This is an author produced version of a paper published in *Software Testing, Verification and Reliability*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/78802

Published paper

http://dx.doi.org/10.1002/stvr.349
A Theory of Regression Testing for Behaviourally Compatible Object Types

Anthony J H Simons
Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK.

Abstract

A behavioural theory of object compatibility is presented, which has implications for object-oriented regression testing. The theory predicts that only certain models of state refinement yield compatible types, dictating the legitimate design styles to be adopted in object statecharts. The theory also predicts that conformity-testing using regression tests is inadequate. Functionally complete test-sets that are applied as regression tests to subtype objects are usually expected to cover the functionality of the original type, even though they are clearly not expected to cover extra functionality introduced in the subtype. However, such regression testing is proven to cover strictly less than the original state space in the new context and so provides much weaker confidence than expected. A different retesting model is proposed, based on full automatic test regeneration from the subtype’s specification. This method can guarantee equivalent levels of confidence after retesting. The behavioural conformity desired by regression testing can then be proven by verification in the theory.

Keywords

Object-oriented, behavioural subtyping, state refinement, state-based testing, regression testing, testing adequacy.

1 Introduction

Practical object-oriented unit testing is influenced considerably by the non-intrusive testing philosophy of McGregor et al [1, 2]. In this approach, every object under test (OUT) has a corresponding test-harness object (THO), which encapsulates all the test-sets separately. This separation of concerns is the main motivation for McGregor’s parallel design and test
architecture, in which an isomorphic inheritance graph of test harness classes shadows the graph of production classes [2]. This embodies the beguiling intuition that, since a child class is an extension of its parent, so the test-sets for the child are extensions of the test-sets for the parent. The intended advantage of parallel design and test is that the effort invested in creating standard test-sets is not wasted. Test-sets can be inherited from the parent THO and applied, as a suite, to the child OUT in a kind of regression test, to ensure that the child class still delivers all the functionality of the parent. While it is clearly understood that the child THO will supply additional test-sets to exercise methods introduced in the child OUT [1, 2], the fact of encapsulating the inherited tests as a suite is shown below to be significant. Contrary to intuition, retesting with this suite does not confirm the behaviour of the parent in the child, since it can be proven (see section 4.2) that the saved test suite exercises strictly less of the parent’s state space in the child than it originally exercised in the parent.

More recently, the JUnit tool has fostered a similar strategy for re-testing classes that are subject to continuous modification and extension [3, 4]. JUnit allows programmers to develop test scripts, which are converted into suites of methods behind the scenes. These are executed on demand, to test objects and to re-test modified or extended versions of those objects. One of the key benefits of JUnit is that it makes the re-testing of modified objects semi-automatic, so it is widely used in the eXtreme Programming (XP) community, in which the recycling of test-sets has become a major part of the quality assurance strategy. While XP is to be commended for putting rigorous testing back on the popular agenda, it is difficult to identify precisely what XP expects to gain from its retesting strategy, which seems to address both sociological and technical concerns. Up to three possible reasons for retesting can be inferred from the standard informal account [5].

Initially, test creation takes the place of writing a specification:

“Development is driven by tests. You test first, then code. Until all the tests run, you aren’t done. When all the tests run, and you can’t think of any more tests that would break, you are done adding functionality” [5], p9.

Test creation is manual, with test cases selected by human intuition. This can provide good diagnostics for anticipated fault classes, but no absolute guarantee of test completeness or correctness after testing. The general position seems to be that writing more tests progressively reduces the defect rate to a statistically acceptable level [5].
The value of automated retesting is partly psychological, creating a sense of well-being and confidence in the programmer and in the customer. In the JUnit community, programmers talk of “clicking the test-button and waiting for the test-result bar to turn green”:

“I just wanted a little jolt of confidence. Seeing that the tests still ran gave me that” [5], p46.

“You feel good when you see all the tests running.” … “The customer feels good about the system when they see all of their tests running” [5], p66.

A second motivation for retesting is to engage in fault detection. It is logically sound to infer that, if a test fails, then a fault has been introduced. However, it is not logically sound to infer that, if all the tests succeed, then no additional faults have been introduced:

“When the machine is free, a pair with code to integrate sits down, loads the current release, loads their changes (checking for and resolving any collisions), and runs the tests until they pass (100% correct)” [5], p60.

“You can run the tests quickly so you know you haven’t broken anything.” [5], p68.

This is starting to move into dangerous territory, since it is tending towards claiming that the program has not broken after successful retesting (faults may have been introduced in the original functionality that the tests did not detect – see section 4.2). Such false confidence is encouraged by the ready availability of automatic retesting tools:

“Tests must be automatic, returning an unqualified thumbs-up/thumbs-down indication of whether the system is behaving” [5], p116.

“When I have written all the tests I can imagine could possibly break and they all pass, I’m certain my code is correct” [6], p101-102.

This reveals the third motivation for retesting, which is to confirm the correct behaviour of modified systems. In XP there is at least a strong expectation (if not an outright claim) that automated unit and integration testing provides protection against software entropy, allowing all of the programmers to modify each other’s code freely, so long as each modification passes all the original tests:
“After they have added a feature, the programmers ask if they can now see how to make the program simpler, while still running all of the tests. This is called refactoring” [5], p58.

“Unit tests enable refactoring as well. After each small change the unit tests can verify that a change in structure did not introduce a change in functionality” [7].

There are two sides to this kind of claim. Firstly, if the modified code fails any tests, it is clear that faults have been introduced, so there is some benefit in reusing old tests as diagnostics. Secondly, there is the implicit assumption that modified code which passes all the tests is still as secure as (i.e. no more defective than) the original. Recycled tests are implicitly being used for a stronger purpose, as confirmation of a certain positive level of correctness.

This unsound expectation motivated the current investigation. If a near-perfect unit testing method were found, that could offer measurable guarantees after testing, how would this be affected by regression? How much of a modified or refined object could be tested effectively by saved test suites? Can saved test-sets be extended in any simple way to test modified objects? The findings show that the coverage of regression tests can be quantified with respect to a formal model; but that the confidence offered by regression testing is strictly less than what intuition expects. In place of regression testing, a new retesting paradigm is proposed, which is based on regenerating test-sets automatically from refined specifications, which are then proven compatible with original specifications.

In section 2, a state-based theory of object refinement is presented, which encompasses object extension with subtyping, the concrete realisation of abstract interfaces and incremental redesign with unchanged behaviour. The theory predicts that only certain models of state refinement yield compatible types, dictating the legitimate design styles to be adopted in object statecharts. In section 3, the object X-machine theory of complete functional testing is presented. A formula is used to generate increasingly more powerful test-sets from a state-based specification that can guarantee the correctness of the tested object’s state-related behaviour, under progressively weakening assumptions about the quality of its implementation. In section 4, the theory of refinement is used to predict that conformity-testing using regression tests is inadequate. Functionally complete test-sets that are applied as regression tests to subtype objects are usually expected to cover the state-space of the
supertype in the subtype object. However, such testing is proven to cover strictly less of the original object’s state space in the new context and so provides much weaker confidence than expected. Objects that pass the recycled tests may yet contain introduced faults, which are undetected. In section 5, it is found that there is no simple way to extend encapsulated test suites to achieve coverage in modified objects. Instead, the complete test generation approach is used to regenerate tests for arbitrary state-based specifications, obtaining predictable and repeatable levels of confidence after testing. In combination with verification in the formal model of behavioural compatibility, this satisfies the requirement for a testing method that can certify the conformant behaviour of a modified object, with respect to an original specification.

2 A Theory of Compatible Object Refinement

In classical automata theory, the notion of machine compatibility is judged by comparing sets of traces, sequences of labels taken from transition paths computed through the machines in question [8, 9]. Two machines are deemed equivalent if their trace-sets are equivalent. A machine is behaviourally compatible with another if its trace-set includes all the traces of the other, that is, for every trace in the protocol of the reference machine, such a trace also exists in the protocol of the compared machine. Object-oriented design methods [10, 11] include object statecharts, which are influenced by Harel’s statecharts [12] and SDL [13]. These notations are more complex than simple finite state automata. Equivalence and compatibility between statecharts are judged by considering syntactic relations between the transformed state spaces, from which the trace behaviour follows.

2.1 McGregor’s Statechart Refinements

McGregor et al. proposed one of the early theories of object statechart refinement [14, 15]. In McGregor’s model, object states derive from the object’s stored variable values, as seen through observer methods. The machines have Mealy-semantics, with quiescent states and actions on the transitions, representing the invoking of methods. Figure 1 illustrates a contemporary reworking of McGregor’s three main structural refinements, to allow comparison with trace models.

Figure 1: Insert figure and caption as close as possible to here
These kinds of refinement were deemed compatible because they observed the rules:

- all states in the base object are preserved in the refined object;
- all introduced states are wholly contained in existing states;
- all transitions in the base object are preserved in the refined object.

These structural refinements may be compared with trace models. In figure 1, the traces of M_0 are the set $\{<>, <a>, <a, b>\}$, where $<a, b>$ is a sequence of method invocations in the protocol of M_0. M_1 adds an extra method c to the interface of M_0. This is a derived method, analogous to function composition [16], that computes a more direct route to the destination state S_3. The traces of M_1 are $\{<>, <a>, <a, b>, <c>\}$ so it is clear that this includes the traces of M_0.

M_2 adds two extra methods d and e, which examine state S_2 at a finer granularity. S_2 is completely partitioned into substates $S_2.1$ and $S_2.2$. Since states are abstractions over variable products [14], this is equivalent to dependence on disjoint subsets of variable values. The usual statechart semantics of M_2 is that entry to S_2 implies entry to the default initial substate $S_2.1$; and the exit transition b from S_2 preempts other substate events. The statechart may therefore be flattened to a simple state machine, with transition a leading directly from state S_1 to $S_2.1$ and an exit transition b from both substates $S_1.1$ and $S_1.2$ to state S_3. The traces of M_2 are infinite (due to the infinite alternation of d, e), but include $\{<>, <a>, <a, b>, <a, d>, <a, d, b>, <a, d, e>, <a, d, e, b>, ...\}$ and so include all the traces of M_0.

M_3 introduces concurrent states S_4, S_5 and extra methods d and e which depend on the new states. This represents the definition of new variables in the object subtype, together with new methods whose behaviour is orthogonal to existing behaviour. The usual statechart semantics is that both machines execute concurrently. Formally, this is equivalent to a flat state machine containing the product of the states of the two concurrent machines, which in this paper is denoted by: $\{S_1/4, S_2/4, S_3/4, S_1/5, S_2/5, S_3/5\}$. The traces of M_3 are infinite, but include $\{<>, <a>, <d>, <a, d>, <d, a>, <a, b>, <d, a>, <a, d, e>, <d, e, a>, <a, d, b>, ...\}$ and so include all the traces of M_0.

page 6
2.2 Cook and Daniels' Statechart Refinements

In their Syntropy method [17], Cook and Daniels permit further extensions to statecharts. Their full set of refinements includes (p.207-8): adding new transitions, adding new states, partitioning a state into substates, splitting transitions either at source or destination substates, retargeting transitions onto destination substates and composition with concurrent machines. Figure 2 illustrates the three main kinds of transformational refinement not already covered above.

[Figure 2: Insert figure and caption as close as possible to here]

These refinements may also be compared with trace models. $M4$ refines $M0$ by adding a new method c leading to a new state $S4$. This new state represents the addition of object variables, but unlike the case $M3$, the associated behaviour is not orthogonal, but tightly coupled to state $S1$. The state $S4$ is sometimes described as a new *external* state, to distinguish this from a new *substate*, of the kind in $M2$. The traces of $M4$ are the set \{<>, <a>, <a, b>, <c>\} and so include the traces of $M0$. However, this refinement breaks the second of McGregor’s rules about new states being introduced as wholly contained substates.

$M5$ refines $M0$ by splitting the exit transition b, which no longer proceeds from the $S2$ state boundary, but from the individual substates $S2.1$ and $S2.2$. This represents the redefinition of the method b in the refinement, to depend disjointly on the introduced substates. The overall response is equivalent to the original b. The traces of $M5$ are \{<>, <a>, <a, b>, <a, d>, <a, d, b>\} and so include the traces of $M0$. By the usual semantics of object statecharts, an exit transition from a superstate boundary is equivalent to exit transitions from every substate. It is therefore inevitable that state partitioning will split exit transitions.

Cook and Daniels [17] also allow the symmetrical case, splitting entry transitions to target different destination substates. Mutually exclusive and exhaustive guards are introduced to distinguish which of the substates should be reached by each partial transition. However, fairness in partitioning incoming transitions to all substates is later shown to be irrelevant in the retargeting rule. $M6$ refines $M0$ by retargeting the transition a onto an arbitrary substate of $S2$. The state $S2.2$ was chosen as the target in this example simply to illustrate how this is different from the default initial substate $S2.1$, even though the model now cannot enter $S2.1$. The traces of $M6$ are \{<>, <a>, <a, b>\} and so are exactly the traces of $M0$.

page 7
According to the classical theory of trace inclusion, all of the refinements $M1-M6$ may be substituted in place of $M0$ and will exhibit identical trace behaviour in response to $M0$'s events. However, it is argued below that this is an insufficient guarantee of behavioural compatibility in object-oriented programming, where objects are aliased by handles of multiple types. For this, a stronger theory is required.

2.3 Behaviourally Compatible Statechart Refinement

The fundamental philosophical issue to decide in the theory is how to treat the introduction of new variables in subtype objects. Do these variables correspond to missing pieces of the object’s earlier state, such that their concatenation in the subtype gives rise to brand-new external states (like $M4$ above)? Do these variables already exist in $virtuo$ at the abstract level, in which case their concrete exposure in the subtype creates new substates (like $M2$ above)? Are these variables orthogonal and so give rise to concurrent states in the subtype, equivalent to state products (like $M3$ above)?

These different views of state refinement are in conflict. To help resolve the issue, the contrasting refinements $M2$, $M3$ and $M4$ are examined in more detail. The $M3$ refinement can be shown to be more general than $M2$. By flattening $M2$, a statechart is obtained in which all a-transitions target the default initial substate, $S2.1$. The product machine obtained by flattening the $M3$ refinement is more sophisticated, since the a-transitions go from $S1/4$ and $S1/5$ to $S2/4$ and $S2/5$ respectively. $M3$ is more sensitive to orthogonal behaviour than $M2$. It is reasonable to assume that subtype objects must exhibit orthogonal behaviour at least some of the time, so the $M3$ refinement is preferred over $M2$.

Both $M3$ and $M2$ assume that introduced state variables are exposed as substates of existing states. This contrasts with $M4$, which assumes that entirely new states may be introduced. In $M4$, the c-transition takes an object entirely out of the $S1$ state, whereas in $M3$, the d-transition still leaves the object in its $S1$ state (going from $S1/4$ to $S1/5$). This means that in all contexts and under all firings of d- and e-transitions, the $M3$ object can be abstracted to a $M0$ object, whereas this cannot be done for a $M4$ object. Abstracting away from $M4$ in state $S4$ leaves an object in no recognizable $M0$ state, and furthermore the object will deadlock in this state for any attempt to fire a-transitions. In terms of the π-calculus process algebra [18], $M3$ strongly simulates $M0$, whereas $M4$ only weakly simulates $M0$. This is discussed in section 5.4 below.
Since refinements like $M3$ must eventually be expected, in which full state products are
computed, the notion of hierarchical superstates encapsulating substates, in the style of $M2$,
becomes moot. It is more sensible to think of the old states as being completely partitioned
into new states. Figure 3 illustrates this in a more compelling way. Here, $L2$ is the refinement
resulting from the concurrent composition of $L0$ and $L1$. However, it is irrelevant whether $L0$
is the basis and $L1$ is the supplement, or vice-versa. Whereas in figure 1 it was tempting to
view composition as ordered, such a view cannot be taken here. Accordingly, it cannot be
said that any particular superstate hierarchy is more valid. So, superstates are discarded in
favour of regions, intersecting areas enclosing states that share some common transition
behaviour. In figure 3, regions are shown as dashed outlines. Four intersecting regions can be
identified in $L2$ that correspond to the pairs of simple states in $L0$ and $L1$.

[Figure 3 : Insert figure and caption as close as possible to here]

The process of refining a state machine then becomes a matter of turning states into regions,
whose enclosed states completely partition the original unrefined state. After this, the main
obligation is to ensure that all the transition behaviour of the base object is preserved in the
refined object. Partitioning a state will always split outgoing transitions, for example, the a-
transition from $S1$ is turned into a pair of partial a-transitions from $S1/3$ and $S1/4$. Since
orthogonal behaviour is assumed, these also target separate partitions of $S2$, the states $S2/3$
and $S2/4$. However, what if the behaviours of c, d are not entirely independent of a, b? In this
case, incoming transitions might be retargeted onto different states.

Let a region correspond to a state that is being refined. Retargeting has no adverse effect on
the validity of the refinement, so long as the transition retargets a state within the same region.
Suppose the a-transitions were retargeted onto different states within $S2$. No matter which
target states within region $S2$ are chosen, it is still possible to abstract away to $S2$. In all cases,
the partial a-transitions would be merged in a single transition from $S1$ to $S2$. Retargeting
may select an arbitrary state, or combination of states within the destination region.
Supposing now that the c-transition from $S1/3$ were retargeted outside the $S1$ region, to $S2/4$,
within the different region $S2$. The c message now interacts unfavourably with the alternating
behaviour of a, b. This means that a sequence $<c$, $a>$ will deadlock from $S1/3$. While this
modification is not compatible with $L0$, it is compatible with $L1$. Retargeting must therefore
be considered with respect to the compatibility relation desired between specific machines.
From these considerations, a simplified set of rules for state and transition refinement may be obtained. Note that this approach comes entirely out of a theory of state partitioning, so it belongs alongside models of data refinement (see other comparisons in section 2.4). The rules for statechart refinement are expressed operationally, to provide practical guidelines for engineers using a statechart design tool (following the style of McGregor, Cook and Daniels). With respect to the statechart for a given object type, the statechart for a compatible object may introduce additional states, corresponding to the exposure of extra variable products, and additional transitions, corresponding to the introduction of new methods, so long as the following conditions are observed:

- Rule 1: new states are always introduced as complete partitions of existing states, which become enclosing regions;

- Rule 2: new transitions for additional methods do not cross region boundaries, but only connect states within regions;

- Rule 3: refined transitions crossing a region boundary completely partition the old entry/exit transitions of the original unrefined state;

- Rule 4: refined transitions within a region completely partition the old self-transitions of the original unrefined state.

Rule 1 is the fundamental rule, which preserves the hierarchy of state abstractions. It confirms McGregor’s second rule of statechart refinement [15]. It disallows the introduction of new external states, so rules out Cook and Daniels’ refinement by extension (such as MH) [17]. Rule 2 defines limits on state retargeting for new methods, with respect to the chosen compatibility relationship. Section 5.4 discusses how these two rules relate to strong simulation. Rule 3 captures all of Cook and Daniels’ rules about transition splitting and retargeting within a superstate (a region, in our approach). The important generalisation is the complete partitioning of transitions, which ensures that the set of new transitions behaves exactly like the old single transition. Rule 4 is a similar rule to ensure that self-transitions are preserved explicitly in the refinement. These two rules essentially describe the faithful replication of transitions for states that have been partitioned. They ensure that the refined machine is a non-minimal simulation of the original machine.
2.4 Comparisons with Other Refinement Approaches

Under the assumptions of data refinement, the four rules enforce a strict *behavioural consistency* between the refined and original state machines, analagous to *strong simulation* (see section 5.4) in which the existing behaviour is guaranteed in *all future contexts* of usage (no deadlocks). This is stronger than some other trace-based models of consistency, which only look at model executions in the absence of a theory of state and state generalisation. The *invocational consistency* of Ebert and Engels [19] requires the subtype to contain all the traces of the supertype. This is equivalent to Cook and Daniels’ position, described above [17], which only guarantees existing behaviour in the *original context* of usage. Ebert and Engels’ *observational consistency* is weaker still, since it merely requires all the supertype’s traces to be derivable by censoring the subtype’s traces to remove methods that were introduced in the subtype [19].

Other work in this area has independently arrived at similar conditions for data refinement, using formal models of statecharts. Rules 1, 3 and 4 would seem to correspond closely to the *adequacy conditions* of Lano et al. [20]. Rule 2 would seem to correspond to Fiadeiro and Maibaum’s *locality condition* [21]. Complete partitioning is a general condition for adequacy and can be derived as a necessary condition for the theory of a subclass statechart to validate all the axioms of a superclass statechart. It is related to the method subtyping rule [22] which requires the precondition of a refined operation to be no stronger than the precondition of the operation that it replaces [23].

The data refinement model requires certain reasonable assumptions to be made. Methods are terminating, rather than divergent. If this were not so, the introduction of a nonterminating method in a subclass could break a system that used the subclass in the parent’s context. (Arguably, this would also break rule 2, since the transition would have no destination). Objects execute within a single process. If this were not so, a subclass object might not be able to respond to a parent method if it were already livelocked in a parallel process. Other process algebra models with refusals and divergences would be needed to handle these more difficult cases. Other kinds of refinement are possible, including changing the granularity of transitions, splitting one transition into a chain that achieves the same behaviour, or distributing the behaviour of one object over several objects. This requires further rules to relate the composition of behaviours back to a façade object (in the sense of the *Façade*)
design pattern [24]) that could be substituted according to these rules. In general, the
transitions in object-oriented software are complex, involving messages to further objects,
such that the behaviour of a single object depends on many others. Nonetheless, provided that
the states represented in a statechart are directly derivable from the data that an object controls
(this accounts for simple and façade objects) then the above rules will apply.

3 The Generation of Complete Unit Test-Set

In state-based specification and testing approaches [25, 26, 15, 27], the notion of complete test
coverage is based on the exhaustive exploration of states and transitions. However, the nature
of the guarantee obtained after testing varies from approach to approach. The following is an
object-oriented adaptation of the X-Machine testing method [27, 28], which offers stronger
guarantees than other methods, in that its testing assumptions are clear and it tests negatively
for the absence of all undesired behaviour as well as positively for the presence of all desired
behaviour. State-based specifications are developed for individual object types and abstract
interface types. Testing may then be carried out with respect to these specifications. Of
particular interest is the question whether a complete test-set generated for a given type may
be used to test a behaviourally compatible subtype.

3.1 State-Based Specification

The state-based specification of an object type presumes that the object exists in a series of
states. These are chosen by the designer to reflect modes in which the object’s methods react
differently to the same message stimuli (the property of having state is due to state-contingent
response and has nothing to do with the object having quiescent periods [11]). The possible
states of an object type ultimately derive from different ways of partitioning the Cartesian
product of its attribute domains [14, 15]. More abstractly, the states of an interface type may
be characterised as a complete partition of the product of the ranges of its (abstract) access
methods. Since access methods yield a projection on the concrete state of any compatible
object, the partitions formed by abstract states are bound to include the object’s concrete
states. This motivates the establishment of formal compatibility relations between abstract
interface machines and the concrete object machines, which refine them.

[Figure 4 : Insert figure and caption as close as possible to here]
Figure 4 illustrates the state-based specification for a Stack. This could be considered as specifying a concrete object type, a linked Stack existing in the Empty and Normal states. The preferred interpretation is that it specifies an abstract interface type, existing in at least these two states, which are subject to refinement in subtypes. A syntactically correct state transition diagram has a unique transition to the initial state (to Empty, in figure 4) and may have one or more transitions to a final state, a mode in which all behaviour is terminated (in figure 4, the pop transition from Empty raises an exception, so leads to a final error state denoting a corrupted object representation). For completeness, the state transition diagram must define a transition for each method in every state. However, suitable conventions may be adopted to simplify the drawing of the diagram, in particular, to establish the meaning of missing transitions. Figure 4 is a simplified diagram, in which the omitted transitions for access methods size, empty and top may be inferred implicitly as self-transitions in every state.

It must be possible to determine the desired behaviour of the object, in every state, and for each method. If more than one transition with the same method label exits from a given state, the machine is nondeterministic. Qualifying the indistinguishable transitions with mutually exclusive, exhaustive guards will restore determinism (in figure 4, ambiguous pop transitions exiting the Normal state are guarded). Certain design-for-test conditions may apply, to ensure that an exemplar test object can be driven deterministically through all of its states and transitions [27]. For example, in order to know when the final pop transition from Normal to Empty is reached, the accessor size is required as one of Stack’s methods.

3.2 State-Based Test Generation

When testing from a state-based specification, the objective is to drive the object under test (OUT) into all of its states and then attempt every possible transition (both expected and unwanted) from each state, checking afterwards which destination states were reached. The OUT should exhibit indistinguishable behaviour from the specification, to pass the tests. It is assumed that the specification is a minimal state machine (with no duplicate, or redundant states), but the tested implementation may be non-minimal, with more than the expected states. These notions are formalised below.

The alphabet is the set of methods \(m \in M \) that can be called on the interface of the OUT (including all inherited methods). The OUT responds to all \(m \in M \), and to no other methods
(which are ruled out by the syntactic checking phase of the compiler). This puts a useful upper bound on the scope of negative testing.

The OUT has a number of control states \(s \in S \), which partition its observable memory states. A control state is defined as an equivalence class on the product of the ranges of the OUT’s access methods. If a subset \(A \subseteq M \) of access methods exists, then each observable state of the OUT is a tuple of length \(|A| \). Formally, tuples fall into equivalence classes under exhaustive, disjoint predicates \(p : Tuple \rightarrow Boolean \), where each predicate \(p \) corresponds to a unique state \(s \in S \). In practice, these predicates are implemented as external functions \(p : Object \rightarrow Boolean \) invoked by the test harness upon the OUT : \(Object \), which detect whether the OUT is in the given state using some combination of its public access methods.

Sequences of methods, denoted \(<m_1, m_2, \ldots>, m \in M\), may be constructed. Languages \(M^0 \), \(M^1 \), \(M^2 \), \(\ldots \) are sets of sequences of specific lengths; that is, \(M^0 \) is the set of zero-length sequences: \(\{<>\} \) and \(M^1 \) is the set of all unit-length sequences: \(\{<m_1>, <m_2>, \ldots\} \), etc. The infinite language \(M^* \) is the union \(M^0 \cup M^1 \cup M^2 \cup \ldots \) containing all arbitrary-length sequences. A predicate language \(P = \{<p_1>, <p_2>, \ldots\} \) is a set of predicate calls, testing exhaustively for each state \(s \in S \).

In common with other state-based testing approaches, the \textit{state cover} is determined as the set \(C \subseteq M^* \) consisting of the shortest sequences that will drive the OUT into all of its states. \(C \) is chosen by inspection, or by automatic exploration of the model. An initial test-set \(T^0 \) aims to reach and then verify every state. States are verified by executing every state predicate for each reached state, expecting only one predicate to yield true and the rest false. This is accomplished by computing test sequences: \(C \otimes P \), where \(\otimes \) is the concatenated product, which appends every sequence in \(P \) to every sequence in \(C \).

\[
T^0 = C \otimes P
\] \hspace{1cm} (1)

A more sophisticated test-set \(T^1 \) aims to reach every state and also exercise every single method in every state. This is constructed from the \textit{transition cover}, a set of sequences \(K^1 = C \cup C \otimes M^1 \), which includes the state cover \(C \) and the extra product term \(C \otimes M^1 \), denoting the attempted firing of every single transition from every state. The states reached by the transition cover are again validated by concatenating all singleton sequences \(<p> \in P \).
\[T^1 = (C \cup C \otimes M^1) \otimes P \] (2)

An even more sophisticated test-set \(T^2 \) aims to reach every state, fire every single transition and also every possible pair of transitions from each state. This is constructed from the switch cover, an augmented set of sequences \(K^2 = C \cup C \otimes M^1 \cup C \otimes M^2 \), which explores every single and every pair of transitions from each state, and, as above, the product with \(P \) to verify all reached states. In this, the extra product term \(C \otimes M^2 \) denotes the attempted firing of all pairs of transitions from every state.

\[T^2 = (C \cup C \otimes M^1 \cup C \otimes M^2) \otimes P \] (3)

In a similar fashion, further test-sets are constructed from the state cover \(C \) and low-order languages \(M^k \subseteq M^* \). The reached states are always verified using \(<p> \in P \), for which exactly one should return true, and all the others false. The desired Boolean outcome is determined from the model. Each test-set subsumes the smaller test-sets of lesser sophistication in the series. In general, the series can be factorised and expressed for test-sets of arbitrary sophistication as:

\[T^k = C \otimes (M^0 \cup M^1 \cup M^2 \ldots M^k) \otimes P \] (4)

For the Stack shown in figure 4, the alphabet \(M = \{\text{push}, \text{pop}, \text{top}, \text{empty}, \text{size}\} \). Note that \textit{new} is not technically in the method-interface of \textit{Stack}. It represents the default initial transition, executed when an object is first constructed, which in the formula is represented by the empty method sequence \(<>\). The smallest state cover \(C = \{<>, <\text{push}>\} \), since the “final state” can be treated as a required exception raised by \textit{pop} from the \textit{Empty} state. Other sequences are calculated as above. Test-sets generated from this model may be used to test any \textit{Stack} implementation that has identical states and transitions, for example, a \textit{LinkedList}, which uses a linked list to store its elements.

3.3 Test Completeness and Guarantees

The test-sets produced by this formula have important completeness properties. For each value of \(k \), specific guarantees are obtained about the implementation, once testing is over. The set \(T^0 \) guarantees that the implementation has \textit{at least} all the states in the specification. The set \(T^1 \) guarantees this, and that a \textit{minimal} implementation provides exactly the desired state-transition behaviour. The remaining test-sets \(T^k \) provide the same guarantees for non-
minimal implementations, under weakening assumptions about the level of duplication in the states and transitions.

A redundant implementation is one where a programmer has inadvertently introduced extra “ghost” states, which may or may not be faithful copies of states desired in the specification. Test sequences may lead into these “ghost” states, if they exist, and the OUT may then behave in subtle unexpected ways, exhibiting extra, or missing transitions, or reaching unexpected destination states. Each test-set T^k provides complete confidence for systems in which chains of duplicated states do not exceed length $k-1$. For small values of k, such as $k=3$, it is possible to have a very high level of confidence in the correct state-transition behaviour of even quite perversely-structured implementations.

Both positive and negative testing are achieved. As an example of the latter, it is confirmed that sequences of access methods do not inadvertently modify object states. Testing avoids any uniformity assumption [29], since no conformity to type need be assumed in order for the OUT to be tested. Likewise, testing avoids any regularity assumption that cycles in the specification necessarily correspond to implementation cycles. When the OUT “behaves correctly” with respect to the specification, this means that it has all the same states and transitions, or, if it has extra, redundant states and transitions, then these are semantically identical duplicates of the intended states in the specification. Testing demonstrates full conformity up to the level of abstraction described by the control states.

The state-based testing approach described here is an adaptation of the X-Machine approach for complete functional testing [27, 28], replacing input/output pairs with method invocations. The need for “witness values” in the output is eliminated by the guaranteed binding of messages to the intended methods in the compiler. The test generation method adapts Chow’s W-method for testing finite state automata [25]. In Chow’s method, states are not directly inspectable. Instead, reached states are verified by attempting to drive the implementation through further diagnostic sequences chosen from a characterisation set $W \subseteq M^*$, each state uniquely identified by a particular combination of diagnostic outcomes. Here, it is guaranteed that the OUT’s state is inspectable, since it must be characterised by some partition of the product of the ranges of its access methods.
4. Object Refinement and Test Coverage

The notion of behaviourally-compatible refinement introduced in section 2 applies equally to the realisation of interfaces in the UML sense that a concrete class implements an abstract interface [11] and also to the specialisation of object subtypes. In both cases, the notion of refinement is explained in terms of deriving a more elaborate state transition diagram by subdividing states and adding transitions to a basic diagram. This paper also considers that an incremental modification of an object that preserves all of its existing behaviour, in the sense of XP’s incremental design with refactoring [5, 6], constitutes a refinement in the same sense. Incremental modification in response to new requirements typically replaces simple solutions with more complex ones, having more states and transitions.

At the unit-testing level, individual OUTs tend to become more complex. It is also possible, when refactoring an entire subsystem [30, 5], for certain objects to become simplified, at the expense of introducing new objects, or shifting the complexity onto other objects, or by deleting unnecessary code. This not considered in any detail here, because it usually involves altering interfaces at the unit level. However, if a collection of objects is refactored behind a façade, this interface can be verified according to the theory of compatibility.

4.1 Refinement of More Concrete Specifications

Figure 5 illustrates the object statechart for a DynamicStack, an array-based implementation of a Stack. This is taken to model a concrete refinement of the abstract Stack illustrated in figure 4, similar to the UML notion of realising an interface with a type that provides all the required methods. To demonstrate that the DynamicStack can be plugged safely into a system that requires at least an abstract Stack, the statechart in figure 5 must be proven compatible with the statechart in figure 4, according to the behavioural theory. Alternatively, if figure 4 is taken to represent the states and transitions of a concrete Stack with a linked list-based implementation, then figure 5 can be understood as a change in implementation policy, similar to incremental redesign in XP. In this case, the modified object must also be shown to be substitutable for the original one.

[Figure 5: Insert figure and caption as close as possible to here]
The main difference between the DynamicStack and the earlier Stack statechart is that the old Normal state, now only shown as a dashed region, has been partitioned into the states \{Loaded, Full\}, in order to model the dynamic resizing of the DynamicStack (push will behave differently in the Full state, triggering a memory reallocation). This is a complete partition (no other substate of Normal exists), so rule 1 is satisfied. No new methods are introduced, so rule 2 is not applicable. This is a characteristic of refinements that exactly satisfy an abstract specification. Even though no new methods are added, the partitioning of states will result in the splitting of transitions for the existing methods.

The Normal state’s old entry and exit transitions now cross over the region boundary, reaching the exposed Loaded state. The new pair of push, pop transitions exactly replaces the old pair (without splitting), so rule 3 is satisfied. The Normal state’s old self-transitions are now replicated inside the region, as a consequence of splitting the state. The former push transition is first split in two (one replication for each new state) and then the transition from Loaded is split again, with exclusive guards on size. Similarly, the former pop transition is replicated for each new state and its former guard: size() > 1 is preserved in both states; however, the guard need not be notated in the Full state, as there is no other conflicting pop transition. So, rule 4 is also satisfied. The refined DynamicStack implementation (in figure 5) is therefore compatible with the original Stack interface’s behaviour (in figure 4).

4.2 Regression Test Coverage of Concrete Realisations

Next, the issue of regression test coverage is considered. Increasing the state-space has important implications for test guarantees. Consider the sufficiency of the T² test-set, generated from the abstract Stack specification in figure 4. This robustly guarantees the correct behaviour of a simple LinkedStack implementation with \(S = \{Empty, Normal\} \), even in the presence of “ghost” states. \(T² \) will include one sequence \(<push, push, push, isNormal>\), which robustly exercises \(<push, push>\) from the Normal state and will even detect a “ghost” copy of the Normal state. A strong guarantee of correctness after testing may therefore be given for a LinkedStack implementation.

In classical regression testing, saved test-sets are reapplied to modified or extended objects in the expectation that passing all the saved tests will provide the same level of confidence in the modified object after testing. If the Stack’s T² test-set (related to the switch cover criterion)
were reused to test a DynamicStack constructed with \(n \geq 3 \), so having all the states \(\{\text{Empty, Loaded, Full}\} \) and all the transitions shown in figure 5, the resizing push transition would never be reached, since this requires a sequence of four push methods. To the tester, it would appear that the DynamicStack had passed all the saved \(T^2 \) tests, even if a fault existed in the resizing push transition. This fault would be undetected by the saved test-set. This provides initial evidence that regression testing is less useful than generally supposed. Note that the testing guarantee that applied in the original case is broken, despite the intention not to modify any of the Stack’s abstract behaviour in the refinement. This is because the state space has increased, resulting in more transitions to cover in the refinement.

4.3 Refinement of Extended and Subtype Specifications

A common refinement in object-oriented programming is subclassing, in which the subclass extends its parent class, adding extra attributes and methods. The statechart for the subclass is a refinement of the parent statechart, in which the extra attributes and methods result in a partitioning of states and the introduction of new transitions for the extra methods. If the subclass’s statechart can be proven compatible with the parent’s statechart, then it describes a behavioural subtype, whose instances may be safely substituted where the parent type was specified. However, subclass extensions may break the conditions for subtyping, if they change the semantics of the parent’s methods. This is easily detected in the theory of behavioural compatibility.

Figure 6 illustrates the development of a class hierarchy leading to concepts like the loaned items in a lending library. The upper state machine describes the abstract behaviour of a Loanable entity, which oscillates between its Available and OnLoan states. The lower state machine describes a LoanItem entity that extends the Loanable entity. This is a product machine (see section 2.3) with four states, resulting from the concurrent composition of the Loanable machine with a supplementary Reservable machine (not illustrated), which, it may be inferred, oscillates between Unreserved and Reserved states. The resulting four states are named \(\{\text{OnShelf, PutAside, NormalLoan, Recalled}\} \). However, in LoanItem, the behaviours of loaning and reserving have been made dependent on each other.

[Figure 6 : Insert figure and caption as close as possible to here]
The refined LoanItem machine must be checked for behavioural compatibility with the abstract Loanable machine. The four LoanItem states completely partition the two states of Loanable, so rule 1 is satisfied. The new methods \{reserve, cancel\} introduced in LoanItem stay within the prescribed region boundaries, so rule 2 is satisfied. This is a characteristic of subclass refinements which orthogonally compose the behaviour of the parent (Loanable) with the behaviour of the incremental extension (the putative Reservable, a kind of mixin-class [31]). However, elsewhere in this example, behaviours are not completely independent. In the subclass, the borrow method has been redefined to take reservations into account.

Considering now the splitting of transitions required by rule 3, whereas return has correctly been split as a consequence of partitioning OnLoan into two states \{NormalLoan, Recalled\}, the refinement of the old borrow transition is more problematic. One partial transition from OnShelf allows the loan to go ahead. The other partial transition from the PutAside state is guarded, and only succeeds if the LoanItem is borrowed by the same person who reserved it previously. While such behaviour is reasonable, it makes LoanItem incompatible with Loanable. The refinement of the borrow transition breaks rule 3, since the partials are not a complete partition of the original. From Loanable’s perspective, borrow always succeeds from the Available state, whereas it sometimes fails for a LoanItem.

This illustrates how easy it is to make an adaptation in a subclass which breaks subtyping. In formal terms, the redefined borrow has strengthened the precondition of the method it replaces, which violates operation refinement. Strengthened preconditions can be related to covariant argument redefinition [23], which is known to break subtyping [32]. In this situation, a designer can either decide to accept that the subclass is not compatible with the parent class and so refuse to allow programs to alias a LoanItem through a Loanable variable (this can be enforced using private inheritance in C++, for example). Alternatively, the specification of Loanable can be revisited and generalised to permit the desired compatibility, which may be restored by adding a borrow transition from the Available state to itself, in the Loanable abstract class, indicating the anticipated null operation. The abstract state machine is then nondeterministic, since the choice of the successful or failing borrow transition cannot yet be determined (it depends on information revealed in the subclass). This is formally correct, and corresponds to axiomatic treatments in which the supertype is left deliberately underspecified [23]. The programmer may still provide the obvious default implementation of borrow in Loanable which always succeeds, since this satisfies the specification.
4.4 Regression Test Coverage of Extended Objects

Next, the extent of the coverage of extended objects provided by saved regression tests is examined. The subtype-incompatible refinement of figure 6 will be considered, without the suggested retrospective modification. Assuming that a T^2 test-set is generated from the Loanable specification in figure 6, this will robustly confirm whether borrow and return succeed and fail correctly for a Loanable instance, even in the presence of “ghost” versions of the OnLoan and Available states. Strong guarantees of correctness are offered by a successful test outcome.

However, when the same tests are reapplied to the extended LoanItem, they will only cover half of the partitioned states. The saved T^2 test-set includes the sequences: $\{<\text{isAvailable}>, <\text{borrow, isOnLoan}>, <\text{return, exception}>, <\text{borrow, return, isAvailable}>, \ldots\}$ and naturally no sequence will contain reserve or cancel, which are first introduced in the subclass’s protocol. The saved test-set will therefore oscillate between the states $\{\text{OnShelf, NormalLoan}\}$ and will not reach the states $\{\text{PutAside, Recalled}\}$. Because of this, only half of the borrow and return transitions will be exercised in the refinement, compared to all of them in the original. This runs counter to the intuitions of programmers, who tend to believe that regression tests exercise all of the parent’s functionality in the subclass.

Consider how serious this is. Partitioning states always results in splitting transitions. Every pair of methods like $\{\text{borrow, return}\}$ and $\{\text{reserve, cancel}\}$ introduces further partitions in every existing state. The proportion of the original transitions that are still covered by a saved test suite falls off as a geometrically decreasing fraction in each successive refinement.

Contrary to popular expectations that recycled regression tests positively confirm the parent’s behaviour in the subclass, regression tests actually cover significantly less of the parent’s state-space in each successive subclass and may eventually cover only a trivial portion. To re-emphasise the point, the failure exposed here has nothing to do with testing new methods that are introduced in the subclass. It is clear that regression tests are not designed to do this.

Rather, the issue is that regression tests fail to test the original behaviour.

Finally, this example also demonstrates how regression testing cannot reliably determine whether a refinement is compatible. If the designer expected borrow always to succeed, as it does in Loanable, then no amount of testing with any saved test-set will reveal that borrow sometimes fails in LoanItem. To reveal this requires a particular interleaving of methods from
Loanable and LoanItem. In practice, programmers write extra tests to do this, although manual test creation is risky, since the appropriate interleaving may not be discovered. The point here is that regression tests alone are insufficient.

5. Regression Testing versus Test Regeneration

The weakness in conventional regression testing comes from recycling saved test-sets as a whole. In object-oriented testing, this culture goes back to the parallel design and test architecture [1, 2] (see section 1), in which test-suites are saved as methods of the THO and are inherited for reuse as a whole. Likewise, supplementary test-sets for the refined object are encapsulated and may not interact fully with the original behaviour. The prospect of reusing whole test-suites is so beguiling, that it is hard to refuse, especially after the effort invested in developing the tests in the first place. In test-driven development with JUnit [3, 4], test scripts are saved and recycled as a whole, in the expectation that this provides protection against the effects of entropy in modified code. However, the theory of object state refinement presented in this paper (see section 2 above) predicts that the entropy of modified objects may increase, and not be detected, despite their passing all the saved tests.

5.1 Overestimation of Regression Test Coverage

Programmers tend to overestimate the effectiveness of regression testing. Naturally, they do not expect the regression tests to exercise any new features introduced in the refinement. For this, they develop additional tests, exercising the new features alone and in combination with old features. However, they do expect the regression tests to exercise all of the original features adequately, as demonstrated in some of the citations in section 1 above. In talking to testers in industry, the author has found this fallacy to be quite persistent.

One explanation for this could be that programmers have a different mental model of how modifications and extensions affect the state-space. This can be ascribed to an impoverished view of refinement that corresponds to the discredited model $M4$ (see section 2.2 above), in which new external states and transitions are added in a linear fashion to the original machine. If this were the appropriate model, then clearly the saved tests would appear to cover all of the parent’s state-space in the subclass. In reality, the state-space of the parent is partitioned in the subclass, rather than extended, more like the model $L2$ (see section 2.3
above). This is what causes the progressive loss of coverage, as parent transitions are split into partials, of which at most half are exercised in the subclass (and possibly fewer than this, depending on how many times the state-space is partitioned by new methods).

Unfortunately, recycled test-sets always cover significantly less of the parent’s state-space in the subclass than they did in the parent. As the state-space of the modified or extended object increases, by a factor of two for each state subdivision, the confidence offered by retesting is progressively weakened. The saved tests only cover a half, a quarter, an eighth, and so on, of the original object’s state space in each successive refinement. This seriously undermines the validity of popular regression testing approaches, which are based on the reuse of inherited test-sets [1, 2] or saved and recycled test suites [3, 4].

Given the geometric decrease in coverage, it is difficult to quantify how useful the saved test-sets are, if regression tests are all that is available. One possible measure is the static coverage of the saved test-set, expressed as the fraction of the original state space covered in the refinement, by the same tests. However, this ignores the dynamic usage of the system. Instead, a weighted statistical coverage of the saved test-set may be calculated from the frequency that saved tests exercise used parts of the refined system, based on collecting sets of traces from live usage of the refined system. This kind of reassurance is questionable, since testing is incomplete and offers no useful guarantees.

5.2 Completeness of Regenerated Test Sets

To achieve complete coverage of the refined machine, it is vital to test systematically all the interleavings of new methods with the inherited methods, so exploring the refined state-transition diagram completely. This simply cannot be done reliably by human intuition and manual test-script creation. Instead, the complete test-sets for refined object types, such as the DynamicStack or the LoanItem introduced in section 4, must be regenerated from scratch, using an algorithm based on the formula from section 3. If programmers are willing to accept even simple specifications that idealise the behaviour of an object as a finite state machine, this process can be fully automated, generating test-sets to the desired T¹, T², T³… confidence levels. This test-generation approach has been used successfully in testing automotive systems with hundreds of thousands of states and millions of transitions [33].
Regenerated tests are not regression tests in the conventional sense, but all-new tests in which
the state-space of the refined OUT is fully explored. The tests must be regenerated from
scratch, because there is no predictable way in which the regenerated sequences could be
derived by extending the original test sequences, without reference to an exploration of the
derived object’s state space. For convenience’s sake, the additional tests required to test the
refined object could be isolated a posteriori by computing the set difference of the two test
sets: $T^k(\text{Refined}) - T^k(\text{Basic})$, for some confidence level k, but this would still require
computing the refined set $T^k(\text{Refined})$ from scratch, in any case. So, the cheapest policy is to
regenerate all-new tests for each refined specification.

However, regenerated tests do satisfy the expectations of regression testing, in that they test up
to the same confidence-levels as the original tests. In common with all test-sets generated
using the object X-machine method, regenerated tests provide specific guarantees for specific
amounts of testing. Because the test-sets are generated systematically, the tester may choose
whether to test using T^1, T^2, T^3… etc. up to the desired level of k in the test generation
formula (see section 3.2). The significance of this is that the same levels of guarantee may be
provided for both the original and retested objects, something that is not possible with
conventional regression testing using recycled test-sets, for which the the level of confidence
is progressively weakened in each new context.

Regenerating a test-set works equally well, whether or not the OUT is a behaviourally
compatible refinement of some original object, since the test-set is derived directly from the
refined specification. For this reason, the proposed test regeneration approach is robust under
all kinds of software evolution, whether this is by subclassing, by incremental design, by
refactoring or by simple textual editing of the OUT, and works independently of behavioural
compatibility, which must be judged separately.

5.3 Determining Behavioural Compatibility

According to the opinions cited in section 1, a major goal of regression testing is to provide
reassurance that a modified object is still behaviourally compatible with its unrefined
precursor. Regression testing seeks to confirm this by testing the refined object, until it passes
the saved tests [2, 3, 5, 6, 7]. However, this expectation was shown to be fallacious. Section
4.3 demonstrated how a subclass (LoanItem) may violate the behaviour of its parent

page 24
(Loanable), by the redirection of just one of its transitions away from the semantically-consistent target state (one of the three partials of the borrow transition). The regression tests could not detect that the semantics of the object had changed (see section 4.4). However, the rules for behavioural compatibility were able to determine this (see section 4.3).

This paper seeks to turn a number of regression-testing concepts on their head. Compatibility cannot be assured directly through re-testing a modified object up to the original specification, as is conventionally expected. Instead, compatibility can be assured by a combination of testing up to the refined specification and then by verifying that the refined specification is compatible with the original specification in a formal model. Figure 7 shows the difference between the two philosophies.

[Figure 7 : Insert figure and caption as close as possible to here]

Compatibility is defined in this paper as a verifiable refinement relationship between two object specifications. Testing only has the power to confirm that each OUT conforms to its own specification, using a specific test-set generated from that specification (the B-test and R-test sets in figure 7). The refined OUT is then proved compatible with the basic specification by virtue of the transitive composition of the testing relationship (R-test conforms, in figure 7) and the verification relationship (refines, in figure 7). This is a novel combination of formal verification and practical testing.

The general rules for verifying compatible statechart behaviour were presented in section 2.3. These rules provide a framework for comparing earlier work. A scale of strictness may be established, from the weakest approach of trace censoring (cf. Ebert and Engels’ observational consistency [19]), via the intermediate trace inclusion of Cook and Daniels [17] and classical automata theory [9] (cf. Ebert and Engels’ invocational consistency [19]), up to the strictest state and transition partitioning approach adopted here, which includes McGregor’s refinement rules [14, 15], the adequacy conditions of Lano et al. [20] and Fiadeiro and Maibaum’s locality condition [21]. The difference between weak and intermediate compatibility is the collapsing, versus the preservation of transition paths. The key difference between intermediate and strict compatibility is the strict insistence that new states are partitions of existing states.
Strict compatibility has important practical consequences, where objects are aliased simultaneously by handles of many types. This is in fact quite common in object-oriented design, where generic algorithms are factored into parts introduced at different levels in the inheritance hierarchy (see the Template Method design pattern [24], p335). In this context, an object may be manipulated by more than one protocol, and messages from the different protocols may be interleaved, which may sometimes cause deadlocks [34, 35].

5.4 Comparison with Weak and Strong Simulation

The difference between strict and intermediate compatibility may be explained in terms of concepts in process calculus. Cook and Daniels’ [17] examples of statechart refinement are equivalent to the classical refinement of automata, which judges behavioural compatibility by trace inclusion [9, 19]. Milner’s π-calculus [18] defines compatibility more subtly, taking into account the effects of nondeterministic choice and invisible τ-actions. Of particular interest is the distinction between weak and strong simulation. An automaton weakly simulates another, if its observed behaviour is identical, under the null assumption about invisible τ-actions (viz. that they do not affect behaviour). An automaton strongly simulates another, if its observed behaviour is identical in all contexts, irrespective of the τ-actions’ unseen behaviour.

Suppose that a subtype object is aliased through a supertype handle. An analogy with π-calculus may be drawn by comparing the supertype’s protocol to visible actions, and the subtype’s additional protocol to invisible τ-actions (from the supertype’s point of view). So long as the subtype object is manipulated only through the protocol of the supertype, it will behave in a conformant way (under both intermediate and strict compatibility). However, if the subtype object is also aliased by a subtype handle, it may be manipulated in ways that are unforeseen by the supertype. Section 2.2 above showed how an $M4$ object (see figure 2) could be manipulated through the protocol of $M0$, until it receives $<c>$ through the $M4$ protocol, at which point the $M0$ protocol deadlocks. $M4$ is therefore not strictly compatible with $M0$, although it clearly includes the traces of $M0$. For this reason, $M4$ only weakly simulates $M0$. By contrast, in section 2.3 the $L2$ object strongly simulates $L0$ (see figure 3). It always behaves in the identical way to $L0$, even under arbitrary interleaving of messages from the $L1$ protocol (which are invisible from $L0$’s point of view).
The strict behavioural compatibility described in this paper is therefore like strong simulation, because the protocol of the supertype is preserved, under arbitrary interleaving of subtype protocols. This is achieved by making sure, in refinement rules 1 and 2, that invisible actions cannot force a refined object into a state that is unrecognised by its supertype’s protocol. The rules are therefore normative, since strong simulation immediately follows. This is a significant advantage for designers, who may use the statechart refinement rules without reference to a more detailed trace analysis.

5.5 Conclusion: Guarantees of Repeatable Quality

The goal of all verification and testing is to assure the quality of the software end product. The analysis developed in this paper has seriously undermined the validity of conventional regression testing as a quality control mechanism to confirm behavioural properties. Regression testing can neither assure the conformant behaviour of modified or extended objects up to some original specification, nor can it assure the correctness of inherited or preserved functionality in extended objects. This is because the recycled tests exercise significantly less of the original specification in the refinement than they did in the unrefined precursor, such that modified and re-tested objects may be considerably less secure, for the same testing effort.

By contrast, the theory of statechart refinement provides a strong guarantee of behavioural compatibility. It is more expressive than Liskov and Wing’s behavioural subtyping [16], which adds new transitions but admits no new states [34]. It eliminates protocol deadlock under polymorphic aliasing, a stronger guarantee than that provided by some earlier statechart refinement approaches [17, 19]. For non-divergent processes, the new rules are equivalent to Milner’s strong simulation [18], guaranteeing conformant behaviour notwithstanding any future actions taken in the protocols of subtypes. Having a practical means of guaranteeing behavioural compatibility is a relatively new benefit for object-oriented programming, which conventionally judges compatibility only in terms of interface matching.

To satisfy the requirement for a method that can test whether an object conforms to some supertype specification, a new approach was developed. Complete functional test-sets are regenerated systematically from each refined or extended statechart specification. Conformity to a supertype specification is then assured by a combination of rigorously testing up to the
refined specification and then verifying in the theory that this conforms to the supertype specification. In the test regeneration approach, it is possible to provide strong guarantees for specific levels of confidence in the OUT once testing is over. Furthermore, after the OUT has been refined, the same levels of confidence may be retained after re-testing using fully regenerated test-sets. This notion of guaranteed, repeatable quality is a new and important concept in object-oriented testing.

Acknowledgement

This research was undertaken as part of the MOTIVE project (Method for Object Testing, Integration and Verification), supported by UK EPSRC GR/M56777.

References

Figures to be Inserted in the Main Text

Figure 1. McGregor’s structural statechart refinements

Figure 2. Cook and Daniels’ additional statechart refinements
Figure 3. The model of behaviourally-compatible refinement

Figure 4. Abstract state machine for a Stack interface

Figure 5. Concrete machine for a DynamicStack, realising the Stack interface
Figure 6. General Loanable and specialised LoanItem machines

Figure 7. Contrasting regeneration and regression testing