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Downscaling species occupancy from coarse spatial scales

SANDRO AZAELE,1 STEPHEN J. CORNELL, AND WILLIAM E. KUNIN

Institute of Integrative and Comparative Biology, LC Miall Building, University of Leeds, Leeds LS2 9JT United Kingdom

Abstract. The measurement and prediction of species’ populations at different spatial
scales is crucial to spatial ecology as well as conservation biology. An efficient yet challenging
goal to achieve such population estimates consists of recording empirical species’ presence and
absence at a specific regional scale and then trying to predict occupancies at finer scales. So far
the majority of the methods have been based on particular species’ distributional features
deemed to be crucial for downscaling occupancy. However, only a minority of them have dealt
explicitly with specific spatial features. Here we employ a wide class of spatial point processes,
the shot noise Cox processes (SNCP), to model species occupancies at different spatial scales
and show that species’ spatial aggregation is crucial for predicting population estimates at fine
scales starting from coarser ones. These models are formulated in continuous space and locate
points regardless of the arbitrary resolution that one employs to study the spatial pattern. We
compare the performances of nine models, calibrated at regional scales and demonstrate that a
very simple class of SNCP, the Thomas process, is able to outperform other published models
in predicting occupancies down to areas four orders of magnitude smaller than the ones
employed for the parameterization. We conclude by explaining the ability of the approach to
infer spatially explicit information from spatially implicit measures, the potential of the
framework to combine niche and spatial models, and the possibility of reversing the method to
allow upscaling.

Key words: downscaling; Neyman-Scott process; occupancy–area curve; Poisson cluster process; shot
noise Cox processes; spatial point processes; species aggregation; species occupancy; Thomas process.

INTRODUCTION

In recent years the issue of species occupancy at

different spatial scales has been of growing interest in

spatial ecology (Kunin 1998, He and Gaston 2000,

Kunin et al. 2000, Tosh et al. 2004, Hui et al. 2009).

Species occupancy, or the fraction of area occupied by a

given species, is obtained by dividing the study area into

an artificial regular grid of cells of (ideally) equal size

and then calculating the fraction of such cells occupied

by a focal species. In this study, the word ‘‘resolution’’

refers to the spatial size of any unit cell of the regular

grid superimposed on the entire study region, whose

extent is always held constant. Thus, resolution refers to

the unit cell size of the tool being used. On the other

hand, the word ‘‘scale’’ refers to the underlying

characteristic length of the pattern itself. Thus, increas-

ing the resolution allows one to study patterns

possessing relatively smaller length scales and vice versa.

Any empirical spatial pattern can be studied by using

arbitrary cell sizes according to different resolutions,

thus unveiling different characteristics of the underlying

pattern.

If we fix an arbitrary resolution to study species

occupancies, we obtain a measure that provides an index

of a species’ range size (‘‘area of occupancy’’ in Gaston

1994), regional ubiquity, or local abundance, depending

on the resolution employed (Hartley and Kunin 2003).

Such issues may be of interest in comparing the

commonness or rarity of different species. However,

because analyses conducted at different resolutions

reflect different aspects of species’ distributions, a far

richer description can be developed by using multiple

resolutions. To do so, one varies the cell size unit from

near zero to the whole of the study area, thus obtaining

different occupancy values at each resolution, generating

an occupancy–area curve, also called ‘‘scale area curve’’

(Kunin 1998) or ‘‘range–area relationship’’ (Harte and

Kinzig 1997, Harte et al. 1999). Such a curve captures

important features of a species’ patchiness at different

spatial resolutions, thus addressing one of the crucial

topics in spatial ecology. Moreover, such curves readily

can be converted to probabilities of occupancy (by

dividing them by the total area or the number of cells

available at each resolution), and the sum of such

probability curves across species creates the well-known

species–area relationship (Arrhenius 1921, Rosenzweig

1995), one of the cornerstones of spatial ecological

research.

At relatively coarse resolutions, species occupancy is

easy to document because it only relies on occurrences.

However, large cell sizes may mask very different spatial

patterns that can be revealed only at finer resolutions:

species occupying the same proportion of area at coarse
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resolutions could dramatically differ in their spatial

patterns at a finer mapping. This is simply because the

rate of occupancy change across resolutions strongly

depends on the spatial distribution of species’ popula-

tions. As the cell size decreases, we are able to delve into

finer and finer details by uncovering unoccupied units

within occupied coarser grid cells. Continuing to

increase the resolution, when the unit area is sufficiently

fine that only one individual, on average, occupies a cell,

we could in principle even estimate the population

abundance of a species (although in practice there may

be limits to the extent of downscaling possible). This

underscores the importance of achieving reliable down-

scaling models, because conducting surveys at high

levels of spatial resolution over large study areas may be

prohibitively resource-demanding and time-consuming.

Widespread species relative to the region of study will

generally have occupancy curves that saturate at scales

smaller than the study area. By saturation we mean that

a species is present within every grid cell of a given area

so that the probability, p, that a given cell is occupied is

1 (see Fig. 1). In contrast, species that are only located

within a portion of the study region can reach a ‘‘scale

(or area) of endemism’’ above which all the individuals

belonging to such species are contained in a single grid

cell; at all coarser resolutions, such a species will have an

occupancy probability equal to A/A0, where A is the

area of a grid cell (equal to or coarser than the scale of

endemism) and A0 is the area of the whole region (see

Fig. 1). The saturation and endemism curves constitute

upper and lower geometrical bounds between which all

species occupancies are constrained.

Such occupancy curves provide efficient descriptions

of species’ distributions across multiple resolutions, but

they may have an additional use, as alluded to

previously: if we understand the shape of an occupancy

curve, we ought to be able to extrapolate it to provide

information about distributions at resolutions other

than those measured. Extrapolating to coarser resolu-

tions (‘‘upscaling’’) in this context is not difficult, as a

fine-resolution map already contains coarser resolution

information; however it is a more challenging task to use

relatively coarse resolution information to draw infer-

ences about fine-scale patterns (‘‘downscaling’’). Since

this prospect was first raised (Kunin 1998), a number of

methods have been developed to attempt this task.

In the Methods section we review some occupancy–

scale models that have been used for distributional

downscaling and related tasks in the literature. Their

performances will be compared and discussed in Results

and Discussion. Most of these models do not accommo-

date spatial features in an explicit manner and the

derivation of the species occupancy curve is quite

empirical (for example, see He and Condit in Storch et

al. [2007:32]). In contrast, we suggest a wide class of

stochastic point processes that explicitly incorporate

space and aggregation, are analytically tractable, and

allow the occupancy–area curve to be derived straight-

forwardly along with useful summary statistics. These

models are formulated in continuous space and locate

each point regardless of any resolution employed to

analyze a pattern, and thus they enable us to study how

the underlying point pattern will translate into occu-

pancy patterns at different resolutions. Thus, when

FIG. 1. Occupancy–area curves. The thick solid curve represents the typical behavior of the occupancy–area curve for
widespread species. These species generally have occupancy curves that saturate, i.e., reach occupancy 1, at resolutions smaller than
the study region (here indicated by A0). The ‘‘scale of saturation’’ (indicated by s in the figure) is defined as the smallest grid cell for
which the occupation probability is 1. In contrast, the thick dashed curve represents the typical behavior of the occupancy–area
curve for species with distributions restricted to only a portion of the study region. These species reach a ‘‘scale of endemism’’
(indicated by e in the figure) beyond which all of the individuals belonging to such species are contained in a single grid cell. The
scale of endemism corresponds to the smallest cell unit encompassing the entire population of a species. For cell sizes larger than the
endemic scale, such species have an occupancy probability equal to A/A0 (indicated by the thin solid line), where A is the area of a
grid cell. Because areas coarser than the scale of saturation (s) or endemism (e) are useless for downscaling purposes, we fitted the
models to the three coarsest unsaturated or non-endemic areas.
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superimposing a grid with a varying unit cell size on the

study region, one can see how a fixed pattern of spatial

locations of individuals looks under different resolu-

tions. For the spatial point processes that we suggest, the

fraction of occupied cells (regardless of the spatial

location of the cells) can be calculated analytically and

therefore we know exactly how the species’ occupancies

vary by changing the unit cell size of the superimposed

grid. This calculation allows us to link directly the

parameters of the spatial point process to the distribu-

tion of occupancies. This latter, additionally, can be

employed to estimate the parameters from empirical

data by using standard techniques of model inference. It

is worth pointing out that this protocol allows one to

infer several spatially explicit properties of species’

distribution from the occupancy–area curve, which, in

contrast, carries no information about the spatial

location of individuals. For instance, we can estimate

the spatial autocorrelation function and clarify the main

characteristics of species’ spatial aggregation.

More specifically, we will focus on a family of Cox

processes (Cressie 1993, Illian 2008): the shot noise Cox

processes, SNCPs (Møller 2003). This class is rich

enough to include a wide subfamily of Neyman-Scott

processes (Thomas 1949, Neyman and Scott 1958),

Poisson/Gamma processes (Wolpert and Ickstadt 1998),

and shot noise G Cox processes (Brix 1999). A

particular case of SNCP is the Thomas model (Thomas

1949), which has been successfully used to model natural

vegetation patterns (see, e.g., Plotkin et al. 2000, Morlon

et al. 2008), but it has not been applied previously to

downscaling. In this study we show that the SNCPs

(specifically, the Thomas model) can be used as a

powerful tool to scale species’ occupancy down to areas

several orders of magnitude smaller than those used to

train the model itself. In addition, the framework is able

to provide information about the spatial autocorrelation

function even though one knows only the proportion of

occupied area by any species.

METHODS

Review of the models

The purpose of this section is to outline different

models that have been used in the ecological literature to

downscale species occupancy and that we will examine

and compare. Although some of them were originally

devised as occupancy–abundance models, they can

easily be turned into occupancy–area models because

the number of individuals of any species is usually

proportional to area (Preston 1962).

The simplest is the Poisson model (Wright 1991). It

assumes that all of the inter- and intraspecific interac-

tions are negligible and the study region is homoge-

neous. Under such circumstances, individuals occur

independently from each other and are distributed

according to a binomial distribution across a finite area:

this is at the core of the random placement model

proposed by Coleman (1981). For large enough areas

and populations, a binomial distribution is well approx-

imated by a Poisson one that yields

PrandðAÞ ¼ 1� e�cA ð1Þ

as the probability of finding a species within a cell unit of

size A, if it has constant density c. Eq. 1 shows a

theoretical drawback common to all models that are

intrinsically based on infinite landscapes: Prand(A) is

exactly 1 only when A goes to infinity. For any finite

study region, or population, these models do not yield

saturation. Thus, infinite-landscape models can describe

reality under limited conditions and are meant as

approximations of more accurate, but usually less

tractable, approaches that are explicitly able to deal

with finite populations. For instance, despite saturating

at infinitely large areas, the Poisson occupancy ap-

proaches 1 as cA � 1, the error being exponentially

small. Thus, it can be meaningfully used for all species’

densities much greater than (A0)
�1, where A0 is the area

of the whole study region. This assumption usually

holds for common or scarce species, but brings about

theoretical issues for rare or very rare species, which will

typically have densities less than (A0)
�1. Interestingly,

this consideration shows that infinite-landscape models

may describe occupancy of at most a subset of species

present within a very large study area.

The finiteness of a focal landscape is not the only issue

that the Poisson model is not able to deal with. There is

growing evidence from a wide range of systems that

conspecific individuals are generally spatially aggregated

(see also Plotkin et al. 2002). Clustering of conspecifics

leads to spatially autocorrelated landscapes that, ulti-

mately, are responsible for the nonindependence of

individuals’ locations and make Poisson sampling

inadequate in most cases. Thus the introduction of

spatial clustering into statistical approaches may be

expected to improve model performance. Whether we

should focus on a particular type of aggregation

consistently emerging from empirical patterns remains

a matter of debate, and the absence of consensus on this

point has resulted in a plethora of models trying to deal

with aggregation. Rather than attempting to develop

spatially explicit approaches to clumping or spatial

autocorrelation, some authors prefer to model over-

dispersion, which is implied by clumping, and which can

be modeled without any explicit spatial reference. This

approach led He and Gaston (2000) to suggest the

negative binomial distribution (NB) as a good candidate

for species occupancy. In this case the probability of

occurrence is

PNBðAÞ ¼ 1� 1þ cA

k

� ��k

ð2Þ

where c is a density as in the Poisson model and k is a

parameter measuring the degree of overdispersion.

Small positive values of k indicate spatial aggregation,

whereas Pnb(A) approaches Prand(A) for very large k
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values, thereby including independent sampling as a

special case.

Recently, this model has been corrected to accommo-

date the finiteness of landscapes or populations, which

should be important when the model is applied to focal

regions of relatively small size. Zillio and He (2010) have

derived a finite negative binomial distribution that

predicts the following occupancy–area curve:

PfngðAÞ ¼ 1�
C N þ A0k

A
� k

� �

C
A0k

A

� �

C N þ A0k

A

� �

C
A0k

A
� k

� � ð3Þ

where C is the gamma function, N is the total number of

individuals in the study area A0, and k has the same

meaning as in Eq. 2.

Typically, aggregation is different for different species

but, more challenging, a given species may vary in its

degree of aggregation (Plotkin and Muller-Landau

2002), even with scaling discontinuities (Hartley et al.

2004). At relatively coarse resolutions, species’ distribu-

tions tend to be less clumped than they are at finer

resolutions. If clumping intensity varies with resolution,

then overdispersion will no longer be constant and the

clumping parameter k will be scale dependent. To

overcome such difficulties, He and Gaston (2003)

generalized their model by introducing into the NB

distribution a scale-dependent variance with the form of

Taylor’s power law (Taylor 1961), i.e., r2(A) ¼ c(cA)b,

thereby making k a function of area, i.e., k(A) ¼ cA/

(c(cA)b�1 � 1). The improved negative binomial (INB)

distribution gives the following probability of occur-

rence:

PINBðAÞ ¼ 1� cðcAÞb�1
h i

cA

1�cðcAÞb�1 ð4Þ

where c and b are now constant parameters that account

for the spatial aggregation of species (the majority of

estimates of b range between 1 and 2, whereas c strongly

depends on the study case). Clearly, one can estimate the

clumping intensity by using different functions for k.

For instance, Plotkin and Muller-Landau (2002) suggest

a phenomenological curve, k(A) ¼ cAz þ d, which best

describes empirical data in a tropical forest but has no

theoretical explanation. In the following, we will stick

with Eq. 4.

A completely different approach focuses attention

most sharply on the scaling pattern of occupancy. Put it

another way, instead of modeling overdispersion, one

can delve into occupancy change across resolutions and

put forward a reasonable function to downscale the

pattern at finer resolutions. Assuming a fractal spatial

distribution of species, Kunin (1998) suggested a power-

law (PL) relationship between occupancy and area:

PPLðAÞ ¼ cAz: ð5Þ

Obviously, such a model cannot be realistic across all

resolutions, simply because it exceeds unity for large

areas. However, it makes reasonably good predictions at

relatively sparsely occupied spatial scales for a set of rare

British plant species, although it generally overestimates

occupancy (Kunin 1998).

The power-law model can be improved and general-

ized in several ways. Although originally devised for

different purposes, the Nachman model (Nachman

1981) can be considered a generalization of Kunin’s. It

naturally bends down the power-law function at

saturating scales where the fractal model fails. The

improved occupancy–area curve reads

PnachðAÞ ¼ 1� e�cAz

: ð6Þ

This curve is not noticeably different from Eq. 5 for cAz

� 1 and saturates at 1 if cAz � 1.

An alternative model was put forward by Hanski and

Gyllenberg (1997) under a metapopulation framework.

According to a standard approach in metapopulation

dynamics, they were able to calculate a species

occupancy curve that turned out to be a logistic

relationship:

PlogisðAÞ ¼
cAz

1þ cAz
: ð7Þ

The power-law model is easily brought into the same

framework as this logistic curve, because Eq. 7 reduces

to Eq. 5 when cAz � 1, although the convergence is less

rapid than in the Nachman’s case. Indeed, all the

distributions defined in Eqs. 1, 2, 5, 6, and 7 can be

summarized with only one formula (He et al. 2002):

PczkðAÞ ¼ 1� 1þ cAz

k

� ��k

: ð8Þ

Although it does not have a compelling theoretical

explanation, Eq. 8 merges different curves and usefully

discriminates toward which model empirical occupan-

cies are skewed. For instance, Pczk(A) with k ¼ �1 is

equivalent to Eq. 5; with k¼þ1, it is equivalent to Eq. 7;

whereas for large values of k, one obtains the Nachman

and Poisson (with c ¼ c and z ¼ 1) models. Finally we

recover the NB occupancy for any finite k as c¼ c and z

¼ 1.

Recently, an alternative model has been proposed for

downscaling purposes (Hui et al. 2006). It has many

merits (Hui et al. 2009), but would have been difficult to

apply in the present case. In fact, at each resolution it

needs spatially explicit occupancy information that is

not available in many data sets as well as in the empirical

data we considered in this study.

The models we have been discussing so far deal with

space only implicitly (except the one suggested by Hui et

al. (2006), which can be considered spatially explicit). At

a deeper level of description, however, the explicit

introduction of space arguably has the potential ability

to broaden the spectrum of possible clumping features

and intensities. Along these lines, spatial point processes
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(SPPs) constitute a promising pursuit because of their

flexibility as well as analytical tractability (Diggle 1983,

Cressie 1993, Illian 2008). The simplest SPP, the Poisson

point process, plays a fundamental role as reference

process for the absence of interactions or complete

spatial randomness but, as discussed earlier, is too

simplistic to reproduce empirical patterns of species’

distribution. Nonetheless, it can be exploited to obtain

more realistic models that explicitly allow for aggrega-

tion. Cox processes represent such a convenient and

wide class of models: they form a natural and elegant

extension of a Poisson point process, while being always

overdispersed relative to it (Lawson and Denison

2002:37). If~x represents a spatial location, the inhomo-

geneous Poisson process is characterized by an intensity

function z(~x) that generally varies across space, and
R

A
zð~xÞd~x measures the average number of points found

within area A (Stoyan and Stoyan 1994). In this case the

intensity function is deterministic; nevertheless, one can

substitute it with a space-dependent random variable

called random field or random intensity surface Z(~x).

The Cox process is obtained when the intensity function

of an inhomogeneous Poisson process is a realization (or

replicate) of Z(~x) (Cressie 1993, Lawson and Denison

2002, Møller and Waagepetersen 2007, Illian 2008). For

a more rigorous definition we refer to the Appendix. Let

us take a simple example and assume for a moment that

Z is a constant positive random variable. If Z is gamma

distributed as well, then the number of individuals

within area A follows a negative binomial distribution

(Lawson and Denison 2002), which predicts the species

occupancy in Eq. 2. The most interesting situation,

evidently, arises when Z is a location-dependent random

field. In this case, one of the most mathematically

tractable family of Cox processes, the shot noise Cox

processes (SNCPs; Møller 2003, Møller and Waagepe-

tersen 2007), is defined by the following random

intensity surface:

Zð~xÞ ¼
X

ðl;~cÞ2P

lkð~c;~xÞ: ð9Þ

Here k(~c, ~x) is a probability density function such that
R

kð~c;~xÞd~x ¼ 1 for any spatial location~c, l . 0 and~c are

randomly distributed according to a Poisson process P

with intensity function q(l, ~c) (see the Appendix for a

mathematically more rigorous definition). Eq. 9 suggests

that SNCPs are distributed as a superposition or union

of independent Poisson processes with intensity func-

tions lk(~c, . . .). Each of the latter can be interpreted as a

cluster with center ~c, mean number of points l, and

dispersal probability distribution k(~c, . . .). Therefore,

according to the SNCP scenario, species are spread out

in independent clusters of individuals dispersing around

each center~c and falling at the point~x with probability

density k(~c,~x). The recipe of the model is not grounded

upon any specific biological ingredient; it simply offers a

statistical and phenomenological framework apt to

incorporate clumping patterns. SNCPs are formulated

in continuous space with given sets of parameters. Thus,

once we infer from data what the parameters are, we can

predict whatever pattern or summary statistics, includ-

ing the occupancy curve. Note that the resolution at

which occupancy patterns are measured is superimposed

on top of the point pattern, and it is not a property of

the SNCP process itself. As we will explain later on, we

will choose some suitable empirical occupancies to

calculate the numerical value of the parameters. It is

worth noting that what we are modeling here is the

aggregation of conspecific individuals, implicitly assum-

ing that interspecific interactions are relatively less

important for species’ clumping. However, it may be

useful to point out that the assumption of independence

among species within a taxon is not so unrealistic: recent

empirical and theoretical studies have provided some

support for this hypothesis (Hoagland and Collins 1997,

Veech 2006, Houlahan et al. 2007, Azaele et al. 2010).

Despite the fact that these processes do not specif-

ically model any of the myriad actual mechanisms that

drive aggregation across ranges of spatial resolutions, as

we shall see later on, the framework is able to capture

some of the essential features at the core of the spatial

distribution structure of species. In addition, without

losing the analytical tractability, it easily integrates

aggregation caused by habitat heterogeneities (Waage-

petersen 2007). This may potentially bridge the gap

between purely environmentally driven models and

more mechanistic approaches that usually harness much

less information but cannot easily be applied to

heterogeneous habitats.

From the intensity surface in Eq. 9 one can readily

derive the SNCP intensity function

að~xÞ ¼ E½Zð~xÞ� ¼
R

lkð~c;~xÞqðl;~cÞdld~c ð10Þ

where we used the intensity function, q(l, ~c), of the

Poisson process to calculate the expectation as in Møller

(2003). Intuitively, a(~x)d~x is the probability that a point

falls within the area d~x centered in~x. This interpretation

can be generalized to all product moments of the form

E(Z(~x1)Z(~x2). . .Z(~xn)), so that E [Z(~x)Z(~y)]d~xd~y is the

joint probability that a pair of points falls within the

areas d~x and d~y centered in~x and~y, respectively. Explicit

expressions can also be obtained for the pair correlation

function, i.e., g(~x,~y) ¼ E [Z(~x)Z(~y)]/a(~x)a(~y)]. It is given

(Møller 2003) as follows:

gð~x;~yÞ ¼ 1þ
R

l2kð~c;~xÞkð~c;~yÞqðl;~cÞdld~c
að~xÞað~yÞ : ð11Þ

The formula explicitly shows that g(~x,~y) � 1, because k

and q are always positive, and it directly underscores that

SNCPs spawn more aggregated points relative to

corresponding Poisson processes, being completely

uncorrelated only when g(~x, ~y) ¼ 1. The generating

functional (see Appendix) of these models, however, is

more closely tied up with species occupancies: it is not

SANDRO AZAELE ET AL.1008 Ecological Applications

Vol. 22, No. 3



only a useful mathematical tool that completely charac-

terizes the process at hand, but also provides the

probability of finding n individuals within a given area,

which is crucial to many spatial issues. In the Appendix

we calculate the probability generating function for

N(A), i.e., GA(t)¼E(tN(A)), where N(A) is the number of

points of a SCNP falling within area A. The final result is

GAðtÞ ¼ exp �
Z

1� exp �ð1� tÞl
Z

A

kð~c;~xÞd~x

0

@

1

A

2

4

3

5

8

<

:

3 qðl;~cÞdld~cg: ð12Þ

From this function one can obtain the probability of

finding n individuals within a given area A, i.e., p(n jA),
by repeated differentiation, i.e.,

pðn jAÞ ¼ 1

n!

dnGAðtÞ
dtn

j
t¼0

for n¼ 0, 1, 2, . . . . We calculated only p(0 jA) because 1
� p(0 jA) provides the species occupancy we are

interested in: this is simply GA(0). In the following we

will be making a series of further assumptions to handle

formulas more easily. For instance, we will be consider-

ing only translation- and rotation-invariant processes:

they are stationary and isotropic with a simpler pair

correlation function, g(~x, ~y) ¼ g(||~x �~y||). Additionally,

because we are not interested in the specific locations of

points but only in counting individuals within varying

areas, for simplicity the integrals were calculated on

squared regions.

For parsimony of parameters and to facilitate the

comparison between models, in the following we focus

on SNCPs in which the mean number of individuals per

cluster is constant, so that l in Eq. 9 is no longer a

random variable but simply a constant. This process is

equivalent to the (modified) Thomas model (Cressie

1993, Lawson and Denison 2002, Illian 2008) for which

we derived the following species occupancy with the aid

of Eq. 12:

PthðAÞ

¼ 1� exp �q

Z

1� exp �l

Z

A

kðjj~c�~xjjÞd~x

0

@

1

A

2

4

3

5d~c

8

<

:

9

=

;

ð13Þ

where k(||~x||) is an isotropic bivariate Gaussian distri-

bution with variance r2. The intensity of the process is a

¼ ql and

gðrÞ ¼ 1þ
exp � r2

4r2

� �

4pqr2
:

Interestingly, the parameters of the model have an

intuitive meaning: cluster centers are scattered around

with a characteristic pair distance 1/
ffiffiffi

q
p

; each cluster

hosts l individuals, on average, which form a fuzzy

cloud of points whose characteristic size is r.

Data

We analyzed an empirical data set of 16 British plant

species using nested survey data spanning a spectrum of

several orders of magnitude in unit cell sizes: from

40 000 km2 to 10�6 km2. These intensively surveyed

vascular plant species were chosen from the set of British

‘‘rare’’ (those occupying 15 or fewer 10 3 10 km cells;

(Wigginton 1999)) or ‘‘scarce’’ species (those occupying

16–100 such cells; (Stewart et al. 1994)), as such species

often have exceptionally well-documented national

distributions. Species were selected in order to provide

a variety of different levels of aggregation at a national

scale: paired species were selected sharing a common

family but with one species in each pair showing an

unusually clumped national distribution, while the other

had an unusually sparsely scattered distribution. Inten-

sive field studies were carried out on stratified random

samples of these species’ British distributions (we refer

to Hartley et al. [2004] for detailed protocols, sampling

locations, map of the study region, and general

considerations about the data), allowing species occu-

pancies to be determined at 17 spatial resolutions:

40 000, 10 000, 2500, 400, 100, 25, 4, 1, 0.25, 0.04, 0.01,

0.0025, 0.0004, 0.0001, 0.000025, 0.000004, and 0.000001

km2. However, for our model comparisons we only used

the coarsest nine resolutions (down to 0.25 km2) because

of the relatively coherent behavior of the cross-scale

species’ aggregation over this range. Hartley et al. (2004)

pinpointed an empirical discontinuity in the clumping

intensity of species at ;0.25 km2, which splits species

occupancies into two domains in which different

processes are deemed to be acting.

Model fitting and assessment

For each species we used maps at the three coarsest

spatial resolutions (40 000, 10 000, and 2500 km2 if these

resolutions were neither saturated nor endemic; see also

Fig. 1) to predict the occupancy through all of the finer

resolutions down to areas four orders of magnitude

smaller than the original ones (400, 100, 25, 4, 1, and

0.25 km2). As we have defined in the Introduction, the

scale of saturation for a given species is the smallest grid

cell for which the occupation probability is 1, whereas

the scale of endemism corresponds to the smallest cell

unit encompassing the entire population of a species (see

Fig. 1). Thus, because saturated or endemic areas are

useless for downscaling purposes, we fitted the models

only to the coarsest unsaturated and non-endemic areas.

As a result, models have to face two major challenges:

the lack of information intrinsic to the coarse resolution

and the curvature of the occupancy curve at large

resolutions.
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Although spatially explicit occupancy data can always

be deduced from similar data at relatively finer

resolutions, we cannot do this if we only know the

fraction of cells that are occupied (without knowing

their explicit spatial location). Nevertheless, occupancy

data at different resolutions cannot be considered

statistically independent. This complicates the statistics

of model-fitting, preventing a simple and direct estima-

tion of the parameters by optimizing the log-likelihood

function of the corresponding model. We therefore

cannot express the log-likelihood function as a simple

expansion at several resolutions, but instead chose to use

an intuitive and easy-to-interpret approach that mini-

mizes the mean of the squared log-errors for each

species, i.e.,

D2
k ¼

1

n

X

n

i¼1

ðlog pobsi;k � log p
pred
i;k Þ2 ð14Þ

where pobsi;k and p
pred
i;k are the observed and predicted

occupancies at resolution i for species k, respectively,

and n is the total number of resolutions used to train the

model, in our case n ¼ 3. The observed occupancy is

calculated by choosing the species k, superimposing a

regular grid of unit cells with area A (i ¼ 1, 2, . . . from

the coarsest to the finest resolution), and finally taking

the ratio of the occupied number of cells over the total

number of cells. The predicted occupancies are those

given by the models according to the equations defined

in the previous section. Because Eq. 13 requires several

numerical integrations to minimize Eq. 14, in order to

achieve as robust a set of parameters as possible, we

utilized a stochastic global optimization algorithm,

specifically, simulated annealing (Bolker 2008), in the

minimization protocol. This minimization with simulat-

ed annealing and all other numerical calculations were

carried out using Mathematica 8 (Wolfram Research

2010).

When the parameters had been obtained, we used the

models to predict occupancy at the six finer resolutions

for which we had empirical data. Several diagnostic

tools were used to assess model performances; specifi-

cally, D¼
P

kDk/S was used as an indicator of the global

performance across resolutions of each model in the log-

transformed occupancies (S is the total number of

species). We calculated the frequencies of (log pobsi;k �
log p

pred
i;k ) along with the standard deviation and skew-

ness across resolutions and species; the tails of the

distribution inform us about how many cases were given

grossly inaccurate predictions. Finally, we compared the

empirical and predicted log-transformed occupancies in

order to assess the propagation of errors as the

resolution increases.

RESULTS

The means of the squared log-transformed errors

averaged across species for the different models are

listed in Table 1. This measure allows one to examine the

model performances across resolutions and species. As

expected, models with more free parameters generally

perform better than the others, the only exception being

the (two-parameter) logistic model, which performed

more poorly than the (one-parameter) Poisson model.

The Thomas model performed substantially better on

this aggregate measure than did any of the other models

tested.

A finer description of model performances across

resolutions and species is provided by the distributions

of log errors, i.e., (log pobsi;k � log p
pred
i;k ), which are plotted

in Fig. 2. The Thomas model has the highest peak at

zero with the smallest standard deviation; thus, when

approaching the saturating region, it is able to extract

enough information to generate the best downscaled

predictions, on average. As shown by the negative

skewness within the insets, the model tends globally to

underestimate occupancies. The second-best model, the

improved negative binomial, has a broader peak and, on

average, its underestimation is more severe.

The increase of dispersion in predictions at increasing

grid resolution is shown in Fig. 3, which illustrates the

log-predicted vs. log-observed values for the models.

The angle of dispersion is the smallest for the Thomas

model, although for very fine resolutions there is a

systematic underestimation of occupancies, which is

common to all the other models except the power-law

one (which tends to overestimate occupancy instead).

DISCUSSION

Stochastic processes that explicitly account for spatial

features in general have the potential to improve the

performances of models that assume well-mixed popu-

lations. The class of shot noise Cox processes (SNCP) is

rich enough to encompass a wide suite of different

spatial patterns. In the present study we have considered

a very specific and simple case of SNCP, the Thomas

model, and the results show that even this simplified

model can produce substantially more precise estimates

of fine-resolution species occupancy than can previously

published approaches, over a spectrum of four orders of

magnitude in spatial resolution.

TABLE 1. For every species occupancy–area model tested, this
table presents the value of D¼P

kDk/S (where S is the total
number of species and Dk is defined in Eq. 14) and the
number of free parameters (np).

Model D np

Thomas (Eq. 13) 0.4815 3
Improved negative binomial (Eq. 4) 0.7089 3
CZK (Eq. 8) 0.9428 3
Finite negative binomial (Eq. 3) 1.0212 2
Nachman (Eq. 6) 1.0304 2
Negative binomial (Eq. 6) 1.0612 2
Power law (Eq. 5) 1.1892 2
Logistic (Eq. 7) 1.5482 2
Poisson (Eq. 1) 1.2487 1
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However, a general comment is in order. One should

be cautious about trying to infer the relative superiority

of a model from a specific test. In our analyses, we fit

models to the three coarsest resolutions at which

distributions had not yet saturated, but this condition

of parameterization works variously across the models

that we considered. Models, in fact, cope very differently

with the lack of information close to the saturated

region and this inevitably rebounds on downscaled

occupancies. Fine-resolution predictions with strong

biased estimates (i.e., with a substantial over- or

underestimation of species’ occupancies; see the skew-

ness c1 in Fig. 2) or unbiased but imprecise values (see

the standard deviation g in Fig. 2), therefore, cannot

conclusively imply that we should get rid of poorly

performing models. Had substantially finer resolutions

been chosen to train the models, different predictions

might have been obtained, thereby shuffling part of the

list in Table 1. Rather, we can more soundly conclude

that our test unveils which models cannot safely be

applied when finite size effects are at stake and which

other models, instead, are prone to be misled by

relatively scarce or biased information.

In this respect, the Thomas model is able to provide

satisfactory performances under conditions (presence of

finite size effects within the training region, biased

information, species with very different spatial distribu-

tions, large downscaling, . . .) that turn out to be

prohibitive for other models, impairing their respective

predictions. This is even more striking when highlighting

the gross simplifications that we assumed in the model:

translational and rotational invariance that are generally

violated in natural populations; smoothed geometry of

the study region; temporal stationarity; and a simple

form for the pair correlation function. Had we employed

more general, yet realistic, functions (e.g., see Azaele et

al. 2009) for this latter, we would likely have obtained

even more satisfactory results.

Fig. 2 highlights that overall the peak at zero is less

informative than the elongation and asymmetry of the

tails. For instance, the power-law model has a relatively

high peak at zero, but a wild dispersion that includes

predictions that are up to two orders of magnitude

larger than the actual values. This proves that this model

can be fruitfully applied only far from the saturating

region. Besides, although the finite negative binomial

model is theoretically more satisfactory, it improves

upon the negative binomial model only slightly and the

skewness toward underestimated occupancies is still

systematic, presumably because the national scale

analyses considered here are unlikely to be much

affected by the finite size of species’ populations. Fig.

FIG. 2. Histograms representing the frequencies of (log pobsi;k � log p
pred
i;k ) for every model (see Table 1 for the corresponding

equations). The variables pobsi;k and p
pred
i;k are the observed and predicted occupancies at resolution i for species k, respectively, as defined

in Methods: Model fitting and assessment. The insets have the standard deviation, g, and the skewness, c1, for the corresponding

model. The bin size is 0.8, and the number of predictions falling within each bin is written above every bin.
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3 confirms that the improved negative binomial, finite

negative binomial, negative binomial, and Poisson

models on average underestimate occupancies at every

resolution, whereas the power-law model is the only one

that regularly overestimates, propagating errors within

regions of completely unrealistic predictions. The

power-law model is tantamount to a linear extrapolation

(in log–log space) of the occupancy curve at the

resolutions over which it is parameterized. As such it

is very prone to being fooled by the sort of coarse

resolution curvature alluded to previously.

Although the Thomas model produces the most

precise downscaling estimates in our tests, it is worth

noting that it is negatively biased in its predictions, a

feature shared by almost all of the models tested. In

contrast, other models, like Nachman’s or CZK’s, are

nearly unbiased, but at the expense of substantially

greater errors (approximately twice those of the Thomas

model in the logarithmic scale), thus impairing the

precision in the estimates. For these less biased, but less

precise, models, it is likely that the performances would

have been better under different (and probably less

stringent) conditions in the parameterization of the

models. On the other hand, more sophisticated SNCPs

could have chosen to decrease the bias of the simple and

naı̈ve Thomas model. A further source of skewness

toward an underestimation of occupancies may also

come from a discontinuity present in species’ distribu-

tions. We argue this because the area of the finest cell

grid that we considered (0.25 km2) is comparable to the

characteristic scale of human land use in Britain, being

the squared median size of an entire farm ;0.24 km2

(Hartley et al. 2004). If human activity disrupts natural

ecological processes at such scales, one can plausibly

expect a corresponding discontinuity in spatial distribu-

tion patterns that reverberates in empirical species

occupancies as well. This is corroborated by the very

different behaviors of these latter above and below the

threshold of 0.25 km2, as documented by Hartley et al.

(2004). Because of this discontinuity, we downscaled

occupancies only to the resolutions of local populations;

consequently, each point of the model can be thought of

as representing a local population that may contain

hundreds or thousands of individual plants. In more

‘‘natural’’ landscapes than the UK, it may be possible to

downscale to even finer resolutions, potentially to

individual counts.

In general we expect that models are more similar in

their respective performances when used to downscale

occupancies over only one or two orders of magnitude

with respect to larger downscaling predictions. None-

theless, spatial point processes naturally offer the

advantage to infer properties of spatial patterns from

measures where space is only implicit. With SNCPs, for

instance, we can draw information about the spatial pair

correlation function simply by using the occupancy

FIG. 3. Log–log plots of model-predicted vs. observed occupancies (see Table 1 for corresponding equations). Black circles
represent the occupancy values that were used to parameterize the models; open circles are the actual predictions.
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curve calculated for the model (see Eqs. 12 and 13). For

the Thomas model, the pair correlation function is an

isotropic bivariate Gaussian distribution with standard

deviation r, which provides a typical length for clusters

as well. The present data set has no information

regarding spatial correlation, but the parameters that

we have obtained for the Thomas model suggest that

species’ correlation lengths approximately range from 3

to 30 km, and cluster-center pair distances range roughly

from 70 to 640 km.

The Thomas model explains satisfactorily why species

appear less aggregated at large resolutions than at small

ones. On coarsening the resolution, the inner structure

of clusters becomes progressively less important com-

pared to the location of clusters, which are by

construction Poisson distributed in space, and thereby

genuinely unclustered. Interestingly, the model is ame-

nable to further extensions that can explicitly deal with

environmental heterogeneity. For instance, Waagepe-

tersen (2007) introduces a vector of regression param-

eters in order to account for species’ habitat preferences

such as altitude or slopes. This supports the notion that

niche models (which generally ignore spatial structure;

Bahn and McGill 2007, Beale et al. 2008) and spatial

scaling models (which generally ignore environment) can

fruitfully be combined within the framework of SNCP.

Finally, the SNCP could be used to reverse the

protocol and allow upscaling. One could parameterize

the model by fitting the theoretical spatial correlation to

the empirical one. Once it is calibrated at fine resolutions

across multiple species, one could then predict the

number of total species present inside the entire study

region. Many different models have been proposed to

upscale species richness from fine to coarse areas (see

e.g., Ulrich and Ollik 2005, Shen and He 2008, Conlisk

et al. 2009). This approach provides an alternative

method, defined within a unified and coherent frame-

work, that may complement such predictions.

The management of rare species (or conversely, of

pest species), the monitoring of invasive aliens, as well as

the design of appropriate conservation programs all

need careful estimates of species’ populations across

space. However, it is often prohibitively expensive or

logistically impractical to collect such data in a

sufficiently intensive and extensive manner for reliable

estimates over substantial areas. However, the relative

ease of collecting species presence/absence data sets has

resulted in increasing availability of such distributional

data sets, over national or even continental extents.

Downscaling techniques have the potential to form a

link between easy-to-collect occupancy distributions and

the population estimates necessary for management

(e.g., Tosh et al. 2004, Sara 2008, Figueiredo and Grelle

2009, Veldtman et al. 2010). To do so will require

models more accurate and reliable than those hitherto

available. The model that we have studied provides

several improvements over previous published ap-

proaches used for population downscaling, and thus

represents a substantial step toward realizing that

ambition. It can be used to extract information about

the spatial autocorrelation function of species, it is

sufficiently flexible to accommodate spatial heterogene-

ities, and we have shown it to make more accurate

downscaling predictions than other methods currently in

use. However, extensive testing in other species sets and

other regions would be needed before the predictions of

this or any other model could be applied with

confidence.

The advantage in using the SNCPs also rests on their

ability to accommodate frameworks with nested com-

plexity, so that simple models are special cases of more

complex ones. This nested structure could turn out to be

a valuable indicator of what is crucial to several

predictions when varying the resolution, a further

finding that could potentially prove useful in devising

conservation strategies and reserve design.
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SUPPLEMENTAL MATERIAL

Appendix

Mathematical definitions and calculations showing how one can derive the generating functional (Eq. 12) of SNCPs (Ecological
Archives A022-057-A1).
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