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Subharmonic Oscillation Modeling and
MISO \olterra Series

Otilia M. Boaghe and Stephen A. Billings

Abstract—Subharmonic generation is a complex nonlinear sociated with bifurcations and chaos [8]. However, new methods
phenomenon which can arise from nonlinear oscillations, bifur-  of identification and analysis which allow subharmonic systems

cation and chaos. It is well known that single-input-single-output -y, e easily studied are needed before controller design proce-
\olterra series cannot currently be applied to model systems d be i tinated and d | d
which exhibit subharmonics. A new modeling alternative is ures can be Investigated and developed.

introduced in this paper which overcomes these restrictions by [N this paper, the main objective is to introduce a new
using local multiple input single output Volterra models. The way of modeling and interpreting systems which exhibit
generalized frequency-response functions can then be applied to subharmonics. For such systems, single-input—single-output
interpret systems with subharmonics in the frequency domain. (SISO) Volterra models cannot currently be used to model
~Index Terms—Bifurcations, chaos, frequency-response func- systems which can produce subharmonic oscillations. A new
tions, nonlinear oscillations, response spectrum map, subhar- iy ,qeling approach is introduced in this paper which overcomes
monics, Volterra series. L . . . .
these restrictions by using local multiple-input—single-output
(MISO) Volterra models. The advantage of the new approach
|. INTRODUCTION is that all the existing knowledge regarding the interpretation,
HE steady-state output of a linear system driven by a Siﬁgalygs, and _propgrtles of Volterra_l models can be "’.‘pp"ed to
b veal new insights into subharmonic systems. In particular, the

wave will consist of a sine wave of the same frequency (f

with a different amplitude and phase. Nonlinear systems drivgnﬁneralized frequency-response functions (GFRFs) which are

by a sine wave may produce new frequency components, e frequency-domain equi\{alents of the Volterra kernels can
cluding components at integer multiples of the input frequen used to study subharmonic systems in the frequency domain.

called harmonics, or new frequency components at fractions ofThe paper is organized as follows. In Sgctlon I, Fhe the-
the input frequency, called subharmonics. oretical background to the Volterra series in both time and

Animportant practical problem of nonlinear systems which gequency domain is briefly reviewed. The main definitions

particularly evident in mechanical systems is subharmonic (gr_wd properties for subharmonic oscillations are summarized
i

namics. In many industrial fields an important issue is the pos . Section I11. In Section 1V, a new modeling methodology is

bility of controlling subharmonics. Examples of real situation'gtrpduced for subharmonic systems, based on MISO Volterra

in which subharmonic generation can be a critical problem ara!es: This methodology is applied to the Duffing-Ueda

given for example in Lefschetz [11], Nayfeh and Mook [12]gnd %ufgr_lg—rl]—!olmes oshcillatr(])rs. Ths_ :_;imulak';ik(])n exa_mplez
Ishidaet al.[9], or Ishida [10]. A theoretical interest in studying escribed in this paper show that combining subharmonic mod-

subharmonics emerged over the last few decades from the C%Ili{}g.with the nonlinear GFRFs or transfer-functiqn.generation
nection between chaos and subharmonics. It has been noti _mdeed reveal new fgature; O.f a system exh|b|t|ng subhar-
[6], [18] that subharmonic generation is the first step on the ro omcz. Tk:e régw rr}ciﬂellng prllnC|pIeb||s epreCt%?] 0 |mproved
to chaos. Therefore, studying subharmonics may provide mdpg understanding of the complex problem of subharmonic an

insight into the phenomenon of chaos. chaos generation.

Motivated by theoretical and practical importance, subhar-
monic oscillations have been studied not only in nonlinear vibra- 1. V OLTERRA SERIES IN TIME AND FREQUENCY DOMAIN
pon theory, but aIsp n the context of nonlinear systems, dynam—The importance of the Volterra series became apparent when
ical systems applications and control [16]. Very often, the too%

: . . iener [17] applied the Volterra series to an investigation of a
employed for analysis belong to differential geometry and topg-__ . . : :
! ; . nonlinear circuit response by relating the system ingj to
logical vector spaces, especially when the subharmonics are

tﬁ%'outputy(t) by a functional series given by
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The quantities,, (71, 72, ..., 7,) in (1) are known akernels have infinite memory, and therefore they do not belong to the
of ordern, or thenth-order impulse response functionfthe \olterra class of systems. In the Section 1V, a new methodology
system. is proposed in an attempt to overcome several restrictions asso-

The initial studies on Volterra series addressed fundamentéited with existing methods for modeling systems with subhar-
issues such as existence, convergence and uniqueness. In praeics. The new approach is based on using the MISO Volterra
tical problems only a finite Volterra series can be used, alseodels and will be illustrated using the Duffing oscillator. The
called atruncated Volterra seriesr polynomial Volterra se- new models are then further analyzed in both the time and the
ries. In particular, Boyd and Chua [4] concluded that systentgequency domain to illustrate the simplicity and advantages of
with fading memory may be approximated arbitrarily well byhe new approach.
truncated \Volterra series. The conditionfatling memorys a
stronger version of continuity [4], [15]. Generally speaking, a IV. MODELING SUBHARMONICS WITH
system with fading memory is one for which the dependence MISO VOLTERRA SERIES

on the input decreases rapidly enough with time. The fadingas noted above, it is impossible to model subharmonics with
memory requirement however means that the class of systafis 5|SO \olterra series, because the \Volterra series respond to
with multiple equilibria [4] cannot be represented by a singlg periodic excitation with a periodic signal with the same pe-
Volterra model. For these systems, a valid unique global Voltetigd. However, if the given input could be modified somehow to
series representation will not exist. An example is the Duffingreate an input with a period equal to the subharmonic oscilla-
oscillator which has more than one equilibrium point in genergbn, the Volterra series modeling could be applied. In this sec-
and in consequence a global unique Volterra series to represgii, the possibility of modeling subharmonics with the MISO
the dynamics around all these points at the same time does Vi§iterra series is investigated for the first time.
exist. It is well known that initial conditions are crucially impor-
From the nonlinear-system-analysis perspective, the Voltetgmt for a subharmonic to exist in a nonlinear system. Conse-
series kernels are very useful in describing the system inpgttently, subharmonics cannot be produced in a Volterra system,
output behavior and in finding system properties in a mannghere the dependence on the initial conditions gradually fades
which is independent of the input. The Volterra kernels are usoudt. However, the local Volterra series can be derived for a par-
ally studied in the frequency domain, where almost all types ti€ular steady state of the system. If a local Volterra series rep-
useful mathematical operations in the time-domain are tramesentation exists for a state of the system which features sub-
formed into algebraic operations. The Fourier transform of thwrmonics, then, the local Volterra series will not be expected
kernelsh, (r1,...,7,) in the Volterra series (1), is called the to be equal to another local Volterra series, corresponding to a
nth-order GFRFof the system [7] different state of that system.
The modified input which could be used for Volterra series
i T modeling of a subharmonic should have the same period as the
H,(jwi, ..., jwn) = / / ho(T1, -, Tn) subharmonic. If the subharmonic considered for modeling has
o —oo the periodn times the original input period’, a modified input
xe~Uwimitetion™)gr  dr.. (2) Umod Should have the period times the real input period. The
modified input can then be considered to belimensional,

The GFRF can also be found in the literature with the nfme  tmoa = [u1;- - . ;u;; . . . ;u,], with theith component; taken
guency-domain Volterra kerng8], or nonlinear transfer func- as
tion [5]. It is the generalized response function representation (0 te[0;T)

? )

which is used in this paper to interpret, analyze and understand
a state with subharmonics. T

u(t), tel(t—1)T;iT)
I1l. SUBHARMONICS. DEFINITIONS AND TERMINOLOGY ’ 0, te[iT;(i+1)T)

Nonlinear systems in the presence of forced oscillations and
under suitable conditions admit subharmonics as a steady-state
solution. Subharmonics are components where the frequency is o .
an integral submultiple of the driving frequency. Subharmonic C_:(_)nsequently, for the individual componenig?) it can be
oscillations have been encountered in many types of systetffgified that
including systems which are parametrically excited, stationary ur(t) 4 . A ui(t) + .+ un(t) = u(t) (4)
or nonstationary. Subharmonics have been detected in both non- . p
X : NS . ui(t) =ui(t —1T). (5)
linear discrete systems with finite degrees of freedom and in
continuous systems (beams, strings, plates, membranes) witfio allow for MISO Volterra modeling, the system which gen-
infinite degrees of freedom. Many terms have been associa@dtes subharmonics in the steady stathen excited with the
with subharmonic phenomena, including frequency demultipiaput . should have the internal structure given in Fig. 1. The
cation ([12]), subharmonic resonance ([16]), and subharmomidormation required for modeling is the orderof the subhar-
oscillation ([16], [14]). monic and the period’ of the input signak. This information

A direct application of Volterra series in the study of subhacan be readily obtained by analysing the system, in the form
monics is not possible as long as systems with subharmonidésa given model or from a system identification study (e.g., a

L 07 t€[(n—1)T;nT).
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(b)

0.9
Fig. 1. Internal structure of a nonlinear system generating subharmonics fc

modeling with (a) MISO \olterra series; (b) MISO \olterra series without 0.8| s
cross-product:;u; terms.

-2

-4
NARMAX model) using a bifurcation diagram and a response =
spectrum map. This was illustrated in the examples given ir- 3
Billings and Boaghe [1] and will be used in the examples below °3|

The system given in Fig. 1(a) is composed of a time multi- 02|
plexor M and a MISO systenS§. The time multiplexor gener- ¢4
ates then-dimensional inputimea = [u1;- .. ;u,], based on o : |
the original inputu(t), the subharmonic order, and input pe- © 2 . A N oo
riod T. The modified inputu,,.q iS applied to the systerfy,
for which the output is the subharmonij¢t). For the systens, Fig. 2. Bifurcation diagram and response spectrum map (plan view) for the
both inputu,m.q and outputy have the periochT. Therefore, a PUfing-veda ().
local MISO Volterra model can be identified directly from the
data generated from the simulation.

To simplify the internal system mechanism the Volterra serigsput considered is a periodic sine wave, however the modeling
to be derived can be prevented from containing cross-prodgebcedure given above is not limited to sine waves. The Volterra
terms of the types;u;, i # j, So that individual contributions series are obtained in the time domain as MISO models based
from every inputu; can be separated in the Volterra model. Ién just the input or exogenous variables, and the Volterra kernels
individual contributions at the input are separated, the systemare further analyzed in the frequency domain. To illustrate the
in Fig. 1(b) can be decomposed intandependent subsystemsideas in the simplest way, all the examples below start from an
S1,...,S,, one for every individual input;. In this case, the assumed known differential equation model of the system. How-
MISO Volterra model will not contain cross-product terms beever, the method is based on simulations of the system model for
tween inputs and the GFRFs can then easily be derived for the inputu,,,q and can therefore be just as easily applied to an
individual subsystems;. identified NARMAX, neural networks, or any other model that

To summarize, the modeling procedure is given below.  represents the system.

1) Detect a subharmonic steady state using the bifurcation

diagram for a simulated implicit difference or differentia. Example 1: Duffing—Ueda Equation
equation, or any other model form. In this example, the Duffing equation is considered in the

2) Identify the ordem and the period of oscillationT” of  form also known as the Duffing—Ueda model
the subharmonig(¢), by visual inspection or using the

-8

. . 3 _
response spectrum map [1]. J+ay+y® = u() (6)
3) Generate an-dimensional modified input,..q basedon For the present analysis, the Duffing-Ueda (6) was simulated
the original inputu(t), using a time multiplexor. for o = 0.1 andu(t) = Acos(t), where0 < A < 12. A

4) Identify a MISO discrete-time Volterra model for thefourth-order Runge—Kutta algorithm with an integration interval
system with outpuy(t) and then-dimensional modified of /3000 was used to simulate the response of the system to
iNPUL 0. the sinusoidal input. The input and output signals were further

The methodology given above for modeling with the MIS@ampled at periods &f; = 7/60 s.

\olterra series will be applied in the next section to the Duffing For this equation, various dynamic regimes were noticed, for
equation, where subharmonics can be generated for exampléalifierent amplitudes of the input signal. The bifurcation diagram
the Duffing—Ueda or Duffing—Holmes cases. For both cases, thied the response spectrum map, for a varying amplitude A of the
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step
Fig. 4. Model (10) predicted output (dashed line), original output (solid line),
Fig.3. Modified input signauy ; u2; us] with the components: (a); ; (b)u.;  and input signal.
(c) us; (d) original input.

(a) H11 (b) H12 (c) H13
10 10 0
input signalu(t) = A cos(t), are given in Fig. 2. The response% 0 S -1
spectrum map shows that the frequency of the sinusoidal ing$ 0 2
f =1/2r = 0.159Hz is present for all input values and that 8 _,, ‘
subharmonic generation is evident for certain sets of amplitu@ -5 -3
values. In this example, the subharmonic of order = 1/3 at _ _10 4
0.053 Hz obtained for amplitudé = 6 in the model (6) will be 0 f/fs 05 0 fffls, 05 0 fiffs 05

considered.

In order to derive a Volterra MISO model, a modified inpu
is produced. The modified input is generated from the original 5 )
input signal, knowing the order of the subharmoniand the y2(k) = 0.0195u5(k —3) —1.2882u;5 (k—3)

{:ig. 5. GFRFH;(jw) for (a) u1; (b) uz; (C) us in (10).

time periodT’. Bothn andT parameters can be readily obtained —1.0715uy(k—3)—1.0424u3 (k—1)

frc:jm th(T rejponse T}pect:jum map given :jn I;ig. 2. For thedampli- +2.3687us(k—1)us (k—3)

tude valueA = 6, the order is» = 3 and the time period is _ 30, g .

T = 27 = 6.28s. Fig. 3 shows the original input and the 0'0202u§(k 1)+1.4514us(k—1) ) (8)
modified three-dimensional input, with the componentsu y3(k) = —0.9846u3(k —3)+0.6732u3(k—1)uz(k—3)
andwus. By inspecting the waveforms given in Fig. 3, the rela- —0.1331u3(k—3)+0.7935u3(k—1)

tiqrr\]s r?iv.en in[ (4) and (]5) ggn be egsilyl\;/lesrge\;ilFor a syjttlem +1.0905us (k—1)us(k—2)us(k—3)

with the input|u;; us; us] @ discrete-time olterra mode con2(1 2/

was identified. In the present study the multiple-input—multiple- +5.7359u3(k —3)+6.0159u3(k—1) 5

output (MIMO) orthogonal least-squares (OLS) method [2] was —11.754ug(k—1)us(k—3)—0.7903u3(k—1) (9)
applied but there are several alternatives. The main advantage/bére

the OLS method is that it can automatically select the terms in (1) — . (k) + ya(k) + ya (k). (10)

the model. Notice that because the MISO consists of a set oﬁ
Volterra models which only involve the inputs, bias which can
be induced by noise should not be a problem and the estimatfé

'S i?oelztrg:ro aremrgtljaetll\sle\:,l/)i/t;ttrﬁrlgthg\r/\ga;(:].d seven orders of n cm”rp_rocedure is easier, and consists of fitting three SISO Volterra
earity were estimated, providing correspondingly increased QSi%gg'd:eadrit?the: Cotmsbmli(tjtetg gr'lvi.thefysrtg:; QEJLF;U;'
grees of accuracy. For a third order of nonlinearity the mod preci utput 1S p N Fg. 4, where it
predicted output was already very good, therefore the mo S corr_]pared with the (_)rlgmal c_)utput. He_re, the original input
selected for further analysis was a third-order MISO Volterr%{gnaI Is also shown, with a period three times smaller than the
model resulting subharmonic. They match almost exactly and some

improvement is obtained for an increased order of nonlinearity.

y1(k) = —0.6685+1.6766u; (k—3)+0.8832u3 (k—3) The quality of the model predicted output is quantified using the
—1.4688u1 (k—1)+0.0213u3(k—1) normalized mean-square error (NMSE), given as

—0.0239u3 (k—3)+0.0048u; (k—1)u?(k—2) NMSE = . | 2 (0(F) - y(k))? 1)
+0.3323u2(k—1)—1.1966u; (k—1)uy (k—3) (7) S (y(k) — y(k))?

t should be noticed that according to the general internal
hucture givenin Fig.1 (b), the model has no cross-product input
rms (no terms of the type;, us), therefore, the identification
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(a) H21 (b) H22 (c) H23

20*log(H2) [dB]

Fig. 6. GFRFH(jwi, jws) for (@) uy; (b) us; (C) us in (10).

(a) H31

20*log(H3) [dB]

Fig. 7. GFRFH;(jwy, jws, jwy) for (@) uy; (b) us; (C) uz in (10).

wherej(k) is the model predicted outpuf(k) is the measured Hs(jwi,jwe, jws) are represented in Fig. 7, for the section
value andy(k) is the mean value of the measured output. Fgii = f3. Again, the first two of these have similar features,
the example analyzed, the NMSE value was 0.3%. with high magnitudes fof; + f2 + f3 = 0.25 and a minimum
It is important to emphasise that one single Volterra modalagnitude forf; + f> + f3 = 0. Only for the third subsystem
cannot represent this system and any attempt to find suclara the lines somewhat distorted, showing high magnitude for
model results in very poor model predictions. But by using th& + f» + f3 = 0 and a minimum magnitude on the frequency
response spectrum map to determine an appropriate input &nds f; + f> + f3 = 0.25, which is the direct opposite to the
then by estimating in this case three SISO models and cofinst two third-order frequency-response functions.
bining these gives the final MISO Volterra representation. The
result is that now the MISO model should be an excellent reB- Example 2: Duffing—Holmes Equation
resentation of the system with the advantage that the properin this section, the Duffing equation is considered in the form
ties, analysis and interpretation of this model can now be studigdo known as the Duffing—Holmes model
using all the methods developed for Volterra systems. But now . .. 3
these can be applied to severely nonlinear systems and to study §+ L5y —y+y” = Acos(t). 12)
subharmonic phenomena. This equation was simulated using a fourth-order Runge-Kutta
The Volterra kernels of the MISO model (7)—(9) can now balgorithm with an integration interval af/15, for an amplitude
analyzed in the frequency domain. There are no cross-proddctarying in the rangé < A < 1.6. The bifurcation diagram
terms between individual input components, and the model (1d8)d the response spectrum map given in Fig. 8 shows cascades
can be considered to be composed of three independent saftperiod doubling, for different amplitudes of the input signal
models, one for each input component. By applying the probingrying in the rangé < A < 1.6. In this example, the subhar-
method to the submodels (7)—(9), following the methodologyonic of orderl /» = 1/2 at 0.089 Hz obtained for amplitude
given in Peyton Jones and Billings [13] the GFRFs are derivel= 1.2 in the model (12) will be considered.
next, one for each submodel. There will be three different linearAs in the previous example, a modified input is produced
functionsH; (jw), three different function#l,(jw:, jws), etc. first. The modified input is generated from the original input
The linear functionsH; (jw) are given in Fig. 5, where fre- signal, knowing the order of the subharmoniand the time
quency of 0.5 is equal to the Nyguist frequency, which in thigeriod7'. By examining the response spectrum map given in
case isl/(27s) = 9.54 Hz. Fig. 8, the parameters and’ can be obtained. For the ampli-
For all input components, the functiofs (w) have the same tude valueA = 1.2, the order isn = 2 and the time period
parabolic shape for the magnitude, with different maximums 7" = 27 = 6.28s. The original and the modified two-di-
values at the normalized frequengy = 0.25. The functions mensional input signals are given in Fig. 9. For a system with
Hs(jw,jwe) are given in Fig. 6. These also have a similathe input|u;;us] represented in Fig. 9 a discrete-time MISO
shape, with a maximum aft;, = f> = 0.25. The functions Volterra model was identified, using the MIMO OLS method
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(@)

1.5

-1.5

0 192
step

Fig. 9. Modified input signaju:; u»] with the components: (a):; (b) u-;
(c) original input.

2

Frequency (Hz)

output

1 EE 1.2 1.3 1.4 1.5 16 ' ‘ 0 60 120 180
A step

Fig. 8. Bifurcation diagram and response spectrum map (plan view) for tk
Duffing—Holmes (12). 0.6

[2]. The Volterra model selected had a third order of nonliné
earity and no cross-product input terms (no terms of the tyf _o6}
u1u2)
y1 (k) =5.6235u; (k—3)—0.0859u3 (k—3)
+2.9122u; (k—1)—0.0833u} (k—1)

Fig. 10. Model (15) predicted output (dashed line), original output (solid line),
+5.7643us (k=2)u1 (k—3) and input signal.

12 120 180

step

—12.0268u; (k—1)u (k—2)

—7.9389us (k—2)+5.7980uf (k—1) kernels can be further analyzed in the frequency domain. By
—3.0893u? (k—3)+3.6287u2 (k—2) (13) applying the probing method to the submodels (13)-(14), fol-
yo(k) = 14.6176us (k—1)us (k—2) +6.6054u2 (k—3) lowing the methodology given in Peyton, Jones, and Billings

[13], the GFRFs are derived next, one for each submodel. The

+6.0183uz (k—3) ~10.1978uz (k~2) first-order GFRFs are given in Fig. 11, where the frequency

+0.4071ug (k—2)u5 (k—1)-7.8590u5 (k1) of 0.5 is equal to the Nyguist frequency, which in this case is
+0.4472—13.5093us (k —2)ua (k—3) 1/(21;) = 2.38Hz. _
—0.3316u3(k—1)+4.0732us (k—1) (14) The functiong?, (jw) have the same parabolic shape for both

input components, with different maximum values, of 24 and
26 dB, respectively, at the normalized frequengy = 0.5.
y(k) = y1 (k) + ya (k). (15) They are al_so si_milar to the_ left hand side h_alf 01_‘ the_ functions
H,(jw) derived in the previous example, given in Fig. 5. The
As in the preceding example, the model predicted output wamctions Hs (jws, jw2) are given in Fig. 12. The shape of the
estimated and used for model validation. Fig. 10 shows a gofuthctions H»(jws, jwe) are again very similar. Both functions
agreement between the original and the estimated output, #5(jw, jw2) have a maximum amplitude neér = fo = 0.5
an NMSE value of 0.02%. In Fig. 10, the original input signal isf 27 and 31 dB, respectively, and a minimum near the origin of
also shown, with a period 2 times smaller than the resulting suhe input frequencies.
harmonic. The Volterra model (15) has no cross-product termsThe functionsHs(jws, jwe, jws) are represented in Fig. 13,
between individual input components, therefore, the Volterfar the sectionf; = f3. For the first model, the function

where
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(a) H11 (o) H12 gence area, the nonlinear system dynamics can be much more
e 40 complex. Phenomena associated with strong nonlinearities are
@ 5 ~ e generated including limit cycles, subharmonics and chaos.
= 20 The objective of this paper was to investigate the modeling,
< 10 analysis and interpretation of nonlinear systems with subhar-
§ 0 0 monics. A new modeling approach was introduced based on a
« MISO Volterra series model representation. The advantage of
~10 _20 this approach is that it is relatively simple to apply and once the
0y 000 e 00 model has been obtained all the well known methods of anal-
ysis for Volterra series, which have until now been restricted to
Fig. 11. GFRFSH, (jw) for (@) u; (b) us in (15). mildly nonlinear systems only, can now be applied to nonlinear
systems which exhibit subharmonics.
(a) H21 (b) H22

The new approach was applied to modeling subharmonics as-

sociated with various steady states of the Duffing oscillator, and

20*log(H2) [dB)]

f/fs
0.5 0

Fig. 12. GFRFHH:(jwi, jw-) forinput (8)uq, (b) u- in (15).

(a) H31

(b) H32

(1]

[2]

(3]
Fig. 13. GFRFH;(jw:, jws, jwi) for input (@), (b) u- in (15). [4]
H;(jws, jws, jwr) shows high magnitude fgfi + fo+ f3 = 0.5 [5]
normalized frequency, with a maximum value-ef5dB, and a
minimum magnitude is produced whein + f> + f3 = 0.25. 6]
For the second model, the functiofiz(jw,jw;) shows a
maximum magnitude of-2dB for f; = fo = f3 = 0.5 [7]

normalized frequency and a minimum magnitude is produced
whenfi, = fo = f3 0. By comparing the maximum
values of the GFRFs it is apparent that the significance of the
nonlinearities in the model decreases with the order. E)
The frequency-response functions obtained in both examples
have graphical representations with similar features. This may
suggest that théf’s previously derived correspond not only to [10]
the local Volterra kernels, but they can also be related to th
original underlying system, which is the Duffing equation, and
are therefore a global feature. This idea can be the starting poifit?]
for further investigations into subharmonic analysis.

(8]

L

[13]
V. CONCLUSIONS

[14]

Mildly nonlinear systems can be studied by analysing just theis]

first few terms in the Volterra series. In these cases inspectiogel
of the kernel plots or the equivalent GFRFs provides a complet

characterization of the system properties. However, the \olterrg7]

series has limitations and it can only be used to model severelx8

nonlinear systems around the equilibrium points within a rela—[ ]

tively small area of convergence. Outside the \Volterra conver-

the GFRFs of the MISO models were used to analyze the system
properties in the frequency domain. It was interesting to find
common characteristics in the GFRF representations for dif-
ferent local subharmonics of the Duffing oscillator, suggesting
that the GFRFs derived describe some invariant features of the
system and not just the local behavior. This idea can form the
starting point for further investigations into the analysis of sys-
tems with subharmonics.
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