHD at time t, whereas the solid line is the best fitted

curve provided by the model. Inset shows the empirical and theo-

retical probabilities that a given SHD has at least one infected in-

dividual at time t. The two curves were obtained by simultaneously

best-fitting the empirical data with both the analytical predictions

yielded by the model.
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