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Subharmonic Oscillation Modeling and
MISO Volterra Series

Otilia M. Boaghe and Stephen A. Billings

Abstract—Subharmonic generation is a complex nonlinear
phenomenon which can arise from nonlinear oscillations, bifur-
cation and chaos. It is well known that single-input–single-output
Volterra series cannot currently be applied to model systems
which exhibit subharmonics. A new modeling alternative is
introduced in this paper which overcomes these restrictions by
using local multiple input single output Volterra models. The
generalized frequency-response functions can then be applied to
interpret systems with subharmonics in the frequency domain.

Index Terms—Bifurcations, chaos, frequency-response func-
tions, nonlinear oscillations, response spectrum map, subhar-
monics, Volterra series.

I. INTRODUCTION

T HE steady-state output of a linear system driven by a sine
wave will consist of a sine wave of the same frequency but

with a different amplitude and phase. Nonlinear systems driven
by a sine wave may produce new frequency components, in-
cluding components at integer multiples of the input frequency
called harmonics, or new frequency components at fractions of
the input frequency, called subharmonics.

An important practical problem of nonlinear systems which is
particularly evident in mechanical systems is subharmonic dy-
namics. In many industrial fields an important issue is the possi-
bility of controlling subharmonics. Examples of real situations
in which subharmonic generation can be a critical problem are
given for example in Lefschetz [11], Nayfeh and Mook [12],
Ishidaet al.[9], or Ishida [10]. A theoretical interest in studying
subharmonics emerged over the last few decades from the con-
nection between chaos and subharmonics. It has been noticed
[6], [18] that subharmonic generation is the first step on the route
to chaos. Therefore, studying subharmonics may provide more
insight into the phenomenon of chaos.

Motivated by theoretical and practical importance, subhar-
monic oscillations have been studied not only in nonlinear vibra-
tion theory, but also in the context of nonlinear systems, dynam-
ical systems applications and control [16]. Very often, the tools
employed for analysis belong to differential geometry and topo-
logical vector spaces, especially when the subharmonics are as-
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sociated with bifurcations and chaos [8]. However, new methods
of identification and analysis which allow subharmonic systems
to be easily studied are needed before controller design proce-
dures can be investigated and developed.

In this paper, the main objective is to introduce a new
way of modeling and interpreting systems which exhibit
subharmonics. For such systems, single-input–single-output
(SISO) Volterra models cannot currently be used to model
systems which can produce subharmonic oscillations. A new
modeling approach is introduced in this paper which overcomes
these restrictions by using local multiple-input–single-output
(MISO) Volterra models. The advantage of the new approach
is that all the existing knowledge regarding the interpretation,
analysis, and properties of Volterra models can be applied to
reveal new insights into subharmonic systems. In particular, the
generalized frequency-response functions (GFRFs) which are
the frequency-domain equivalents of the Volterra kernels can
be used to study subharmonic systems in the frequency domain.

The paper is organized as follows. In Section II, the the-
oretical background to the Volterra series in both time and
frequency domain is briefly reviewed. The main definitions
and properties for subharmonic oscillations are summarized
in Section III. In Section IV, a new modeling methodology is
introduced for subharmonic systems, based on MISO Volterra
series. This methodology is applied to the Duffing–Ueda
and Duffing–Holmes oscillators. The simulation examples
described in this paper show that combining subharmonic mod-
eling with the nonlinear GFRFs or transfer-function generation
may indeed reveal new features of a system exhibiting subhar-
monics. The new modeling principle is expected to improve
the understanding of the complex problem of subharmonic and
chaos generation.

II. V OLTERRA SERIES INTIME AND FREQUENCYDOMAIN

The importance of the Volterra series became apparent when
Wiener [17] applied the Volterra series to an investigation of a
nonlinear circuit response by relating the system input to
the output by a functional series given by

(1)
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The quantities in (1) are known askernels
of order , or the -order impulse response functionsof the
system.

The initial studies on Volterra series addressed fundamental
issues such as existence, convergence and uniqueness. In prac-
tical problems only a finite Volterra series can be used, also
called atruncated Volterra seriesor polynomial Volterra se-
ries. In particular, Boyd and Chua [4] concluded that systems
with fading memory may be approximated arbitrarily well by
truncated Volterra series. The condition offading memoryis a
stronger version of continuity [4], [15]. Generally speaking, a
system with fading memory is one for which the dependence
on the input decreases rapidly enough with time. The fading
memory requirement however means that the class of systems
with multiple equilibria [4] cannot be represented by a single
Volterra model. For these systems, a valid unique global Volterra
series representation will not exist. An example is the Duffing
oscillator which has more than one equilibrium point in general
and in consequence a global unique Volterra series to represent
the dynamics around all these points at the same time does not
exist.

From the nonlinear-system-analysis perspective, the Volterra
series kernels are very useful in describing the system input-
output behavior and in finding system properties in a manner
which is independent of the input. The Volterra kernels are usu-
ally studied in the frequency domain, where almost all types of
useful mathematical operations in the time-domain are trans-
formed into algebraic operations. The Fourier transform of the
kernels in the Volterra series (1) is called the

-order GFRFof the system [7]

(2)

The GFRF can also be found in the literature with the namefre-
quency-domain Volterra kernel[3], or nonlinear transfer func-
tion [5]. It is the generalized response function representation
which is used in this paper to interpret, analyze and understand
a state with subharmonics.

III. SUBHARMONICS: DEFINITIONS AND TERMINOLOGY

Nonlinear systems in the presence of forced oscillations and
under suitable conditions admit subharmonics as a steady-state
solution. Subharmonics are components where the frequency is
an integral submultiple of the driving frequency. Subharmonic
oscillations have been encountered in many types of systems,
including systems which are parametrically excited, stationary
or nonstationary. Subharmonics have been detected in both non-
linear discrete systems with finite degrees of freedom and in
continuous systems (beams, strings, plates, membranes) with
infinite degrees of freedom. Many terms have been associated
with subharmonic phenomena, including frequency demultipli-
cation ([12]), subharmonic resonance ([16]), and subharmonic
oscillation ([16], [14]).

A direct application of Volterra series in the study of subhar-
monics is not possible as long as systems with subharmonics

have infinite memory, and therefore they do not belong to the
Volterra class of systems. In the Section IV, a new methodology
is proposed in an attempt to overcome several restrictions asso-
ciated with existing methods for modeling systems with subhar-
monics. The new approach is based on using the MISO Volterra
models and will be illustrated using the Duffing oscillator. The
new models are then further analyzed in both the time and the
frequency domain to illustrate the simplicity and advantages of
the new approach.

IV. M ODELING SUBHARMONICS WITH

MISO VOLTERRA SERIES

As noted above, it is impossible to model subharmonics with
the SISO Volterra series, because the Volterra series respond to
a periodic excitation with a periodic signal with the same pe-
riod. However, if the given input could be modified somehow to
create an input with a period equal to the subharmonic oscilla-
tion, the Volterra series modeling could be applied. In this sec-
tion, the possibility of modeling subharmonics with the MISO
Volterra series is investigated for the first time.

It is well known that initial conditions are crucially impor-
tant for a subharmonic to exist in a nonlinear system. Conse-
quently, subharmonics cannot be produced in a Volterra system,
where the dependence on the initial conditions gradually fades
out. However, the local Volterra series can be derived for a par-
ticular steady state of the system. If a local Volterra series rep-
resentation exists for a state of the system which features sub-
harmonics, then, the local Volterra series will not be expected
to be equal to another local Volterra series, corresponding to a
different state of that system.

The modified input which could be used for Volterra series
modeling of a subharmonic should have the same period as the
subharmonic. If the subharmonic considered for modeling has
the period times the original input period , a modified input

should have the period times the real input period. The
modified input can then be considered to bedimensional,

, with the th component taken
as

(3)

Consequently, for the individual components it can be
verified that

(4)

(5)

To allow for MISO Volterra modeling, the system which gen-
erates subharmonics in the steady statewhen excited with the
input should have the internal structure given in Fig. 1. The
information required for modeling is the orderof the subhar-
monic and the period of the input signal . This information
can be readily obtained by analysing the system, in the form
of a given model or from a system identification study (e.g., a
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(a)

(b)

Fig. 1. Internal structure of a nonlinear system generating subharmonics for
modeling with (a) MISO Volterra series; (b) MISO Volterra series without
cross-productu u terms.

NARMAX model) using a bifurcation diagram and a response
spectrum map. This was illustrated in the examples given in
Billings and Boaghe [1] and will be used in the examples below.

The system given in Fig. 1(a) is composed of a time multi-
plexor and a MISO system . The time multiplexor gener-
ates the -dimensional input , based on
the original input , the subharmonic order, and input pe-
riod . The modified input is applied to the system,
for which the output is the subharmonic . For the system ,
both input and output have the period . Therefore, a
local MISO Volterra model can be identified directly from the
data generated from the simulation.

To simplify the internal system mechanism the Volterra series
to be derived can be prevented from containing cross-product
terms of the type , , so that individual contributions
from every input can be separated in the Volterra model. If
individual contributions at the input are separated, the system
in Fig. 1(b) can be decomposed intoindependent subsystems

, one for every individual input . In this case, the
MISO Volterra model will not contain cross-product terms be-
tween inputs and the GFRFs can then easily be derived for the
individual subsystems .

To summarize, the modeling procedure is given below.
1) Detect a subharmonic steady state using the bifurcation

diagram for a simulated implicit difference or differential
equation, or any other model form.

2) Identify the order and the period of oscillation of
the subharmonic , by visual inspection or using the
response spectrum map [1].

3) Generate an-dimensional modified input based on
the original input , using a time multiplexor.

4) Identify a MISO discrete-time Volterra model for the
system with output and the -dimensional modified
input .

The methodology given above for modeling with the MISO
Volterra series will be applied in the next section to the Duffing
equation, where subharmonics can be generated for example by
the Duffing–Ueda or Duffing–Holmes cases. For both cases, the

Fig. 2. Bifurcation diagram and response spectrum map (plan view) for the
Duffing–Ueda (6).

input considered is a periodic sine wave, however the modeling
procedure given above is not limited to sine waves. The Volterra
series are obtained in the time domain as MISO models based
on just the input or exogenous variables, and the Volterra kernels
are further analyzed in the frequency domain. To illustrate the
ideas in the simplest way, all the examples below start from an
assumed known differential equation model of the system. How-
ever, the method is based on simulations of the system model for
the input and can therefore be just as easily applied to an
identified NARMAX, neural networks, or any other model that
represents the system.

A. Example 1: Duffing–Ueda Equation

In this example, the Duffing equation is considered in the
form also known as the Duffing–Ueda model

(6)

For the present analysis, the Duffing–Ueda (6) was simulated
for and , where . A
fourth-order Runge–Kutta algorithm with an integration interval
of was used to simulate the response of the system to
the sinusoidal input. The input and output signals were further
sampled at periods of s.

For this equation, various dynamic regimes were noticed, for
different amplitudes of the input signal. The bifurcation diagram
and the response spectrum map, for a varying amplitude A of the
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Fig. 3. Modified input signal[u ;u ;u ] with the components: (a)u ; (b)u ;
(c) u ; (d) original input.

input signal , are given in Fig. 2. The response
spectrum map shows that the frequency of the sinusoidal input

Hz is present for all input values and that
subharmonic generation is evident for certain sets of amplitude
values. In this example, the subharmonic of order at
0.053 Hz obtained for amplitude in the model (6) will be
considered.

In order to derive a Volterra MISO model, a modified input
is produced. The modified input is generated from the original
input signal, knowing the order of the subharmonicand the
time period . Both and parameters can be readily obtained
from the response spectrum map given in Fig. 2. For the ampli-
tude value , the order is and the time period is

s. Fig. 3 shows the original input and the
modified three-dimensional input, with the components,
and . By inspecting the waveforms given in Fig. 3, the rela-
tions given in (4) and (5) can be easily verified. For a system
with the input a discrete-time MISO Volterra model
was identified. In the present study the multiple-input–multiple-
output (MIMO) orthogonal least-squares (OLS) method [2] was
applied but there are several alternatives. The main advantage of
the OLS method is that it can automatically select the terms in
the model. Notice that because the MISO consists of a set of
Volterra models which only involve the inputs, bias which can
be induced by noise should not be a problem and the estimation
is therefore relatively straightforward.

Volterra models with three, five, and seven orders of nonlin-
earity were estimated, providing correspondingly increased de-
grees of accuracy. For a third order of nonlinearity the model
predicted output was already very good, therefore the model
selected for further analysis was a third-order MISO Volterra
model

(7)

Fig. 4. Model (10) predicted output (dashed line), original output (solid line),
and input signal.

Fig. 5. GFRFH (j!) for (a)u ; (b) u ; (c) u in (10).

(8)

(9)

where

(10)

It should be noticed that according to the general internal
structure given in Fig.1 (b), the model has no cross-product input
terms (no terms of the type ), therefore, the identification
procedure is easier, and consists of fitting three SISO Volterra
models which are further combined to give the system output.
The model predicted output is plotted in Fig. 4, where it can
be compared with the original output. Here, the original input
signal is also shown, with a period three times smaller than the
resulting subharmonic. They match almost exactly and some
improvement is obtained for an increased order of nonlinearity.
The quality of the model predicted output is quantified using the
normalized mean-square error (NMSE), given as

NMSE (11)
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Fig. 6. GFRFH (j! ; j! ) for (a)u ; (b) u ; (c) u in (10).

Fig. 7. GFRFH (j! ; j! ; j! ) for (a)u ; (b) u ; (c) u in (10).

where is the model predicted output, is the measured
value and is the mean value of the measured output. For
the example analyzed, the NMSE value was 0.3%.

It is important to emphasise that one single Volterra model
cannot represent this system and any attempt to find such a
model results in very poor model predictions. But by using the
response spectrum map to determine an appropriate input and
then by estimating in this case three SISO models and com-
bining these gives the final MISO Volterra representation. The
result is that now the MISO model should be an excellent rep-
resentation of the system with the advantage that the proper-
ties, analysis and interpretation of this model can now be studied
using all the methods developed for Volterra systems. But now
these can be applied to severely nonlinear systems and to study
subharmonic phenomena.

The Volterra kernels of the MISO model (7)–(9) can now be
analyzed in the frequency domain. There are no cross-product
terms between individual input components, and the model (10)
can be considered to be composed of three independent sub-
models, one for each input component. By applying the probing
method to the submodels (7)–(9), following the methodology
given in Peyton Jones and Billings [13] the GFRFs are derived
next, one for each submodel. There will be three different linear
functions , three different functions , etc.
The linear functions are given in Fig. 5, where fre-
quency of 0.5 is equal to the Nyguist frequency, which in this
case is Hz.

For all input components, the functions have the same
parabolic shape for the magnitude, with different maximum
values at the normalized frequency . The functions

are given in Fig. 6. These also have a similar
shape, with a maximum at . The functions

are represented in Fig. 7, for the section
. Again, the first two of these have similar features,

with high magnitudes for and a minimum
magnitude for . Only for the third subsystem
are the lines somewhat distorted, showing high magnitude for

and a minimum magnitude on the frequency
lines , which is the direct opposite to the
first two third-order frequency-response functions.

B. Example 2: Duffing–Holmes Equation

In this section, the Duffing equation is considered in the form
also known as the Duffing–Holmes model

(12)

This equation was simulated using a fourth-order Runge-Kutta
algorithm with an integration interval of , for an amplitude

varying in the range . The bifurcation diagram
and the response spectrum map given in Fig. 8 shows cascades
of period doubling, for different amplitudes of the input signal
varying in the range . In this example, the subhar-
monic of order at 0.089 Hz obtained for amplitude

in the model (12) will be considered.
As in the previous example, a modified input is produced

first. The modified input is generated from the original input
signal, knowing the order of the subharmonicand the time
period . By examining the response spectrum map given in
Fig. 8, the parameters and can be obtained. For the ampli-
tude value , the order is and the time period
is s. The original and the modified two-di-
mensional input signals are given in Fig. 9. For a system with
the input represented in Fig. 9 a discrete-time MISO
Volterra model was identified, using the MIMO OLS method
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Fig. 8. Bifurcation diagram and response spectrum map (plan view) for the
Duffing–Holmes (12).

[2]. The Volterra model selected had a third order of nonlin-
earity and no cross-product input terms (no terms of the type

)

(13)

(14)

where

(15)

As in the preceding example, the model predicted output was
estimated and used for model validation. Fig. 10 shows a good
agreement between the original and the estimated output, for
an NMSE value of 0.02%. In Fig. 10, the original input signal is
also shown, with a period 2 times smaller than the resulting sub-
harmonic. The Volterra model (15) has no cross-product terms
between individual input components, therefore, the Volterra

Fig. 9. Modified input signal[u ;u ] with the components: (a)u ; (b) u ;
(c) original input.

Fig. 10. Model (15) predicted output (dashed line), original output (solid line),
and input signal.

kernels can be further analyzed in the frequency domain. By
applying the probing method to the submodels (13)–(14), fol-
lowing the methodology given in Peyton, Jones, and Billings
[13], the GFRFs are derived next, one for each submodel. The
first-order GFRFs are given in Fig. 11, where the frequency
of 0.5 is equal to the Nyguist frequency, which in this case is

Hz.
The functions have the same parabolic shape for both

input components, with different maximum values, of 24 and
26 dB, respectively, at the normalized frequency .
They are also similar to the left hand side half of the functions

derived in the previous example, given in Fig. 5. The
functions are given in Fig. 12. The shape of the
functions are again very similar. Both functions

have a maximum amplitude near
of 27 and 31 dB, respectively, and a minimum near the origin of
the input frequencies.

The functions are represented in Fig. 13,
for the section . For the first model, the function
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Fig. 11. GFRFsH (j!) for (a)u (b) u in (15).

Fig. 12. GFRFsH (j! ; j! ) for input (a)u , (b)u in (15).

Fig. 13. GFRFsH (j! ; j! ; j! ) for input (a)u , (b)u in (15).

shows high magnitude for
normalized frequency, with a maximum value of dB, and a
minimum magnitude is produced when .
For the second model, the function shows a
maximum magnitude of dB for
normalized frequency and a minimum magnitude is produced
when . By comparing the maximum
values of the GFRFs it is apparent that the significance of the
nonlinearities in the model decreases with the order.

The frequency-response functions obtained in both examples
have graphical representations with similar features. This may
suggest that the ’s previously derived correspond not only to
the local Volterra kernels, but they can also be related to the
original underlying system, which is the Duffing equation, and
are therefore a global feature. This idea can be the starting point
for further investigations into subharmonic analysis.

V. CONCLUSIONS

Mildly nonlinear systems can be studied by analysing just the
first few terms in the Volterra series. In these cases inspection
of the kernel plots or the equivalent GFRFs provides a complete
characterization of the system properties. However, the Volterra
series has limitations and it can only be used to model severely
nonlinear systems around the equilibrium points within a rela-
tively small area of convergence. Outside the Volterra conver-

gence area, the nonlinear system dynamics can be much more
complex. Phenomena associated with strong nonlinearities are
generated including limit cycles, subharmonics and chaos.

The objective of this paper was to investigate the modeling,
analysis and interpretation of nonlinear systems with subhar-
monics. A new modeling approach was introduced based on a
MISO Volterra series model representation. The advantage of
this approach is that it is relatively simple to apply and once the
model has been obtained all the well known methods of anal-
ysis for Volterra series, which have until now been restricted to
mildly nonlinear systems only, can now be applied to nonlinear
systems which exhibit subharmonics.

The new approach was applied to modeling subharmonics as-
sociated with various steady states of the Duffing oscillator, and
the GFRFs of the MISO models were used to analyze the system
properties in the frequency domain. It was interesting to find
common characteristics in the GFRF representations for dif-
ferent local subharmonics of the Duffing oscillator, suggesting
that the GFRFs derived describe some invariant features of the
system and not just the local behavior. This idea can form the
starting point for further investigations into the analysis of sys-
tems with subharmonics.
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