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[1] In this paper, we develop a simple analysis method to infer some properties of the
watershed processes from daily streamflow data. The method is built on a simple streamflow
model with a link to rainfall stochasticity, which characterizes the streamflow as a series of
overlapping gamma distribution‐shaped pulses. The key premise of the method is that the
complex streamflow processes can be effectively captured by simply dividing streamflow
into two regimes. Specifically in this method, the gamma pulsemodel is applied separately to
low‐ and high‐flow regimes. We demonstrate the application of the method to five
watersheds and show that it is capable of capturing at least two important statistical
properties of streamflow, namely the probability density function and the autocorrelation
function for wide ranges of values (i.e., from low to large flows and time lags, respectively).

Citation: Muneepeerakul, R., S. Azaele, G. Botter, A. Rinaldo, and I. Rodriguez‐Iturbe (2010), Daily streamflow analysis based

on a two‐scaled gamma pulse model, Water Resour. Res., 46, W11546, doi:10.1029/2010WR009286.

1. Introduction

[2] Streamflow is one of the most influential hydrological
phenomena affecting human well‐being. It provides the most
easily accessible source of water, but it can also produce
severe damages via flooding. Less directly but importantly,
it governs functions and services of numerous types of
ecosystems upon which human rely. Scientifically, it poses
fascinating questions because it results from various hydro-
logical processes operating at a wide range of spatial and
temporal scales [e.g., Bras and Rodriguez‐Iturbe, 1993; Xu
et al., 2002; Van de Griend et al., 2002; Farmer et al.,
2003; Kirchner, 2009; Botter et al., 2009]. Deservedly,
there is a long history of studies of the dynamics governing
streamflow fluctuations [e.g.,Weiss, 1977; Rodriguez‐Iturbe
and Valdes, 1979; Bras and Rodriguez‐Iturbe, 1993; Beven,
2001; Xu et al., 2002; Claps et al., 2005; Kirchner, 2006,
2009; Botter et al., 2007a, 2009]. Many models that are
devised to link rainfall to streamflow, e.g., traditional rainfall‐
runoff models, do so through a case‐by‐case type of rep-
resentation with a large number of parameters and the
corresponding calibration. While extremely useful for their
purposes, most of these models may not lend themselves to
general conclusions applicable to a number of ecosystems

closely connected to streamflow, e.g., riparian zones and
certain classes of wetlands [see, e.g.,Camporeale and Ridolfi,
2006; Muneepeerakul et al., 2007; Perona et al., 2009].
[3] Central to this paper are two important issues in

studying streamflow. First, we address the issue of the
probabilistic structure of streamflow time series with an
explicit link to rainfall stochasticity. It is worth noting that
this issue has in fact been partially addressed in the studies
by Botter et al. [2007a] and Botter et al. [2009], where the
probability density function (pdf ) of the slow, subsurface
component of the streamflow, i.e., base flow, was derived.
The key assumption in these works is that the streamflow is a
unique function, either linear [e.g., Botter et al., 2007a] or
nonlinear [e.g., Kirchner, 2009; Botter et al., 2009], of the
water storage in the watershed. Indeed, Botter et al. [2007b,
2009] show that when the base flow constitutes a major
contribution of the overall streamflow, the derived pdf pro-
vides a good approximation of the streamflow pdf over the
low‐flow range.
[4] Here, we consider an alternative approach, namely to

represent the streamflow time series by a series of over-
lapping gamma‐shaped pulses [see, e.g., Xu et al., 2002]. The
use of overlapping pulses to represent a stochastic phenom-
enon has previously been employed for rainfall dynamics
[Rodriguez‐Iturbe et al., 1984, 1987, 1988]. Therein, the
pulses took a simple rectangular shape and many important
properties of the rainfall dynamics were analytically derived.
As will be shown later, an important advantage of this for-
mulation is that it enables us to study another crucial aspect of
the streamflow probabilistic structure, namely its autocorre-
lation function.
[5] Second, we investigate the issue of time scale differ-

ence in processes contributing the streamflow. As mentioned
above, streamflow results from a suite of complex watershed
processes operating at very different spatial and temporal
scales, ranging from very slow groundwater flows to fast
floods. As such, models or analyses that are built to capture
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processes of a single time scale have a serious disadvantage
in adequately representing the entire streamflow process.
Indeed, the time scale separation and other complexity in
watershed processes continue to fascinate hydrologists and
provide a fertile ground for hydrological research [e.g.,
Xu et al., 2002; Farmer et al., 2003; Kirchner, 2006, 2009;
Botter et al., 2009]. Here, we develop a simple application‐
oriented analysis method to address this issue. While it does
not deal with the time scale separation mechanistically, the
method can be used to extract meaningful insights from
streamflow data, which can be used in developing more
process‐based and sophisticated models. Let us emphasize
here that the method is developed to provide a framework
in which one can quantitatively infer various components
of streamflow processes from daily streamflow data, not to
make predictions; such tasks call for more process‐based
models.
[6] The paper is organized as follows. In section 2, we

construct the gamma pulse model for streamflow in a generic
way. In section 3, a method is built on the pulse model and its
application to empirical daily streamflow data is demon-
strated; in brief, the pulse model is applied to two different
flow regimes of very different time scales, yielding very
satisfactory overall results. Conclusions, discussion, and final
remarks are presented in section 4.

2. Gamma Pulse Model for Streamflow

[7] We approximate the watershed response, h(u), of a
watershed by a gamma distribution [see, e.g., Nash, 1957].
h(u) is the response, i.e., streamflow, of a watershed to a
unit volume of water input applied uniformly and instanta-
neously over the watershed. It is conceptually very similar
to the familiar instantaneous unit hydrograph. However, the
unit hydrograph is typically used to describe only the sur-

face runoff component of the streamflow. We thus avoid the
use of the term and potential confusion.
[8] A gamma‐shaped h(u) can be expressed as:

h uð Þ ¼ b

G að Þ buð Þa�1
e�bu; u � 0; ð1Þ

where u is the time after the arrival of a streamflow‐
generating rainfall event; a and b are the shape and scale
parameters of the gamma distribution, respectively; and G(·)
represents the gamma function. Equation (1) satisfies the
condition

R

0
∞ h(u)du = 1. Accordingly, the time to peak of

h(u), tp = (a − 1)/b when a > 1 and 0 otherwise. Note that the
time scale of the observed streamflow data is critical to the
interpretation of tp.
[9] Under this formulation, the streamflow is simply a

result of overlapping gamma pulses, each of which is trig-
gered by a streamflow‐generating rainfall event. Now, it has
been shown that at a daily time scale, the rainfall dynamics
can be properly modeled as a marked Poisson process [e.g.,
Rodriguez‐Iturbe and Porporato, 2004]: specifically, the
arrival of rainfall events may be assumed a Poisson process
with rate lP and the daily rainfall depth being an exponen-
tially distributed random variable with the mean depth mP.
The analysis of rainfall data used in this study confirms the
validity of this assumption (results not shown).In addition,
since not all rainfall events generate streamflow, we assume
that only those with depths larger than a threshold D do so.
Note that under the current framework, D is assumed fixed
and can be thought of as a long‐term average value since
we are considering the statistical properties of long stream-
flow time series, not of a single event (but see also, e.g.,
Botter et al. [2007a, 2007b] and discussion in section 4).
Consequently, the arrival of streamflow‐generating rainfall
events can be modeled as a Poisson process with rate l =
lP exp(−D/mP) with the depth of each event remaining
exponentially distributed with the same mean mP [Rodriguez‐
Iturbe et al., 1999; Rodriguez‐Iturbe and Porporato, 2004].
[10] Let Q(t) be the streamflow at time t, which can be

written as [see, e.g., Cox and Isham, 1980; Rodriguez‐Iturbe
et al., 1987]:

Q tð Þ ¼
Z t

�1
h t � zð ÞV zð ÞdN zð Þ; ð2Þ

where V(z) is the random streamflow volume generated by
a rainfall event arriving at time z and {N(z)} counts the
occurrences of the Poisson process representing the arrivals
of streamflow‐generating rainfall events. Note that equation 2
is dimensionally consistent as the dimensions of Q, h, and V
are [L3/T], [1/T], and [L3], respectively. Based on the above
formulation, V is exponentially distributed with the mean
volume mV = mPA, where A is the drainage area of the
watershed under consideration. The illustration of Q(t) and
its relation to the rainfall process is shown in Figure 1.
[11] We then derive the mean mQ and variance sQ

2 of the
process Q(t) as:

�Q ¼ �EfVg
Z 1

0

h uð Þdu ¼ ��V ; ð3Þ

�2

Q ¼ �EfV 2g
Z 1

0

h2 uð Þdu ¼ ��2

V

b

G að Þ ; ð4Þ

Figure 1. Illustration of a series of overlapping gamma
pulses representing streamflow: (a) rainfall and (b) stream-
flow. In Figure 1b, the dotted lines represent the gamma‐
shaped pulses generated by rainfall events in Figure 1a that
are larger than D, and the solid line represents the resulting
streamflow, which is the sum of all dotted lines.
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where,

G að Þ ¼ 4
a�1

G að Þ2
G 2a� 1ð Þ ; ð5Þ

and E{·} stands for the expectation operator. Another impor-
tant property of Q(t) is its autocorrelation as a function of
lag t, r(t), which is derived as:

� �ð Þ ¼ CQ �ð Þ
�2

Q

¼
R1
0

h uð Þh uþ �ð Þdu
R1
0

h2 uð Þdu

¼ G að Þ
ffiffiffi

�
p

G 2a� 1ð Þ 2b�ð Þa�1

2Ka�1

2

b�ð Þ; ð6Þ

where CQ(t) = E{(Q(t) − mQ)(Q(t + t) − mQ)} is the auto-
covariance of the streamflow process Q(t) and Kn(·) rep-
resents the modified Bessel function of the second kind. Note
that due to the independence among rainfall events associated
with the Poisson characterization, r(t) depends only on a and
b, which specify the shape of h(u), and not on l and mV.
[12] Finally, while we have not analytically derived the

exact expression of the probability density function (pdf )
of Q, p(q), simulation results suggest that a gamma distri-
bution whose mean and variance coincide with equations 3
and 4, respectively, provides an excellent approximation for
a wide parameter range. That is, p(q) can be written as:

p qð Þ � c

G �ð Þ cqð Þ��1
e�cq; q � 0; ð7Þ

where � and c are the shape and scale parameters of this
gamma approximation of the pdf (not to be confused with a
and b associated with h(u) in equation 1). Rearranging and
grouping terms, we write � and c as:

� ¼ �
G að Þ
b

; ð8Þ

c ¼ 1

�V

G að Þ
b

: ð9Þ

In the special case of a = 1, h(u) takes an exponential form
and � = l/b; this is equivalent to the criterion used in the
studies by Botter et al. [2007a, 2007b] to classify dry/wet
conditions of rivers. In many watersheds, however, gamma
distributions with a greater than 1 have been shown to yield
reasonable representation of the IUHs; for example, when
a = 2, � becomes 2l/b. This simply shows that � is also
closely tied to the shape of h(u).

3. Analysis Method for Daily Streamflow
Time Series

[14] In section 2, we developed the gamma pulse model for
streamflow in a generic way. To apply it to real data, one must
recognize that streamflow results from a suite of complex
watershed processes operating at very different spatial and
temporal scales. As such, this simple model described above
should not be applied directly to the overall streamflow
because such a gamma‐shaped pulse only captures processes
of a single time scale. We now describe step‐by‐step a simple
analysis method, with the gamma pulse model as building

blocks. It is essentially based on a simple premise that
dividing streamflows into only two regimes, low‐ and high‐
flow, is sufficient to effectively capture the overall process.
Note that this method is application‐oriented and approxi-
mate in nature, with the focus on practicality and usefulness,
and does not mechanistically address the problem of time
scale separation. In particular, wewill show that it can capture
the probability density function (pdf ) and autocorrelation
function of the overall streamflow and can subsequently be
used to infer relevant information regarding the watershed
processes.
[15] The required parameters can be estimated as follows:
[16] Infer the watershed responses responsible for the low‐

and high‐flow regimes from the autocorrelation function. We
first make the following approximate categorization: the
low flows determine, by definition, the shape of the low‐
flow part of the streamflow pdf, and more importantly, pre-
dominantly contribute to the autocorrelation at large time
lags. On the other hand, the high flows determine the tail
structure of the streamflow pdf and control the autocorrela-
tion at short time lags. Because the difference in time scales
between the two flow regimes is generally large, the gamma
pulse model is applied to them separately as follows. Note
that in many cases, the distinction between the two regimes is
quite noticeable in both the pdf and autocorrelation. Here, use
is made of the fact that r(t) (equation (6)) depends solely on
the watershed response (i.e., through a and b). Let aL and bL
denote the shape and scale parameters of hL(u), the watershed
response associated with the low‐flow regime; they are esti-
mated by finding the values that best fit the empirical r(t)
when t is large, say, larger than 4–6 days. Similarly, let aH
and bH denote the shape and scale parameters of hH(u), the
watershed response associated with the high‐flow regime;
they are estimated by finding the values that best fit the
empirical r(t) when t is small, say, within 2 or 3 days.
[17] Separate the two flow regimes. We now determine the

threshold q*, the threshold streamflow dividing the low‐ and
high‐flow regimes. Based on equations 3 and 4, the variance‐
to‐mean ratio, or the so‐called Fano factor, of the low flows
FL is mVbL /G(aL). We simply tune q* such that the empirical
FL meets this constraint.
[18] Estimate mV and D. mV can be estimated directly

from the rainfall data from rain gages in the watershed via
the relationship mV = mPA (section 2). D can be estimated
by substituting the empirical mean streamflow for lmV

(equation (3)) in the following relationship:D = mP ln(lPmV /
lmV) (see section 2 and also Botter et al. [2007b, 2008,
2009]).
[19] With these parameters determined, we can compute

other quantities of interest. In particular, with q* and mV
known, equation 3 is used for the conditional mean flows
to compute the conditional Poisson arrival rates associated
with the low‐ and high‐flow regimes, denoted by lL and
lH, respectively. The overall arrival rate of streamflow‐
generating rainfall events, l, can be computed by either
applying equation 3 to the mean overall streamflow or using
the following relationship: l = fLl′L + (1 − fL)l′H, where fL =
P[Q < q*] is the fraction of time the streamflow process
spends in the low‐flow regime. Then, the pdf of overall
streamflow can be approximated by:

p qð Þ � fLpL qð Þ þ 1� fLð ÞpH qð Þ;
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where pL(q) and pH(q) are the approximate pdf ’s of the low‐
and high‐flow regimes, respectively, which can be expressed
as in equation 7 with regime‐specific lr, ar, and br where
subscript r is either L or H.
[20] We now demonstrate the application of this method

to daily streamflow data from several relatively small water-
sheds with different climates and seasonality patterns; their
relevant information is reported in Table 1. The fitted param-
eters are summarized in Table 2 and the results illustrated in
Figures 2–6. The results show that the proposed method can
indeed capture both autocorrelation and pdf over entire
ranges, except the probability of the extreme high flows in
some cases. This suggests that simply dividing streamflow
into two regimes is sufficient to effectively capture this com-
plex process.
[21] It is important to note that the studied periods were

selected such that there were no strong trends or abrupt
changes in the daily streamflow time series and no significant
snowfall. The first condition is imposed to be consistent with
the assumption of temporal stationarity embedded in the
model, while the second is imposed simply because the
streamflow generated by snowmelt processes is not captured
in the model. Interestingly, the results suggest that the method
performs well even when some seasonality, i.e., non-
stationarity, exists. Here, we use the coefficient of variation of
monthly rainfall, CVMR, to measure the degree of seasonality.
Figures 2–4, along with Table 1, show that the pdf and
autocorrelation are well captured when CVMR is as high as
0.37. Furthermore, in the very dry climate of the Californian
watershed (Figure 5), the performance is still robust even with
CVMR of 1.03. However, the method seems to fail (e.g.,
giving some insensible values) when applied to the entire
streamflow time series at sites in a wet climate with pro-
nounced seasonality, e.g., the Oregonian watershed in this
study, although it still yields good results when applied only
to the dry season (Figure 6).
[22] The key contribution of this method is that it allows us

to gain some insights in watershed processes through study-
ing the resulting parameters. For example, 1/bL and 1/bH can
be interpreted as the characteristic time scales of the low and

high flows, respectively. The huge difference between them,
approximately two orders of magnitude in most cases (see
Table 2), justifies our scale separation procedure: 1/bH can be
as small as less than a day, while 1/bL can be close to a year.
Clearly, models with a single characteristic scale are not
adequate for the streamflow process in these settings. Con-
versely, the method can help us identify circumstances under
which a simpler single‐scaled approach may be adequate. For
example, consider the case of the Oregonian watershed dur-
ing the dry season in which the scale and shape parameters of
the low‐flow and high‐flow responses are more similar than
other case studies.When a single‐regime response (a = 0.889,
1/b = 7.4 days) is employed (results not shown), the auto-
correlation and pdf are still captured reasonably well, except
that the probability of flow larger than 1 cm/d ismore severely
underestimated.
[23] The shape parameter of the high‐flow response, aH,

seems to vary within a reasonable range, whereas its low‐flow
counterpart, aL, seems to oftentimes be between 0.5 and 0.6.
Based on the discussion in section 2, the range of aL may
translate to the interpretation that the time to peak of the
low‐flow watershed response is close to zero, i.e., it peaks
instantaneously and monotonically decreases afterward.
Here, a caveat is in order. Recall that the observed data are
at a daily time scale, and thus an important implication is
that the rise of h(u) with tp � 1 day is likely not captured
and only its recession is. This condition is likely the case for
these relatively small watersheds. Accordingly, one should
only interpret the low values of a as that the watershed
response peaks quickly—significantly less than 1 day—but
not necessarily instantaneously.
[24] Additionally, the values of fL in Table 2 suggest that,

while the streamflow processes in these particular examples
of small watersheds are in the low‐flow regime for the
majority of the time, the infrequent high‐flow regime strongly
controls the autocorrelation over short time lags and the tail
structure of the streamflow pdf. Finally, D, the threshold
beyond which a rainfall event generates streamflow, offers
a simple way to collectively characterize and compare
streamflow production processes of different watersheds; it

Table 1. Summary of Relevant Characteristics of the Two Watersheds Under Considerationa

USGS Station Number and State A (km2) Period of Data Analyzed lP (1/d) mP (cm) MAR (cm) CVMR

02219000, GA 456 1988–1998 0.35 1.07 135 0.20
02088500, NC 601 1990–1998 0.32 1.03 120 0.20
08057200, TX 172 1989–1995 0.25 1.21 111 0.37
11051500, CA 544 1993–2000 0.05 0.61 11 1.03
14325000, OR 438 1978–1988 (D) 0.22 0.69 155 0.73

aNote that the periods of analysis were selected such that there were no trends or abrupt changes in the streamflow time series and no significant snowfall
(see text). Daily streamflow data were obtained from U.S. Geological Survey (USGS) at http://waterdata.usgs.gov. Daily precipitation data were obtained
from the National Climatic Data Center at http://cdo.ncdc.noaa.gov. D, dry season only; MAR, mean annual rainfall; CVMR, coefficient of variation of
the average monthly rainfall (based on all 12 months).

Table 2. Summary of Parameters of the Two Case Studies

USGS Station Number and State l (1/d) D (cm) fL aL 1/bL (day) fLl′L (1/d) aH 1/bH (day) (1 ‐ fL)l′H (1/d)

02219000, GA 0.132 1.03 0.937 0.527 331 0.089 2.23 0.95 0.043
02088500, NC 0.099 1.21 0.941 0.600 46 0.064 2.00 2.12 0.036
08057200, TX 0.178 0.42 0.975 0.504 99 0.082 0.803 0.90 0.096
11051500, CA 0.045 0.065 0.856 0.560 255 0.010 1.05 3.26 0.034
14325000, OR 0.142 0.30 0.969 0.777 9.5 0.100 1.32 2.98 0.041
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combines various watershed characteristics affecting the
streamflow production, e.g., land use/land cover and soil
types [see, e.g., Botter et al., 2007a, 2007b].

4. Conclusions, Discussion, and Final Remarks

[25] In this paper, a newmethod is developed for analyzing
daily streamflow data, which is built on a gamma pulse
model for streamflow with a link to rainfall stochasticity.
An important result of the model is the expression for r(t),
which allows us to infer the watershed responses from the
empirical autocorrelation. The results show that this simple
method, in which the gamma pulse model is applied to the
low‐ and high‐flow regimes separately, is capable of cap-
turing two important statistical properties of streamflow,

namely the autocorrelation and probability density function
(pdf ). By recognizing that processes of at least two dis-
tinctly different time scales govern streamflow, the method
reproduces the empirical autocorrelation for both short and
long time lags and the pdf ’s for entire ranges of streamflow
values, except the extreme high flows. Importantly, it pro-
vides a tool to analyze and extract additional insights on
watershed processes from the streamflow data.
[26] It is always important to recognize the limitations of

one’s method. In this case, the application of the method
should be limited to relatively small watersheds. This is
because as watersheds become larger, the spatial heteroge-
neity of rainfall fields becomes increasingly significant and,
as a result, invalidates the use of the simple marked Poisson
process to represent the rainfall and the use of a fixed function
h(u) to represent the watershed response. Furthermore, the
model is not appropriate for watersheds whose hydrology is
significantly influenced by snow; the snowmelt component of
the streamflow presents an entirely different dynamic oper-
ating at yet another different time scale. It is also not clear
whether this method can be effectively applied to highly

Figure 2. Statistical properties of daily streamflow of a
watershed in Georgia, USA: (a) autocorrelation and (b) prob-
ability density function (pdf ) and exceedance probability
(inset). The dots and lines represents the empirical and mod-
eled patterns, respectively; in Figure 2a, the red line repre-
sents the model result associated with the high‐flow regime,
and the blue line represents the low‐flow regime. The vertical
dashed line represents the threshold q*. The significant scat-
ter in the empirical frequencies in the high‐flow range likely
stems from the reduced statistical reliability inherent in sam-
pling these infrequent events.

Figure 3. Statistical properties of daily streamflow of a
watershed in North Carolina, USA: (a) autocorrelation and
(b) probability density function (pdf ) and exceedance proba-
bility (inset). The legend is the same as in Figure 2.

MUNEEPEERAKUL ET AL.: GAMMA PULSE STREAMFLOW ANALYSIS W11546W11546

5 of 8



intermittent streams. Finally, as the results suggest, we expect
the method’s performance to be limited in addressing extreme
streamflows. This limitation likely stems from the fact
extreme daily rainfall events are not well captured by the
exponential distribution.
[27] Let us emphasize here that the key purpose of this

paper is to introduce and demonstrate some applications of
this method. Accordingly, the goal of some of the discussion
in the preceding section was not meant to be conclusive but
rather to offer some ideas regarding the potential analyses
accompanying the method. In this light, we now briefly dis-
cuss some possible avenues of research linking the model
parameters to relevant physical processes.
[28] The high‐flow response is likely related to the tradi-

tional instantaneous unit hydrograph, which can be derived
from the drainage structure and the width function of the
watershed [see, e.g., Rodriguez‐Iturbe and Valdes, 1979;
Rodriguez‐Iturbe and Rinaldo, 1997]. As such, it may be
possible to estimate aH and bH directly from the width func-
tion of the watershed, thereby more directly linking its geo-
morphological structure to the autocorrelation function.

[29] The low‐flow response, which is related to subsur-
face flows and characterized by aL and bL, depends on the
geology, subsurface architecture, and topography of the
watershed. As is true for parameters characterizing many sub-
surface processes, estimating aL and bL directly from these
underground features is difficult, especially for routine anal-
ysis. The capability to estimate them from the more readily
available autocorrelation function is indeed one of the key
contributions of this method. Here, a potential future research
direction is to apply the method to many watersheds with
different geological settings and under different climates and
examine the relationships between bL and these environ-
mental factors.
[30] It is worth noting that some values of aL and aH in the

case studies significantly differ from 1, which corresponds to
the exponential‐decay response in models based on the linear
reservoir concept [e.g., Botter et al., 2007a].This result lends
support to the more recent research, which attempts to char-
acterize streamflow as nonlinear functions of water storage in
the system (i.e., nonlinear reservoirs) [e.g., Kirchner, 2009;
Botter et al., 2009].

Figure 4. Statistical properties of daily streamflow of a
watershed in Texas, USA: (a) autocorrelation and (b) proba-
bility density function (pdf ) and exceedance probability
(inset). The legend is the same as in Figure 2.

Figure 5. Statistical properties of daily streamflow of a
watershed in California, USA: (a) autocorrelation and
(b) probability density function (pdf ) and exceedance prob-
ability (inset). The legend is the same as in Figure 2.
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[31] In this method, the frequencies and contributions to
the overall streamflow of the two flow regimes are rep-
resented by fL, l′L and l′H. They result from the interplay
between the rainfall stochasticity and soil moisture dynamics.
This calls for the type of analysis presented in the studies
by Laio et al. [2001] and Rodriguez‐Iturbe and Porporato
[2004]. Indeed, Botter et al. [2007a] have performed such
analysis with the focus on the slow component. One aspect
of the soil moisture dynamics that is particularly important
to the high‐flow regime is the antecedent condition when a
new rainfall event arrives. The antecedent condition directly
controls D, which determines both the frequency and the
amount of excess rainfall that eventually becomes stream-
flow. Incorporating this dynamical aspect of D poses a
challenge for future research [see also Van de Griend et al.,
2002; Botter et al., 2007a]. Importantly, once the relative
contributions of the two flow regimes can be made explicit
functions of rainfall stochasticity, we will be in a much
better position to predict changes in streamflow patterns
under changing environments such as those resulting from
global climate change.

[32] The present method has been developed in an
application‐oriented manner. While it offers an effective
practical tool to analyze and gain understanding from empir-
ical streamflow data, we are currently pursuing a more
mathematically rigorous and theoretically satisfying devel-
opment of the same concepts. This will enable us to derive
other important properties of streamflow, such as crossing
properties, which are directly relevant to flooding and water
inputs into riparian zones and wetlands.
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