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Abstract:  The work here develops a new moving boundary model which adapts and advances a technique 

initially used for the purpose of modelling geological formations to predict the morphology of crystallising 

droplets of salt solution. A multiphase Volume of Fluid (VOF) CFD model coupled with a scalar advection-

diffusion transport equation is used to capture the flow and concentration of the solution. By utilising user-

defined routines, we are able to couple the models for the solution flow with a crystal growth model. This 

coupled model captures the growth of the overall bulk crystalline formation by the use of moving boundary 

techniques with dynamic remeshing of the numerical grid. In this paper an axisymmetric representation of 

the model is presented that describes the crystal growth through time. The model is compared against data 

from an experimental study using a simulant salt solution (Sodium Nitrate) where physical parameters and 

growth rates predicted by the model are in good agreement with those observed in experiments. These 

studies provide information for the safety assessment when considering heavy metal solutions for various 

fault scenarios. 
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1 INTRODUCTION 

Crystallisation is the key underlying physical process in a wide range of industries. Computational or 

numerical models that describe crystallisation processes can offer a range of industrial benefits, such as 

developing an understanding of how particular parameters or process equipment can influence crystal 

growth, hence allowing manufacturers to optimise the yield and quality of produced crystals. It is therefore 

no surprise that the demand for models that can accurately describe the crystallisation process is very high.  

An example of an industry where computational models are used in order to analyse and optimise the 

manufacture process is the sugar industry, as seen in Sima and Harris [1]. Another industry where models 

are beneficial is the pharmaceutical industry, where they can provide an understanding of how process 

parameters affect the final morphology of the crystal, an example of which can be seen in Chen et al [2]. 

Understanding of the crystallisation process is also of key importance in industries that are not primarily 

concerned with the production of crystalline materials, but where crystals are the undesirable by-product of 

an unrelated or adverse occurrence. Examples of these include pipe or heat exchanger fouling, as in Choi et 

al [3], or the build-up of unwanted deposits from a pipe or vessel leakage. The ability to model and describe 

the formation of crystalline deposits arising from adverse occurrences is of particular importance within the 



nuclear industry. It is known that for a given formation, its size and shape impacts on the criticality risk, as 

explained in Knief [4]. Therefore models which can predict these formations, using known process 

parameters, can aid in the costing and risk assessment of clean up procedures. 

In light of this, several experiments have previously been carried out by the National Nuclear Laboratory 

(NNL), using stimulant solutions of Sodium Nitrate, in order to assess how varying chemical and 

environmental parameters affect the resultant build up of material. The experimental results demonstrate 

that a diverse range of crystalline formations can occur for varying experiment parameters; tower type 

formations for saturated solutions (≥8 Molar at 30℃), as shown in Figure 1a, and ring-like formations for 

under-saturate solutions (≤5 Molar in this case), as shown in Figure 1b. Clearly, the criticality implications 

of these formations change quite drastically for small changes in the experimental parameters. 

The work in this paper attempts to model the crystallisation of impinging droplets of salt solution. The aim 

of this work is to offer insight into the size and shape of crystalline deposits which may occur from droplets 

of industrial process liquor, arising from a long term undetected equipment or pipe leakage. The modelling 

here will be restricted to the case of saturate solutions only. 

Previous work adapted models for describing the growth of geological stalagmites, seen in Romanov et al 

[5], for the purpose of modelling crystallisation of salt solution droplets. This work was based on simple 

analytical expressions for the fluid flow. Despite this, results from this study were promising. Work here 

now advances these models using computational fluid dynamics (CFD) and advanced physical models. 

 

 

Figure 1 Image of crystalline growth after 30 days for a) highly concentrated Sodium Nitrate 

droplets and b) undersaturate droplets. 

 

2 MATHEMATICAL MODEL 

 

In this work we assume that droplets impact on the surface of an inclined plate. After impact, droplets 

coalesce to form a thin liquid film, which in turn, flows down the incline of the plate. Due to temperature 

loss and evaporation, solubility within the film decreases and crystallisation occurs. The continually fed 

liquid film then adapts to flow over the newly formed crystalline solids.  

2.1 Fluid and Mass Transport 

A numerical scheme is needed in order to capture the thin liquid film as it flows down the inclined plate. 

There are currently many numerical models designed for capturing the flow of multiple fluids. Here we use 

the volume of fluid (VOF) method which is specifically designed for the modelling of immiscible fluids and 

capturing the interface between the two. The modelling of film flow is a common problem, as it is a 

phenomenon which occurs in many industrial processes. It is common practice when modelling these flows 

a b



to use the VOF method, as seen in Haroun et al [6] and Hirt and Nichols [7]. It is particularly important that 

the flow and interface are captured accurately as the velocity and thickness of the liquid film is likely to 

have a direct impact on the rate of crystallisation. 

As the crystal growth is a much slower physical process than that of the fluid flow we assume that within a 

specified time frame, Δt (the pseudo-timestep), the crystal can be assumed stationary and the fluid flow can 

be approximated by a steady state solution. As the total timeframe for crystal growth in these problems 

tends to span weeks or even months, obtaining a fully transient CFD simulation over these timeframes 

would generally be consider infeasible. Due to this assumption we track the interface between the liquor 

solute and gaseous phase by solution of the volume fraction equation, given by,  

∇ ⋅ �α
ρ
�
 = S�� ,				0 ≤ α
 ≤ 1,				for		q = 2, . . , n,  (1) 

where ρ
 is the density of the qth phase, S��  is a the source term relating to the qth phase, α
	is the 

volume fraction with respect to the qth phase, n represents the number of phases and	� is the veolcity. The 

volume fraction equation is not solved for q = 1 and is calculated by the fact that in each computational 

cell,  

∑ 	�

� α
 = 1,  (2) 

The fluid velocity, �, is obtained using a single equation approach, where both the transport of momentum 

within the liquid and gases phase can be described by the Navier-Stokes equations,  

 

!
∇p + $� ⋅ ∇%� = ν∇'� + (,											∇ ⋅ 	� = ),		  (3) 

where ρ is the fluid density, p is the pressure, ( is the acceleration due to gravity oriented parallel to the y-

axis in Figure 2, μ is the dynamic viscosity and ν = +

!
 is the kinematic viscosity. This shared field approach is 

dependent on the volume fractions of the phases though the properties of ρ and μ, where,  

ρ = ∑ 	�

� α
ρ
,  (4) 

 such that ρ
 is the fluid density with respect to the qth phase and,  

μ = ∑ 	�

� α
μ
,  (5) 

where μ
 is the dynamic viscosity with respect to the qth phase. 

Transportation of solute within the solution is described by solution of a scalar advection-diffusion 

equation. At steady state and when coupled to the VOF method, this equation is given by,  

� ⋅ ∇$α'c% = ∇ ⋅ $α'D∇c%,  (6) 

where c is the concentration of Sodium Nitrate in solution and D is the diffusion coefficient. In this work, 

q = 1 corresponds to the gaseous phase, air, and q = 2 corresponds to the liquid solution consequently, α' 

is the volume fraction of the liquid phase. 

The viscosity and density of the solution is dependant on the local concentration of solute such that, 

ρ' = f$c% and μ' = g$c%, where f and g are dependent on the material in question, and will be defined in 

section 3. 

 

2.2  Solvent Evaporation 

In many physical processes evaporation is the dominant driving force for crystallisation. This is true for the 

NNL drip trials and therefore a numerical method of capturing the evaporation phenomenon was 



considered. Evaporative effects are often included within CFD models that predominantly look at either the 

evaporation of liquid films, observed in Avc et al [8], or the evaporation of sessile droplets, shown in Sazhin 

[9]. Applications for such models are extensive ranging from, the drying of paper within the textile industry 

to the de-icing of aircraft systems. 

In this work, a constant evaporative flux will be considered, where flux values will be based around 

measurements from the NNL drip trials. Only the loss of mass from the liquid phase will be considered, and 

therefore the increase in mass due to water vapour will be ignored, S�/ = 0 was not invluded in (1). 

The source term in (1) is a volumetric flux, whilst evaporation is a surface reaction, therefore the source 

term must be expressed such that the amount of water extracted is not dependant on the volume of the 

cells located at the interface. When considering an evaporative flux, E over a surface area A2, we can state 

the the rate of mass leaving the volume containing a surface must equal, 

S�3V5677 = −EA2,  (7) 

where V5677 is the volume of the cell, E > 0 is the evaporative flux, and A2 is the interfacial area of the free 

surface contained within the cell. Clearly, this allows one to express the volumetric source, S�3  in terms of 

the current cell volume and interfacial area, to ensure the correct rate of liquid is extracted from the 

system.  

As the VOF model is a diffusive numerical scheme, the lack of a well defined interface can make it difficult 

to give a value for the interfacial area, A2. Within this work we employ a technique used within Hardt and 

Wondra [10], which incorporates an evaporative model for use with the VOF model. This states that 

: 	; |∇α'|dΩ = : 	? dA,  (8) 

where Ω is a volume containing the liquid-gas interface, |∇α'| is the magnitude of the gradient vector of the 

volume fraction of water, and A is the interfacial surface area within the volume Ω. Therefore for an 

individual cell, the following holds,  

|∇α'|V5677 = A2,  (9) 

which allows the source term in (7) to be written as, 

S�3 = −E|∇α'|.  (10) 

This term is then included in (1), which accounts for the loss of mass due to evaporation. 

 

2.3  Crystal Growth and Moving Boundary Techniques 

The work here is based around two-step crystallisation theories, as seen in Mullin [11]. This model assumes 

that crystallisation is based around two physical processes, a diffusive step, where solute must diffuse 

across a mass transfer boundary layer adjecent to the crystal face. Followed by a surface integration step, 

where after transport across boundary layer, solute is incorporated into the crystalline lattice. Within this 

work the transport of solute is captured fully by (6), including the movement of solute through the 

boundary layer. The surface integration step is incorperated into the model through appropriate boundary 

conditions. The distance from the crystal surface at which the surface integration step occurs, is generally 

very small and therefore can be taken to occur on the boundary describing the surface of the crystal. Due to 

this, we can now describe the flux of solute out of solution at the crystal surface by the boundary condition,  

−D @5

@A
= kC$c − c ∗%,  on the solid-liquid interface,  (11) 



where A is the outward unit normal to the boundary, c* is the Sodium Nitrate concentration at equilbrium 

and kC is the rate of surface integration. 

Other works have performed similar calculations using momentum and mass transport equations when 

considering a single phase flow, such as, Robey and Maynes [12] and Robey [13]. These works only observe 

the concentration field at a fixed snapshot in time. The work here attempts to capture the growth of 

crystalline material through time by the use of a moving boundary technique coupled to a multiphase fluid 

model. This will describe how the fluid and mass fields change when coupled to a growing crystalline 

structure, and simultaneously, how the crystal growth process is affected by the changing flow and solute 

fields. 

The moving boundary technique which is used in order to describe the crystal growth will be described in 

detail later, however it should be noted that the crystal growth is related to (11) such that,  

@E

@F
	= kC

GH

!H
$c − c ∗%,  on the solid-liquid interface,  (12) 

where	m is the mass deposited,  MK is the molar mass of Sodium Nitrate and ρK is the density of solid 

Sodium Nitrate. 

 

3 COMPUTATIONAL IMPLEMENTATION 

The model described in section 2 was implemented and solved using the finite volume package Fluent 14.5. 

The problem was initially solved in two-dimensions in order to assess the accuracy and robustness of the 

model. It was then later developed into an axisymmetric model, such that the formations could be 

approximated by a formation with rotational symmetry about the drip location. In this pape,r the 

computational implementation for the axisymmetrix model will be discussed. 

 

3.1 Moving Boundary and Dynamic Meshing 

The computational domain consists of the initial slightly inclined plate at an angle of 2° with the horizontal 

and a small region above it. Figure 2 demonstrates a typical initial domain used within this problem. 

The mass of solute is deposited at the rate given by (12). This deposited mass is represented by the moving 

boundary model by discrete displacements of the nodes along the floor surface. Nodes are displaced along 

the normal direction through, 

$ΔS%A = −$Δt%kC
GH

!H
$c − c ∗%A,  on the solid-liquid interface, (13) 

where Δt is the ’pseudo time-step’, and ΔS is the magnitude of the displacement of the boundary in time 

Δt. The crystal or solid-liquid interface is denoted by boundary ‘Floor / Crystal Surface’ in Figure 2. This 

displacement is imposed through the use of user defined code. A typical example of the domain after 

successive boundary displacements can be seen in Figure 3.  

After the boundary nodes relating to the crystal interface have been displaced by ΔS given in (13), the 

dynamic meshing routine adjusts the remaining boundaries within the domain such that there remains a 

small region captured above the crystalline material and the inlet and outlets remain at the appropriate 

positions throughout the computational procedure. Once these boundaries have moved the dynamic 

meshing routine updates the computational grid to fit the new boundary positions. The dynamic meshing 

facility has inbuilt remeshing, where if a given cell either exceeds a maximum volume or is less than a 

minimum volume or becomes too distorted, the model will attempt to remesh the region local to this cell. 



 

Figure 2 Plot of a typical initial domain, with boundary names. 

 

Figure 3 Typical example of the domain after successive boundary motions. 

 

3.2 Computational Grid 

The multiphase VOF model being used to capture the fluid flow is a diffusive interface model and therefore, 

there exists a numerical blending between the two regions. Due to this, a refined region of highly refined 

region of quadrilateral cells is required within the region of the interface. This is in order to minimise the 

diffusive flux across the interface. This can be observed within Figure 4. 

For dynamic remeshing to work, as mentioned in section 3.1, the mesh must consist of triangular elements 

(in two dimensions). And therefore the bulk of the computational grid is meshed using these elements, in 

order that the dynamic remeshing facility remains robust and the computational grid remains of a good 

quality throughout its continual deformation. 

The standard starting mesh for the axisymmetric problem is 91640 cells. Whilst this appears relatively small, 

studies regarding mesh independence have shown larger mesh sizes have no impact on the final solution. 



 

Figure 4 Example of the initial mesh. 

3.3 Boundary Conditions 

Appropriate boundary conditions must be set for the fluid flow, solute transport and moving mesh 

equations. An inlet condition joins onto the floor surface and is specified to be roughly the diameter of a 

liquid droplet. Here a constant mass flow is imposed such that � ∙ AN�76F = Q/A, where Q is the mass flow 

rate, � is the velocity, A is the area of the inlet and AN�76F is the unit vector normal to the inlet. A no-slip 

boundary condition, such that, � = ), is imposed on the floor / crystal surface. The outlet and top of the 

domain are pressure outlets, where a gauge pressure, pQ = p − pRFE = 0  is specified. Where	p is the 

absolute pressure and 	pRFE is the atmospheric pressure. A constant concentration c = cS is imposed at the 

inlet and the flux condition (11) on the floor / crystal surface. 

 

3.4 Material Properties 

As discussed in section 2, properties within the model are specific to the material in question. These include 

the density, viscosity, rate of surface integration and the solubility. Within this section these relationships 

are defined. Custom material properties are implemented through the use of user defined functions in the 

CFD code. The density of the solution is dependent on both the temperature and the local concentration 

within the solution. The density and viscosity of Sodium Nitrate solution, in (4), are given by, see Xu and 

Press [14], 

ρ' = f$c% = a − b$T − 273.15%, μ' = g$c% = 10Z[A	√Te
^

_`_a ,  (14) 

where,			a = 421.37X' + 629.7X + 1012.6,		b = −168.16Xg + 206.79Xh − 89.845Xi + 17.308X' −

0.6854X + 0.4789), X	is the mass fraction given by,  X= c	Ms

c	Ms+1
,	A = 4219.6X' + 2995.2X +

991.72,		B = 300834Xl + 525458Xg − 348368Xh + 106051Xi + 14531X' − 967.34X + 644.92, 

TS = 29.088X' + 15.881X + 134.68 and T represents the temperature (in K).   

In (11) the rate of crystal growth is dependent on the local solubility level, c*, an expression for this when 

using Sodium Nitrate was obtained empirically in Oosterhof [15], and is given by, 

c∗ = 8511.90 + 98.45T [molar],  (15) 

The diffusivity of Sodium Nitrate in solution is set to be a constant value of 

D = 1.586 × 10Z[	[m'/s],  (16) 



which is obtained in Yeh and Wills [16]. This value will vary slightly with temperature and concentration 

however, in the work here it is assumed constant. The rate of surface integration is 

kC = 4.5e × 10Zl	[m/s],  (17) 

which is also obtained in Oosterhof [15].  

We believe that the physical conditions under which equations (14)-(17) were empirically derived in [14]-

[16] cover a large enough range, T	 ∈ $0,40%°C and solution concentrations c ∈ $0,10%	Molar, to include 

the conditions of our experiment. 

Summarising, the solver process initial involves solving equations (1)-(10) for a steady state fluid and solute 

transport solution using boundary conditions and material properties defined in sections 3.3 and 3.4. The 

crystal is then grown over a ’pseudo time-step’, Δt, using the moving boundary model, given in (13). Once 

the new boundary position and adjusted domain is obtained, equations (1)-(10) are solved again until 

convergence is reached, and the process repeats in an iterate manner until the final solution time is 

obtained. 

 

4 RESULTS 

Intially, the model was constructed in two-dimensions such that a robust coupling between the fluid flow 

model and crystal growth model could be obtained. The work here considers the axisymmetric model 

where results can now be quantitively compared against physical properties such as experimetal 

measurement for the size and shape of the formations. 

A typical example of results produced by the model can be observed in Figure 5.  From Figure 5a one can 

see how the crystalline material is deposited on the intial flat plate through time. The volume displaced by 

the boundary represents the growth of crystal. Figure 5a shows that the majority of the solute is deposited 

close to the drip location.  

When considering an axis of rotation at x=0, it is clear to see that the model is predicting tower like 

formations for the crystallisation of highly concentrated salt solutions, much like the physical case observed 

in the experiments. From observing Figure 5b it can be confirmed that the full axisymmetric respresentation 

of the result after 30 days closely resembles the tower-like formations, as seen in Figure 1a. Whilst the 

idealised mathematical model produces smooth solutions for the crystal surface, unlike the experimental 

results, the key defining features such as the width and height of the formations are captured well by the 

model. 

Once of the model was shown to be robust, the validity of the model was assessed by comparing it against 

the experimental data for the Sodium Nitrate drip trials. Within these, trials solutions where brought to 

saturation at 30℃. This roughly corresponds to an initial concentration, cS = 8 molar. The solution was then 

leaked into a room with temperature of approximately T=25℃ at a rate of Q = 2.89 × 10Zgkg/s. The 

evaporative flux for both the numerical and physical experiments was 1 × 10Zgkg/m
2
s. In this work, the 

temerature drop was considered to be instantious and therefore an isothermal system was considered. Non 

isothermal systems could be considered through solution of the energy equation. 

Results for this can be observed in Figure 6. Figure 6a shows a comparison between the experimental data 

and model results after 30 days growth. From looking at Figure 6a, it can be seen that the profile obtained 

from the model lies reasonably close to the experimental data. Results close to the apex are slightly smaller 

than the experimental results, and the width of the tower is slightly thicker in the model. 

 



 

Figure 5 a) Plot of formation profiles through time for the moving boundary model, b) full axisymmetric 

representation for growth after 30 days. 

It is thought that the slight discrepancies in the results may be due to uncertainities (presumed to be of the 

order 5% noise) in the experimental data. Also, temperature data from the experiments was shown not to 

be uniformthroughout, but to vary both temporally and spatially, ranging from approximately 22.5℃ to 

27.5℃. In order to further assess the model’s validity in light of these uncertainities, the model was run 

again for temperatures of 22.5℃ and 27.5℃. It can be seen from Figure 6a that the experimental data lies 

within the region between these maximum and minimum temperature variations. 

 

Figure 6 a) Plot of the formation profile for model and experimental data after 30 days growth and b) Plot 

of the tower height through time. 

In addition to the profile of the tower formation plotted after 30 days growth, experimental data for the 

heights of the tower formations was compared against the model. Figure 6b shows the heights of the tower 

formations through time when compared to experimental data. From observing Figure 6b it can be seen 

that the majority of the experimental data points lie within the feasibility region outlined by the solutions at 

the temperature extremes. At later times, the experimental data tends to lie above the model data for the 

mean temperature of 25℃.  

 

5 CONCLUSIONS 

 

The first stage of the work was the development and implementation of a two-dimensional model for the 

purpose of creating a robust framework for coupling the multiphase fluid flow with the moving boundary 

crystallisation model. The work in this paper now progressed previous work such that an axisymmetric 

model with rheological, chemical and evaporative effects was developed. 

(a) (b) 

(a) (b) 



 

The model was compared against data obtained from experiments carried out by the NNL.  Initial results for 

the model appear promising when compared against the experiments data. Using basic information for the 

process parameters, material properties and flow conditions the model is able to give a good prediction for 

both the height and width of the formation. To the authors knowledge no previous models allowed the 

prediction or estimation of these formation for the aforementioned parameters, therefore it is expected 

that the work here will have impact on on-going safety cases within the Nuclear Industry. 

 

Additional work may be carried out, including a full parametric study for varying process parameters, in 

order to generate an accurate risk assessment for likely industrial operating conditions. Further 

experimental work may be carried out In order to assess the model’s validity when used with other 

materials. Parameters for the use with heavy metal solutions are currently being investigated. 
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