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a b s t r a c t

A recent trend in energy harvesting research has been to investigate the potential benefits
of deliberately introducing nonlinearities into devices to improve their performance. This
has been accompanied by work dedicated to the investigation of how energy harvesters
respond to excitations of a stochastic nature. The present article is concerned with those
nonlinearities which are unavoidable—specifically friction. To this end, an electromagnetic
energy harvester whose performance is known to be affected by friction is investigated.
Initially, the governing equations of the device are derived and a differential evolution
algorithm is used alongside experimental data to identify the parameter values needed to
accurately model the device. This process is repeated several times using three different
friction models: Coulomb, hyperbolic tangent and LuGre. For the majority of the tests
conducted it was found that the Coulomb damping model was able to produce the closest
match to the experimental data although the LuGre model proved more suitable in one
case where a relatively high level of friction was present. Using the Coulomb damping
model, the response of the device to a broadband white noise excitation is then analysed
analytically using the method of equivalent linearisation, thus providing expressions
which can be used to show the effect of friction on device performance. Validating these
results with time domain simulations it is shown that the effects of the Duffing-type and
Coulomb nonlinearities do not interact, thus allowing one to utilise the benefits of
Duffing-type nonlinearities in friction-affected energy harvesting devices.

& 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

When the concept of harvesting electrical energy from ambient vibrations first became a popular research topic, a large
body of work was developed which focused on the response of SDOF linear devices to sinusoidal excitations ([1–5] for
example). Irrespective of the electromechanical coupling used (such devices typically use an electromagnetic or piezo-
electric coupling) these devices were modelled with viscous dampers to simulate a combination of parasitic losses as well as
the transfer of mechanical energy into the electrical domain. With regards to the devices themselves, it was found that they
would only produce a useful amount of power if they were excited at resonance, thus giving them a narrow bandwidth of
frequencies over which effective performance could be obtained. Additionally, it was realised that a sinusoidal excitation
was a poor representation of ambient vibrations: these are usually nonperiodic, have time dependent dominant frequencies
and often have to be viewed as being stochastic in nature.

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jsvi

Journal of Sound and Vibration

0022-460X/$ - see front matter & 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jsv.2013.04.024

$ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original author and source are credited.

n Corresponding author.
E-mail address: p.l.green@sheffield.ac.uk (P.L. Green).

Journal of Sound and Vibration 332 (2013) 4696–4708

www.elsevier.com/locate/jsvi
www.elsevier.com/locate/jsvi
http://dx.doi.org/10.1016/j.jsv.2013.04.024
http://dx.doi.org/10.1016/j.jsv.2013.04.024
http://dx.doi.org/10.1016/j.jsv.2013.04.024
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jsv.2013.04.024&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jsv.2013.04.024&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jsv.2013.04.024&domain=pdf
mailto:p.l.green@sheffield.ac.uk
http://dx.doi.org/10.1016/j.jsv.2013.04.024


The narrow operational bandwidth of SDOF energy harvesters led to several investigations into devices which could
tune their natural frequency so that they could adapt to changes in the dominant frequency of excitation [6–9]. As well as
this, the concept of deliberately introducing Duffing-type nonlinearities into such devices to enhance performance
has been widely investigated. This led to a large variety of nonlinear energy harvesters which, broadly speaking, can be
separated into two varieties: monostable [10–14] and bistable [15–17] (depending on the number of potential equilibrium
points they possess). The applicability of these solutions to the harvesting of energy from some real ambient excitations was
examined in [18]. An interesting study was conducted by McInnes et al. [19] in which a stochastically excited bistable energy
harvester was described which, through oscillating the height of the potential energy barrier, was able to use the
phenomenon of stochastic resonance to improve power output. While much work has been focused on energy harvesters
with Duffing-type nonlinearities it is worth noting that this is not the only form of nonlinearity which has been investigated
—Ref. [20] details a monostable device whose bandwidth was improved via the use of stopper-type nonlinearities for
example.

The present work focuses on the monostable device proposed by Mann and Sims [10] who developed an electromagnetic
energy harvester which used the restoring force between two magnets of opposing poles to create a system with
nonlinearities similar to that of the monostable Duffing oscillator. The device was constructed in the hope that the
nonlinearity would improve its useful bandwidth. The response of this energy harvester to Gaussian white noise excitations
was then analysed analytically using the Fokker–Planck–Kolmogorov (FPK) equation in several works [21,22]. Using closed-
form solutions it was shown that, when subject to a Gaussian white noise excitation, the nonlinear term had no effect on
power output [21] but could be used to reduce device rattle space without harming performance [22].

During an experimental investigation of such a device (as part of [22,23]) it was observed that the response of the energy
harvester was sensitive to the effects of friction. For this reason, it was thought important to investigate the effect of this
unavoidable nonlinearity on the response of the device to random excitations. Consequently, the aim of this paper is to
analyse a variety of friction models in an attempt to develop a numerical simulation which is able to mimic the response of a
real device as effectively as possible. To this end, using numerical simulations alongside experimental data, a self-adaptive
differential evolution (SADE) algorithm [24,25] is used to analyse the suitability of three different friction models (Coulomb,
hyperbolic tangent and LuGre). Having identified a suitable model, it is then shown that the technique of equivalent
linearisation can be used to accurately model the effects of friction on the power output of the device when excited by
Gaussian white noise. Finally, by comparing results using equivalent linearisation with digital simulations it is shown that
there is no significant interaction between the Duffing-type and Coulomb nonlinearities.

2. Energy harvester

As mentioned previously the main focus of this paper is the device proposed by Mann and Sims [10] (Fig. 1). This energy
harvester consists of two ‘outer magnets’ which are attached to the shell of the device and are orientated such that their
poles repel those of a ‘centre magnet’. The centre magnet is free to oscillate such that, as a consequence of the magnetic
fields acting on it from the outer magnets, a nonlinear restoring force similar to the hardening spring Duffing oscillator is
created. When subjected to a base excitation (y in Fig. 1), the centre magnet will oscillate relative to the outer shell of the
device thus creating an electric current in coils wound around the device (by Faraday's law).
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Fig. 1. Schematic diagram of device proposed by Mann and Sims [10].
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2.1. Governing equations

A lumped parameter model of the device in question is shown in Fig. 2(a). Throughout this work it is assumed that the
device is delivering electrical energy to a load resistance. The resulting circuitry for the device is shown in Fig. 2(b) where L
is the inductance that arises as a result of the electromagnetic coupling and RL and RC are the load and coil resistances
respectively.

To a good approximation, the equation of motion of this device is

m€z þ ðce þ cmÞ_z þ kzþ k3z3 þ F ¼−m €y (1)

where z is the relative displacement between the shaker base and centre magnet:

z¼ ðx−yÞ; (2)

m is the mass of the centre magnet, ce and cm are damping due to electrical and mechanical effects, k and k3 are linear and
nonlinear stiffness terms, F is the force due to friction and €y represents the base acceleration. It is worth noting that if one
assumes negligible inductance and a linear flux displacement relationship (dΦ=dz¼ α, where α is constant) then the
damping due to the electromagnetic coupling is given by

ce ¼ α2
1

RL þ RC
: (3)

For the interested reader this relationship is derived and experimentally validated in [22]. Throughout this work the
response of the device was simulated in Matlab's Simulink environment.

2.2. Friction models

The force on the centre magnet as a result of friction (F) was represented using three different friction models: Coulomb,
hyperbolic tangent and LuGre [26]. The properties of each model are briefly discussed in the following sections.

2.2.1. Coulomb
This is among the earliest and best known friction models. Using the Coulomb damping model the restoring force due to

friction is given by

F ¼ Fc sgnð_zÞ (4)

where Fc is a parameter to be identified and sgn represents the signum function:

sgnð_zÞ ¼
1; _z40
0; _z ¼ 0
−1; _zo0

8><
>: (5)

With one parameter, the obvious advantage of the Coulomb damping model is its simplicity although it is unable to
model some of the phenomena which are typically associated with friction-affected systems (this is discussed more with
regards to the LuGre model). Additionally, the discontinuity of the signum function at zero can make analytical progress
difficult.

2.2.2. Hyperbolic tangent
The second model that will be investigated is the hyperbolic tangent friction model:

F ¼ Fc tanhðβ _zÞ: (6)

x y

L

RC

RL
Centre
Magnet

Fig. 2. Schematics of (a) mechanical and (b) electrical elements of the device.
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This has the property that, while requiring an extra parameter (β in this case), the model is able to approximate the Coulomb
damping model without being discontinuous. This is because it reduces to the signum function as β approaches infinity:

lim
β-∞

tanhðβ _zÞ ¼ sgnð_zÞ: (7)

2.2.3. LuGre
The LuGre model [26] is based on the assumption that the interaction between two surfaces can be modelled as that of

rigid bodies which make contact via a set of randomly distributed ‘bristles’ (see Fig. 3).
The average displacement of the bristles is modelled using:

_Θ ¼ _z−
j_zj
gð_zÞΘ (8)

where Θ is the average bristle displacement and gð_zÞ is a function which is chosen depending on the material properties of
the system. Eq. (8) is in state-space form (in other words, _Θ is expressed as a function of Θ) thus allowing it to be evaluated
using the same numerical integration techniques that are used to simulate the response of the energy harvester. The friction
force exerted on the mass is given by

F ¼ s0Θþ s1 _Θ (9)

where s0 and s1 are parameters to be found. The LuGre model belongs to the Duhem class of hysteretic models [27,28]. It
takes account of the Stribeck effect (the phenomenon that, at low velocities, friction force decreases with increasing
velocity) and has been used to accurately replicate the response of an experimental systemwith hysteretic dynamics [29]. To
account for the Stribeck effect the function gð_zÞ will be defined as

s0gð_zÞ ¼ Fc þ ðFs−FcÞe−ð _z=_zsÞ
2

(10)

where Fs represents stiction force, Fc is the Coulomb friction level and _zs is the Stribeck velocity (the point at which the
steady-state friction force begins to dip as velocity increases) [28]. While this model requires the identification of five
parameters (s0, s1, Fc, Fs and _zs) it accounts for the majority of phenomenon associated with friction (friction lag, spring-like
behaviour in stiction and varying break-away force).

3. Experiment

The mechanical properties of the systemwere identified using the apparatus shown in Fig. 4. The device was attached to
an electromagnetic shaker using an aluminium extension piece while the centre magnet was allowed to run along an
aluminium rod via two sets of linear bearings. A linear variable differential transducer (LVDT) was used to measure the
displacement of the shaker table. This signal was then fed through a proportional integral differential (PID) controller to
allow control of the shaker table displacement.

Using the controller, the shaker was excited with a displacement signal that resulted in a white noise acceleration with a
flat power spectral density between 4 and 20 Hz. As the device had a natural frequency of approximately 8 Hz, it was
thought that the bandwidth of the acceleration spectrum was sufficiently large to excite the relevant dynamics of the
system. During each test the displacement of the centre magnet was recorded using the laser (also shown in Fig. 4).

Using the shaker table time histories allowed any model of the device to be excited with the same displacement time
history that had been used experimentally. Comparing the model and experiment centre magnet time histories formed an
essential part of the parameter identification scheme used. This is discussed in the next section.

3.1. Parameter identification

Having measured the mass of the centre magnet the other model parameters were identified using a self-adaptive
differential evolution (SADE) algorithm [24,25]. Having excited the model with the same base displacement signal as was
used experimentally, a cost function was used to describe the level of similarity between the time response of the model

Fig. 3. In the LuGre model friction is represented by the interaction of randomly distributed elastic bristles.
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compared with that of the experiment. Throughout this work the cost function is defined as

JðθÞ ¼ 100
Ns2z

∑
N

i ¼ 1
ðzi−ẑiðθÞÞ2 (11)

where θ is the vector of unknown parameters, i represents the point in the time history vector, zi and s2z represent the time
history and variance of the experimentally obtained relative displacement and ẑi represents the relative displacement
according to the simulation. The cost function is normalised such that if the model simply produced the mean of the
experimental result (denoted z) then the function will return a value of 100:

JðθÞ ¼ 100
Nszy

∑
N

i ¼ 1
ðzi−zÞ2 ¼ 100 (12)

It is shown in [25] that a cost function of less than five represents a reasonably good correlation, and that less than one can
be considered excellent. The aim at this stage then, was to use SADE to identify the model parameters which minimised J
(Eq. (11)) for each of the friction models being investigated.

Once the mechanical parameters of the device were identified, 83 turns of 0.5 mm diameter copper coil were wrapped
around a PTFE tube which was subsequently attached to the shaker base (as shown in Fig. 5). The output from the coil was
then fed through a load resistor. The resistance of the coil was found to be 0.48 Ohms and the inductance was found to be
negligible.

The relationship between the magnetic flux and the relative displacement of the centre magnet for a single turn of coil
was found using the finite element package FEMM. Following an assumption made in the previous section, a linear
approximation of the flux-displacement relationship was constructed. Fig. 6 shows that the approximation was chosen
under the assumption that only relatively small centre magnet displacements would take place. From finite element
simulations it was found that α1 ¼ 0:0024 Wb=m (where α1 represents the flux displacement relationship for one turn of
coil). Multiplying by the number of turns on the device it was found that α¼ 0:1992 Wb=m. This procedure was also used in
[22].

Fig. 4. Schematic of experimental apparatus used to validate the mechanical parameters of the device.
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4. Results

In this section the results of the parameter identification investigation are detailed. Firstly, the ability of the different
friction models to replicate the mechanics of the device is analysed. In the subsequent section, having identified the most
suitable friction model, the ability of the simulations to replicate the voltage output of the experimental device when
delivering power to a load resistor is analysed.

Nine different experiments were conducted—each using a different intensity of band-limited white noise. The root-
mean-square (RMS) value of each excitation signal is shown in Table 1. Initially, test number 3 was used as the training data
for SADE (shown as ‘training data 1’ in Table 1). The parameter values identified are shown in Table 2 (training data 1).
The identified parameter values were then used to compare the model response with that of the experiment for all the other
test conditions. Again, the ability of the model to replicate the response of the experiment was quantified using the cost
function (Eq. (11)).

Fig. 7(a) compares the performance of each friction model using the parameters identified when test 3 was used as
training data. It is immediately obvious that the inclusion of a friction model has greatly improved the ability of the
simulations to replicate the response of the experiment. It can also be seen that very similar cost values are realised for the

Coil

Shaker

PTFE 
Tube

Fig. 5. Schematic of experimental apparatus used to validate the electrical parameters of the device.
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Fig. 6. Finite element simulation of flux displacement relationship. Dashed and solid lines represent simulation results and the linear approximation
respectively.

Table 1
RMS base acceleration for each excitation condition.

Label Test number RMS(ÿ) (m/s2)

1 1.07
2 1.21

Training data 1: 3 1.34

4 1.54
5 1.67
6 1.84
7 1.96

Training data 2: 8 2.12

9 2.22

Table 2
Identified parameters for each friction model using test 3 and test 8 as training data.

Model Parameter Value (training data 1) Value (training data 2) Units

No friction c 0.116 0.079 Ns/m
k 54.8 54.2 N/m
k3 1,12,620 1,19,210 N/m3

Coulomb c 0.049 0.047 Ns/m
k 57.4 56.1 N/m
k3 70,742 91,894 N/m3

Fc 0.0058 0.0065 N

Hyperbolic c 0.049 0.047 Ns/m
tangent k 57.5 56.1 N/m

k3 68,956 91,798 N/m3

Fc 0.0058 0.0065 N
β 4.8�108 8.3�108 s/m

LuGre c 0.055 0.051 Ns/m
k 59.7 58.1 N/m
k3 64,926 79,788 N/m 3

s0 1.98 4.9 N/m
s1 0.18 0.19 Ns/m
Fc 0.0008 0.0007 N
Fs 0.008 0.0006 N
_zs 0.007 0.0006 m/s
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Coulomb and hyperbolic tangent models over the entire range of tests. Recalling the governing equations of both models:

F ¼ Fc sgnð_zÞ (13)

F ¼ Fc tanhðβ _zÞ (14)

after consulting the identified parameters in Table 2 (training data 1), it is clear that these two models will behave in a
similar manner. This is because the same value of Fc was identified in each case and, as a result of a high value for β, the
hyperbolic tangent model is forming a close approximation to the signum function used in the Coulomb damping model.
Perhaps one of the most interesting results from this investigation is that the Coulomb and hyperbolic tangent models have
consistently outperformed the LuGre model for all of the test conditions except for test 8. This also happens to be the test
case where friction seemed to be having the largest effect on device response (as this is where the simulations without a
friction model performed the worst).

Indeed, the test that was used as training data (test 3) also happens to be the test where friction appeared to be the least
significant. This raises the possibility that the dynamics of the system were not sufficiently friction-affected to allow proper
identification of the parameters in the LuGre model. For this reason the identification process was repeated using the most
friction affected test (test 8) as the training data (shown as ‘training data 2’ in Table 1). The resulting parameters are shown
in Table 2 (training data 2).

Using this new training data it was found that, as before, the hyperbolic tangent model formed a close approximation to
the Coulomb damping model. For both models a higher value of Fc was identified when test 8 was used as training data—this
confirms the hypothesis that friction affected this test more than test 3. It is also interesting to note that the LuGre model
now outperforms the Coulomb and hyperbolic tangent models in more cases than previously. This confirms that the use of a
more friction-affected test as training data has led to better parameter estimates for the LuGre model.

Fig. 7(b) compares the performance of each friction model using the parameters identified when test 8 was the training
data. While the use of a different test as training data has improved the performance of the viscous model in some cases it
has also dramatically impaired it in others. This confirms that such a model is poorly suited to model the dynamics of the
device over its full range of operating conditions.
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Fig. 7. Cost between experiment and simulation time histories for different tests having used (a) test 3 and (b) test 8 as training data.
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Finally, it is worth noting that the device investigated here is relatively large for an energy harvester—in fact the recent
increase in energy harvesting research is often thought to be as a result of advances in MEMS technology allowing the
construction of devices on the micro-scale. Such devices may be much more susceptible to the effects of friction. For this
device though (which has a height of roughly 30 cm), it is clear that the Coulomb damping model is usually sufficiently
accurate.

Having decided to include the Coulomb damping model, the ability of the simulations to predict the voltage output of the
device was analysed. Fig. 8 shows an excellent agreement between the simulation and experiment. With regards to the
histogram (Fig. 8(b)) it is interesting to note a large ‘spike’ at zero volts. This is a result of friction preventing the centre
magnet from moving relative to the device outer casing thus resulting in a voltage output close to zero. Indeed, if one
neglects to use a friction model, this spike disappears from the simulated histograms.

5. Equivalent linearisation

5.1. Application to Coulomb damping

As mentioned in the introduction to this work, the stochastic nature of ambient vibrations has led to many authors
focusing on the response of energy harvesters to random excitations—often Gaussian white noise. It has been shown that
the response of a monostable energy harvesting device with Duffing-type nonlinearities to the afore mentioned excitation
conditions can be analysed using a closed form solution of the corresponding FPK equation [21,22]. However, the inclusion
of Coulomb damping makes the FPK equation for this system difficult to solve. Consequently, in this section, the technique of
equivalent linearisation will be used in conjunction with known solutions from the FPK equation to model the effects of
friction on a randomly excited device.

Equivalent linearisation involves finding a linear system which can replicate the response of its nonlinear counterpart as
closely as possible. With regards to energy harvesting, the aim of the work in this section is to create an equivalent linear
system which allows one to approximate the effect of friction on the power output of the device to a sufficient degree of
accuracy. Findings from previous works [21,22] have established that, when excited by Gaussian white noise, the nonlinear
spring term k3 has no effect on power output and can therefore be neglected in the following analysis. However, these
studies did not include friction. In the present study it is assumed that the nonlinear stiffness still has no effect on power
output even when friction is present. We then test this assumption using simulated data. To that end, a SDOF system with
linear spring term and velocity dependent nonlinearity is considered:

m€z þ f ð_zÞ þ kz¼mwðtÞ (15)

where w(t) is a Gaussian white noise excitation with:

E½wðtÞ� ¼ 0 (16)

and

E½wðt1Þwðt2Þ� ¼
S
2
δðt2−t1Þ (17)

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
−0.02

−0.01

0

0.01

0.02

Time (s)

V
ol

ts

Simulation
Experiment

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
0

0.5

1

1.5

2

2.5
x 104

Volts

Fr
eq

ue
nc

y 
of

O
cc

ur
an

ce
 

Fig. 8. Comparison of simulation (dashed line) and experimental (solid line) (a) voltage time history and (b) histogram for test condition 6.
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where E represents the expected value, S the height of the noise power spectral density and δ is the Dirac delta function.
The aim of equivalent linearisation is to find a linear system of the form:

m€z þ ceq _z þ kz¼mwðtÞ (18)

where ceq is chosen such that the linear response is able to match the response of the nonlinear system as closely as possible
(as quantified using a least-squares measure). In [30] it is shown that, for the case of Coulomb damping, the equivalent
damping term in Eq. (18) is given by the following integral:

ceq ¼ cþ Fcffiffiffiffiffiffi
2π

p
s3_z eq

Z ∞

−∞
exp −

_z2

2s2_z eq

 !
_z sgnð_zÞ d_z (19)

(as E½_z� ¼ 0) where s2_z eq is the variance of the linear equivalent system's velocity probability density function which, from
[31], is known to be:

s2_z eq ¼
Sm
4ceq

: (20)

By writing:

sgnð_zÞ ¼ j_zj
_z

(21)

one obtains:

ceq ¼ cþ Fcffiffiffiffiffiffi
2π

p
s3_z eq

Z ∞

−∞
exp −

_z2

2s2_z eq

 !
_z d_z
����

¼ cþ Fcffiffiffiffiffiffi
2π

p
s3_z eq

2
Z ∞

0
exp −

_z2

2s2_z eq

 !
_z d_z: (22)

Recalling that

d
d_z

exp −
_z2

2s2_z eq

 ! !
¼−

_z
s2_z eq

exp −
_z2

2s2_z eq

 !
(23)

then

−s2_z eq exp −
_z2

2s2_z eq

 !
¼
Z

exp −
_z2

2s2_z eq

 !
_z d_z: (24)

Substituting this result into Eq. (22) yields:

ceq ¼ cþ Fcffiffiffiffiffiffi
2π

p
s3_z eq

ð−2s2_z eqÞ exp −
_z2

2s _z eq

 !" #∞
0

(25)

therefore:

ceq ¼ cþ 2Fcffiffiffiffiffiffi
2π

p
s _z eq

: (26)

Using the equivalent linear velocity variance (Eq. (20)) this may be written:

ceq ¼ cþ 4Fcffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffi
ceq
Sm

r
; (27)

therefore:

ðceq−cÞ2 ¼ 4Fcffiffiffiffiffiffi
2π

p
� �2 ceq

Sm
; (28)

which, after a little manipulation, can be written:

c2eq þ ceq −2c−
8F2c
πSm

" #
þ c2 ¼ 0: (29)

After solving with the quadratic formula and neglecting negative values of damping as being unphysical, the equivalent
damping term is given by

ceq ¼ cþ 4F2c
πSm

þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2c−

8F2c
πSm

 !2
vuut −4c2: (30)
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The expected power delivered to the electrical domain is given by

E½Pe� ¼ E½ce _z2� ¼ ceE½_z2� (31)

which, as E½_z� ¼ 0, can be written:

E½Pe� ¼ ces2_z ¼ ce
Sm
4ceq

(32)

where ceq is given by Eq. (30). Fig. 9 shows a comparison between the equivalent linearisation approach and the results of
numerical simulations of Eq. (1) for 3 different values of power spectral density height (S) for the cases where (a) k3¼0 and
(b) k3¼5,00,000 N/m3. In all of the cases shown it is clear that the equivalent linearisation approach has accurately
modelled the effect of friction on power delivered to the electrical domain. What is perhaps most interesting about this
result is that the ability of the equivalent linear system to replicate the response of the digital simulation does not appear to
be affected by the presence of the Duffing-type nonlinearity (k3). With regards to energy harvester design this is a useful
result as it demonstrates that the intentionally introduced Duffing-type nonlinearity is not interacting with the unavoidable
friction nonlinearity in a way which can be detrimental to the device performance. Consequently, it can be concluded that
the benefits one can achieve via the addition of the hardening-spring nonlinearity with regards to rattle space (see [22]) are
still possible despite the presence of friction.
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Fig. 9. The effect of Coulomb damping on expected power output where cm ¼ ce ¼ 0:1 Ns/m and, from top to bottom, S¼1, 0.5 and 0.1 (m/s2)/Hz
respectively. Figures (a) and (b) represent cases where k3 ¼ 0 and 500,000 N/m3 respectively while all other parameters are the same as those shown in
Table 2 (Coulomb model). Crosses and solid line represent results according to simulation and equivalent linearisation respectively.
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6. Discussion and future work

This paper is concerned with the effects of friction losses on the response of an energy harvesting device. It is clear that
friction will be present in the device detailed in this work (as linear bearings are used to prevent the centre magnet from
experiencing sideways/rotational motion). If one considers devices of the cantilevered beam type it is interesting to note
that, although friction will not be effecting such a device, some recent works have begun to focus on the different types of
energy loss mechanisms that are present in such systems. For example, the work detailed in [32] was concerned with the
simulation of piezoelectric beam type devices with a model where material damping dominated the response (as apposed
to air damping).

In the previous section it was shown that the technique of equivalent linearisation could be used to accurately predict the
effect of Coulomb damping on the response of the device. While its application in this case was successful it should be noted
that, by using an equivalent linear system, this method cannot be used to replicate some of the phenomena associated with
nonlinear systems (super-harmonics for example). The effect of these higher harmonics will depend on the level of
nonlinearity and nature of excitation—future work could be directed towards finding closed-form or approximate solutions
to the stationary FPK equation of a SDOF system with Coulomb damping such that these effects can be analysed.

7. Conclusions

In this work, the effect of friction on the response of an electromagnetic energy harvester with Duffing-type
nonlinearities was analysed. Performing system identification using a differential evolution algorithm in conjunction with
experimental tests, it was shown that considering the effects of friction is essential if one is to accurately model the response
of this type of energy harvester. Following the analysis of several different friction models, it was found that the use of the
Coulomb damping model led to the best match between experiment and simulation. The technique of equivalent
linearisation was then used to develop an analytical expression which could accurately predict the effects of Coulomb
damping on the power output of a randomly excited energy harvesting device. Comparing the response of time domain
simulations with the results anticipated using the equivalent linearisation approach it was shown that, when under a
Gaussian white noise excitation, there appears to be no interaction between the Duffing-type and the Coulomb
nonlinearities thus allowing exploitation of Duffing-type nonlinearities in friction-affected devices.
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