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Spontaneous symmetry breaking plays a fundamental role in many areas of condensed matter and

particle physics. A fundamental problem in ecology is the elucidation of the mechanisms responsible for

biodiversity and stability. Neutral theory, which makes the simplifying assumption that all individuals

(such as trees in a tropical forest)—regardless of the species they belong to—have the same prospect of

reproduction, death, etc., yields gross patterns that are in accord with empirical data. We explore the

possibility of birth and death rates that depend on the population density of species, treating the dynamics

in a species-symmetric manner. We demonstrate that dynamical evolution can lead to a stationary state

characterized simultaneously by both biodiversity and spontaneously broken neutral symmetry.

DOI: 10.1103/PhysRevLett.109.038102 PACS numbers: 87.23.Cc, 05.50.+q

Neutral models have been proposed to capture the

statistical structure of tropical forests [1]. Even though

the approach is highly debated [2], the neutral hypothesis

has led to a general and fundamental framework to study

both the statics [3] and the dynamics [4] of ecosystems

using general tools borrowed from stochastic processes and

nonequilibrium statistical mechanics. The fundamental as-

sumption of neutral theory [1] is that within a trophic level

any individual or organism behaves independently of the

species it belongs to. In other words, the dynamics of the

system is unaffected by interchanging or permuting species

labels of individuals. By using this extremely simplifying

hypothesis, many empirically measured statistical patterns

can be well reproduced [3–5]. Going one step further, a

model can be symmetric—but, strictly speaking, non-

neutral—a generalization of neutrality, where the dynam-

ics may depend, for instance, on the local or global density

of individuals in a community, but no change occurs on the

behavior of a population and on its effects on others in

the community upon switching two arbitrary species’

labels [3]. In this Letter, we address the following issues:

(i) Within a generalized neutral framework—allowing

for intraspecific density-dependent demographic rates

[6]—are species able to coexist in a stable way up to the

temporal scale of speciation that eventually averts mono-

dominance and extinction? (ii) Can this generalized neutral

symmetry be spontaneously broken so that non-neutral

behavior of species can emerge from an underlying sym-

metric dynamics?

In order to illustrate this, we consider a simple stochastic

model, a variant of the (multispecies) voter model [7,8],

defined as follows: at every vertex of a regular lattice of

linear size L in d dimensions reside a fixed number M of

individuals belonging to one of S species. At every time

step, an individual is picked at random and killed, and its

place is filled by copying one of its neighbors, selected

according to a probabilistic rule to be defined in detail

below. For illustration, let us consider a generic system of

S ¼ 4 species and global dispersal where the neutral sym-

metry is not broken [see Fig. 1(a)]. The fraction of each

species’ population fluctuates around the same average,

1=4, and is statistically indistinguishable from the others.

Also, at stationarity, the four probabilities PiðnÞ to find the
ith species with population n are identical within statistical

errors. In this case, the dynamics of the ecosystem is not

changed by any permutation of species’ labels; however, if

each species has its own specific parameters for birth,

death, dispersal, etc., the dynamics is no longer symmetric.

This explicitly broken symmetry makes the previous sys-

tem of S ¼ 4 species behave in a completely different way

[see Fig. 1(b)]. For instance, if a given species and the

remaining ones are identified by distinct sets of parameters,

the population fraction of one species fluctuates around a

given average, 2=5 in this case, whereas the other ones

fluctuate around a different average, 1=5. Even the proba-

bilities Pi’s have distinct behaviors: three of them are

identical and the fourth is different, as shown in the left

inset of Fig. 1(b). Notice that the probability to find a

species with n individuals, PðnÞ, irrespective of the species
identity, has a two-peak structure in the nonsymmetric

case. Unlike the symmetric case, a nonsymmetric model

is necessarily characterized by a much larger set of pa-

rameters, which make the approach unsuitable for under-

standing emergent phenomena (such as biodiversity).

However, we will show in the present study that it is

possible to define a symmetric theory from which the

behavior of non-neutral species emerge naturally on ap-

propriate temporal scales. This enables us to describe

species-rich ecosystems with a parsimonious set of pa-

rameters that allows species to coexist without the overall
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symmetry characterizing themodel. The idea that dynamical

symmetry among species can be broken is not new in popu-

lation biology. For instance, speciation can be interpreted

as a form of bifurcation [9]. However, here we introduce a

new concept in community ecology borrowed from the

statistical mechanics of phase transitions [10], i.e., sponta-

neously broken neutral symmetry. As shown in Fig. 1(c),

when the symmetry of the model is broken spontaneously,

species behave as in the nonsymmetric case on time intervals

shorter than the characteristic temporal scale, which will be

calculated later on. On larger time scales, instead, species’

identities can be swapped, and eventually neutral dynamics

is recovered. These large temporal scales are also compa-

rable to those at which speciation can occur thereby sustain-

ing biodiversity.

We now turn to the mathematical details of our model.

Let n�x � 0 be the population at site x of the �th species,

where � ¼ 1; . . . ; S, S being the total number of species.

Thus
P

S
�¼1 n

�
x ¼ M holds for all x, and the total number

of individuals in the whole community is N ¼ ML2. In

the following, we shall also use the alternative variable

��
x ¼ n�x =M, the fraction or density of individuals of the

�th species at site x. Suppose that at time t and site x an

individual belonging to a certain species � is picked at

random for removal. Then, call� the label of the species of

the individual from one of the neighboring sites of x, say y,
selected to replace the individual. Note that the dynamics

keep the total population per site constant at every time

step. Thus, a generic n�z evolves according to

n�z ! n0�z ¼ n�z þ �x;zð�
�;� � ��;�Þ: (1)

The effective transition rate for this process is proportional

to the population of the �th species at site x, n�x , and to the
population of the �th species in the chosen neighboring

site, n�y . Mathematically, this means that the probability of

colonization is Pðn
�
x ! n

0�
x Þ ¼ K

��
xy n

�
xn

�
y . If the propor-

tionality constant, K��
xy , is chosen independently of the

population of species at x and y and independently of the

kind of species involved, we get a voterlike model [7,8]

with neutral dynamics (the standard voter model has

M ¼ 1; i.e., only one individual is allowed to live on

each site). In this case, regardless of the initial conditions,

an infinite-size system would inexorably evolve toward a

monodominant state, i.e., an absorbing state, where only

one of the S species survives. This is a trivial example of

spontaneously broken neutral symmetry. In a more realistic

perspective, however, different competing effects influence

species interactions favoring or hampering colonization

[11], such as, for instance, the Janzen-Connell effect in

tropical forests [12], stating that the reproduction rate of

a given species decreases with its local population size, or

the Allee effect, a positive density dependence in a small

density range [13,14]. Altogether, these effects may result

in an effective, in general nonlinear and nonmonotonic

[11,13,14] dependence on the population sizes, so that

FIG. 1 (color online). Example of the evolution of a neutral

ecological model with four species with global dispersal (see the

main text) for (a) neutral symmetry. All the species are indis-

tinguishable and fluctuate around the average value 1=4. In the

inset (colors are the same as in the main picture), we show

the probabilities PiðnÞ, and the superposition is perfect within

statistical errors. (b) Nonsymmetric dynamics. Species 1 has a

different set of birth and death rates with respect to the other

three species, and fluctuates around an average density of 2=5,
while the others fluctuate around 1=5. The probability P1ðnÞ
differs from the others, as shown in the left inset; in the inset on

the right, the global probability PðnÞ is shown. (b) Spontaneously
broken neutral symmetry. Here, the system behaves differently,

depending on the observation window of its evolution: for small

time scales, the system appears nonsymmetric, whereas, for

longer time scales, the symmetry is recovered. Unlike case (b),

all the species show a bimodal distribution. The probability PðnÞ
in this case superpose virtually exactly on the probabilities PiðnÞ.
The total population is N ¼ 512 individuals for cases (a) and (b),
and N ¼ 2048 individuals for (c).
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we encode in the proportionality constant K��
xy , now

dependent, in principle, on the population sizes at both

positions x and y. However, if the dynamics has to be

neutral or symmetric, then K��
xy (i) cannot depend explic-

itly on the species’ labels � and � and (ii) can at best

depend only on the densities of species � and �. Indeed,
because the population of every site is fixed, we obtain the

constraint
P

���;��
�
x ¼ 1� ð��

x þ ��
x Þ, which is valid for

every x and plays an important role in the calculations.

In order to keep the discussion simple, we consider the

case K��
xy ¼ Kxyð�

�
y Þ, where ��

y represents the density of

species � at y replacing one individual of species � at x.
To get an insight into the evolution of the ecosystem

described above, following the standard approach for sta-

tistical mechanics systems, we assume infinite dispersal

or, equivalently, a well mixed system. This assumption—

referred to as the mean field limit in the physics

literature—is useful to simplify the treatment, while still

capturing the qualitative behavior of the model in any finite

dimension. In this case, the description is simple since

��
x ¼ �� for all � ¼ 1; . . . ; S, the average birth rate of a

generic species � is proportional to ��ðtÞKð��ðtÞÞ, and the

time derivative of
P

S
�¼1 �

�ðtÞ has to vanish. Thus, the

evolution equation for the average density ��ðtÞ can be

derived by a standard Kramers-Moyal expansion [15] of

the master equation of our system up to the second order:

_�� ¼ N��

�

ð1� ��ÞKð��Þ �
X

���

��Kð��Þ

�

þ

�

��

�

ð1� ��ÞKð��Þ þ
X

���

��Kð��Þ

��

1=2
�; (2)

where � ¼ �ðtÞ is a Gaussian white noise �-correlated in

time. Focusing on the deterministic evolution, we set

from here on �ðtÞ � 0. This is equivalent to neglecting

fluctuations—of Oð1=NÞ smaller than the deterministic

term—in the analytical treatment. The simulations are

performed by means of Gillespie’s algorithm [16] consid-

ering directly the full master equation of the system.

The neutrality or symmetry of the dynamics is reflected

in the stationary states obtained when d
dt
��ðtÞ ¼ 0. Note

that the drift term on the right-hand side of Eq. (2) cannot

be derived from a potential function, and therefore the

stationary states cannot be thought of as minima of an

analytical function. However, regardless of the form of

K, there are always Sþ 1 steady states: one neutral-

symmetric case, �� ¼ 1=S, � ¼ 1; 2; . . . ; S, and S mono-

dominant situations, where only one of the �’s is 1 and the
remaining ones are 0. By using local stability analysis, one

can prove that the monodominant states are stable only

when Kð1Þ>Kð0Þ, whereas the condition K0ð1SÞ< 0 guar-

antees the stability of the symmetric coexistence. If the

function KðzÞ is linear, Eq. (2) has no other stationary

stable solutions. However, in a more general nonlinear

case, new stable solutions can show up. It is this nonline-

arity that allows a spontaneous breaking of the neutral

symmetry. The simplest situation of coexistence within a

broken-symmetry scenario is obtained when a given spe-

cies has density ’> 1=S and all the other species have

the same density 	 ¼ ð1� ’Þ=ðS� 1Þ< 1=S, which can

occur in S different ways. These densities correspond to

the stationary solutions of Eq. (2) if Kð’Þ ¼ Kð	Þ and are

also stable when K0ð	Þ< 0 and K0ð’Þ<�K0ð	Þ=ðS� 1Þ.
We now discuss three paradigmatic cases.

(A) K ¼ constant.—This corresponds to the classic

voter model [7,8] [see Fig. 2(a)]. The deterministic evolu-

tion, given by Eq. (2), is trivial because any initial value of

the population of each species remains invariant across

evolution. However, the stochastic dynamics lead to a

monodominant state with only one surviving species, a

trivial case of spontaneously broken neutral symmetry.

For a finite system size, the time 
ðNÞ to reach one of the

S absorbing states, starting from a random initial condition,

scales as 
ðNÞ � N	 , where 	 ¼ 2, as shown in Fig. 3

(purple line) where log
ðNÞ versus logN is plotted.

(B) KðzÞ ¼ aðb� zÞ with a, b > 0.—This is a more

interesting case [see Fig. 2(b)], in which the colonization

ability of a given species at some position decreases as its

population—at the same position—increases (negative

density dependence), and becomes zero when it reaches

the maximum value b. Therefore, abundant species are

relatively not as effective in colonizing different regions

compared to those with small populations. The symmetric

state is the stable stationary state of the deterministic

evolution, whereas the S monodominant states are un-

stable. When the full stochastic dynamics is considered,

the symmetric stationary state is typically reached after an

initial transient (depending on initial conditions). Once

the stationary state is reached, it lasts for a typical time

0.98
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FIG. 2 (color online). (a) (Red solid line) KðzÞ � 1, corre-
sponding to the standard voter model with many species.

(b) (Green dashed line) KðzÞ ¼ aðb� zÞ: This definition of the

function KðzÞ makes the symmetric state stable against pertur-

bations, and the monodominant states unstable, provided a > 0.
(c) (Blue dotted line) KðzÞ allowing S stable stationary states

where the neutral symmetry is spontaneously broken by one of

the S species.
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ðNÞ � expf�Ng, as shown in Fig. 3 (green line), and then

the system evolves toward one of the S monodominant

states through a gradual extinction of species (observe that

this exponential behavior is at variance with what happens

in the K ¼ constant case, where 
ðNÞ � N	 ). The constant

� > 0 depends on the specific choice of KðzÞ. The expo-

nential behavior can be easily understood by focusing

on the limiting case of S ¼ 2 species, where a description

in terms of a potential exists. Introducing a density

dependence in the voter model dynamical rule generates

an effective potential in the equations of motion for ��,

� ¼ 1; 2, that in the case of linearKðzÞ discussed above has
a minimum for � ¼ 1=2 [17–20]. Thus, applying the well-
known Arrhenius law and noting that the stochastic term is

of order 1=N smaller than the deterministic part [see

Eq. (2)], we recover the exponential behavior for 
ðNÞ.
For time scales much smaller than 
ðNÞ or for all times in

the infinite size limit, N ! 1, an active stationary state

exists where all species symmetrically coexist. Therefore,

negative density dependence strongly enhances species

coexistence.

We have calculated the relative species abundance (RSA)

in the steady state, i.e., the probabilityPðnÞ to find a species
with population n. The population n�ðtÞ of the�th species is
followed for a sufficiently long time, and the frequency,

P�ðnÞ�n, in each interval ðn; nþ �nÞ is recorded and the

RSA is obtained as PðnÞ ¼
P

S
�¼1 P

�ðnÞ=S. In the neutral or
symmetric case, P� is independent of � and the corre-

sponding RSA is equivalent to those in Fig. 1(a). Note

that at variance with the K ¼ constant case—where the

RSA is not well defined as a consequence of the lack of

metastable active states [21]—in the case KðzÞ ¼ aðb� zÞ

[see Fig. 1(a)], we obtain a mode, as typically found

in the RSA of several tropical forests [1,3,4] and other

ecosystems [22].

(C) KðzÞ has the S shape shown in Fig. 2(c) [11,14] in

order to satisfy the stability conditions for the broken

symmetry scenario given above [this particular shape is

for convenience, but it is also valid for KðzÞ of the generic
cubic form KðzÞ ¼ az3 þ bz2 þ czþ d with suitably

chosen coefficients; note that a cubic nonlinearity in den-

sity dependence is usually called a Nagumo term and is

employed to describe populations experiencing the Allee

effect [13]]. Here, broken-symmetry coexistence is the

stable stationary state of the deterministic evolution.

Turning on the stochastic dynamics—after an initial tran-

sient—the system reaches one of the S stationary states of

the deterministic dynamics with broken symmetry. Again,

on a typical time scale 
ðNÞ � expf�0Ng, there is gradual

extinction of species, till one gets a monodominant

situation. Once more, the constant �0 > 0 depends on the

specific choice of KðzÞ. When the system is in a broken-

symmetry case, the species whose density fluctuates

around the average ’> 1=S interchanges with one of the

S� 1 species fluctuating around the average 	 ¼ ð1� ’Þ=
ðS� 1Þ< 1=S on time scales 
switchðNÞ � expfksNg. Thus,
in a finite system N <1 and on a time scale � 
switchðNÞ
the ecosystem looks neutral or symmetric; i.e., the species

behave like they were interchangeable. However, for time

scales � 
switchðNÞ or for all times within an infinite

system N ¼ 1, the neutral symmetry is spontaneously

broken and the ecosystem looks as if the species were

not all interchangeable. We have calculated the probability,

P�ðnÞ, that the �th species has population n on a time scale

smaller than 
switchðNÞ so as to exhibit the characteristics of
a broken-symmetry state. The results are indistinguishable

from those of the case where there is no neutral symmetry

[Fig. 1(b)], in which we run the model with two different

functions KðzÞ depending on species label: for � ¼ 1 we

set KðzÞ ¼ K1ðzÞ ¼ a1 � b1z with a1 ¼ 3 and b1 ¼ 2,
while for � ¼ 2; 3; 4 we set KðzÞ ¼ K2ðzÞ ¼ a2 � b2z
with a2 ¼ 2:5 and b2 ¼ 1:5. The RSA for the spontaneous

symmetry breaking case calculated for time scales

�
switchðNÞ is displayed in the inset of Fig. 1(c), where

two peaks appear, showing that one of the species behaves

differently from the others. In a more general pattern of

spontaneous symmetry breaking, one can have up to S
distinct P�’s producing an S-peak RSA. Multiple peaks

would be resolved in the RSA depending on the width and

separation of the peaks: this scenario is consistent with

some recent studies on several different ecological com-

munities [23], pointing out the possibility of a multimodal

distribution of PðnÞ in real systems.

In conclusion, we have shown that a simple nonequilib-

rium microscopic model for a general S-species ecological
community driven by a density-dependent but other-

wise completely neutral or symmetric dynamics—i.e., the

1000
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1×1010

100 1000

τ

Voterlike
Symmetric Coexistence

Spontaneously broken symmetry

τ(N)=N2

Lo
g

(τ
(N

))

FIG. 3 (color online). Mean time to extinction 
ðNÞ for the

three different definitions of KðzÞ in Fig. 2, calculated in the

mean field approximation and plotted in a double logarithmic

scale varying N from N ¼ 100 to N ¼ 1000. For K ¼ const (red
solid line), 
ðNÞ � N� with � ’ 2 (red dotted line) as expected

for a voterlike model, while the two cases of K ¼ b� az (green
dashed line), where we chose a ¼ 0:04 and b ¼ 1:04, and KðzÞ
allowing for a spontaneous breaking of the neutral symmetry

(blue dotted line) show an exponential behavior 
ðNÞ � ekN .
In the inset, we show the same plot in a logarithmic-linear scale,

to emphasize the exponential growth.
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dynamic rules governing the stochastic microscopic pro-

cess are insensitive to the species’ labels—can show a rich

and stable heterogeneous biodiversity even at very long

times. The striking fact is that species can behave distinctly

by spontaneously breaking the neutral symmetry.
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