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A New Class of Wavelet Networks for Nonlinear
System Identification

Stephen A. Billings and Hua-Liang Wei

Abstract—A new class of wavelet networks (WNs) is proposed
for nonlinear system identification. In the new networks, the
model structure for a high-dimensional system is chosen to be a
superimposition of a number of functions with fewer variables.
By expanding each function using truncated wavelet decomposi-
tions, the multivariate nonlinear networks can be converted into
linear-in-the-parameter regressions, which can be solved using
least-squares type methods. An efficient model term selection
approach based upon a forward orthogonal least squares (OLS)
algorithm and the error reduction ratio (ERR) is applied to solve
the linear-in-the-parameters problem in the present study. The
main advantage of the new WN is that it exploits the attractive
features of multiscale wavelet decompositions and the capability of
traditional neural networks. By adopting the analysis of variance
(ANOVA) expansion, WNs can now handle nonlinear identifica-
tion problems in high dimensions.

Index Terms—Nonlinear autoregressive with exogenous inputs
(NARX) models, nonlinear system identification, orthogonal least
squares (OLS), wavelet networks (WNs).

I. INTRODUCTION

W
AVELET theory [1]–[3] has been extensively studied in

recent years and has been widely applied in various areas

throughout science and engineering. Dynamical system mod-

eling and control using artificial neural networks (ANNs), in-

cluding radial basis function networks (RBFNs), has also been

studied widely and a number of systematic approaches have

been proposed [4]–[16]. The idea of combining wavelets with

neural networks has led to the development of wavelet networks

(WNs), where wavelets were introduced as activation functions

of the hidden neurons in traditional feedforward neural networks

with a linear output neuron. Although it was considered that

WNs were popularized by the work in [17]–[19], the origin of

WNs can be traced back to the earlier work of Daugman [20],

where Gabor wavelets were used for image classification and

compression.

The wavelet analysis procedure is implemented with dilated

and translated versions of a mother wavelet. Since signals of

interest can usually be expressed using wavelet decompositions,

signal processing algorithms can be performed by adjusting

only the corresponding wavelet coefficients. In theory, the

dilation (scale) parameter of a wavelet can be any positive real
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value and the translation (shift) can be an arbitrary real number.

This is referred to as the continuous wavelet transform. In

practice, however, in order to improve computation efficiency,

the values of the shift and scale parameters are often limited to

some discrete lattices. This is then referred to as the discrete

wavelet transform.

Both continuous and discrete wavelet transforms have been

introduced to implement neural networks. Existing WNs can,

therefore, be catalogued into the following two types.

• Adaptive WNs, where wavelets as activation functions

stem from the continuous wavelet transform and the un-

known parameters of the networks include the weighting

coefficients (the outer parameters of the network) and

the dilation and translation factors of the wavelets (the

inner parameters of the network). These parameters can

be viewed as coefficients varying continuously as in con-

ventional neural networks and can be learned by gradient

type algorithms.

• Fixed grid WNs, where the activation functions stem from

the discrete wavelet transforms and unlike in adaptive

neural networks, the unknown inner parameters of the

networks vary on some fixed discrete lattices. In such

a WN, the positions and dilations of the wavelets are

fixed (predetermined) and only the weights have to be

optimized by training the network. In general, gradient

type algorithms are not needed to train such a network.

An alternative solution for training this kind of network

is to convert the networks into a linear-in-the-parameters

problem, which can then be solved using least squares

type algorithms.

The concept of adaptive WNs was introduced in [18] as an

approximation route which combined the mathematical rigor

of wavelets with the adaptive learning scheme of conventional

neural networks into a single unit. Adaptive WNs have been

successfully applied to nonlinear static function approxima-

tion and classification [17], [21]–[24], and dynamical system

modeling [25], [26]. Clearly, to train an adaptive WN, the

gradients with respect to all the unknown parameters have to

be expressed explicitly. The calculation of gradients may be

heavy and complicated in some cases especially for high-di-

mensional models. In addition, most gradient type algorithms

are sensitive to initial conditions, that is, the initialization of

wavelet neural networks is extremely important to obtain a

fast convergence for a given algorithm [27]. Another problem

that needs to be considered for training an adaptive WN is how

to determine the initial number of wavelets associated with

the network. These drawbacks often limit the application of

1045-9227/$20.00 © 2005 IEEE
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adaptive WNs to low dimensions for dynamical identification

problems.

Unlike adaptive WNs, in a fixed grid WN, the number of

wavelets as well as the scale and translation parameters can

be determined in advance. The only unknown parameters are

the weighting coefficients, that is, the outer parameters, of the

network. The WN is now a linear-in-the-parameters regression,

which can then be solved using least squares techniques. As will

be discussed in Section III-D, the number of candidate wavelet

terms in a fixed grid WN often increases dramatically with the

model order. As a consequence, fixed grid WNs are often lim-

ited to low dimensions.

Inspired by the well-known analysis of variance (ANOVA)

expansions [28], [29], a new class of fixed grid WNs is intro-

duced in the present study for nonlinear system identification.

In the new WNs, the model structure of a high-dimensional

system is initially expressed as a superimposition of a number

of functions with fewer variables. By expanding each func-

tion using truncated wavelet decompositions, the multivariate

nonlinear networks can then be converted into linear-in-the-pa-

rameter problems, which can be solved using least-squares type

methods. The new WNs are, therefore, in structure different

from either the existing WNs [18], [24]–[26], [30]–[32] or

wavelet mutiresolution models [33], [34]. A wavelet multires-

olution model is in structure similar to a fixed grid WN. The

former, however, forms a wavelet multiresolution decompo-

sition similar to an ordinary multiresolution analysis (MAR),

which involves not only a wavelet, but also another function,

the associated scaling function, where some additional require-

ments should be satisfied. An efficient model term detection

approach based on a forward orthogonal least squares (OLS)

algorithm, along with the error reduction ratio (ERR) crite-

rion [35]–[37] is applied to solve the linear-in-the-parameters

problem in the present study.

II. PRESENTATION OF NONLINEAR DYNAMICAL SYSTEMS

A wide range of nonlinear systems can be represented using

the nonlinear autoregressive with exogenous inputs (NARX)

model. Taking single-input–single-output (SISO) systems as an

example, this can be expressed by the following nonlinear dif-

ference equation:

(1)

where is an unknown nonlinear mapping, and are

the sampled input and output sequences, and are the max-

imum input and output lags, respectively. The noise variable

is immeasurable but is assumed to be bounded and uncorrelated

with the inputs.

Several approaches can be applied to realize the represen-

tation (1) including polynomials [36], [41], [42], neural net-

works [4]–[6], [8] and other complex models [43]. In the present

study, an additive model structure will be adopted to represent

the NARX model (1). The multivariate nonlinear function in

the model (1) can be decomposed into a number of functional

components via the well-known functional ANOVA expansions

[28], [29]

(2)

where and

.
(3)

The first functional component is a constant to indicate the

intrinsic varying trend; , are univariate, bivariate, etc.,

functional components. The univariate functional components

represent the independent contribution to the system

output that arises from the action of the th variable alone;

the bivariate functional components represent the

interacting contribution to the system output from the input vari-

ables and , etc. The ANOVA expansion (2) can be viewed

as a special form of the NARX model for input and output

dynamical systems. Although the ANOVA decomposition of

the NARX model (1) involves up to different functional

components, experience shows that a truncated representation

containing the components up to the bivariate or tri-variate

functional terms often provides a satisfactory description of

for many high dimensional problems providing that the

input variables are properly selected [44], [45]. It is obvious

that adopting a truncated ANOVA expansion containing only

low-dimensional function components does not mean such an

approach will always be appropriate. An exhaustive search

for all the possible submodel structures of (2) is demanding

and can be prohibitive because of the curse-of-dimensionality.

A truncated representation is advantageous and practical if

the higher order terms can be ignored. Note that the function

does not contain terms that can

be written as functional components with an order smaller

than . It was also assumed that each functional component of

the desired ANOVA expansion is square-integrable over the

domain of interest for given data sets. In practice, the constant

term can often set to be zero. If the constant term is different

from zero for a given system, it can then be approximated

by a wavelet expansion providing that the approximation is

restricted to a compact subset of .

It will generally be true that, whatever the data set and what-

ever the modeling approach, the structure of the final model will

be unknown in advance. It is, therefore, not possible to know

that expansions up to trivariate terms will always be sufficient in

the ANOVA expansion. This is why model validation methods,

which are independent of the model fitting procedure and the
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model type, are an important part of the nonlinear autoregres-

sive moving average with exogenous inputs (NARMAX) mod-

eling methodology [9]. If the model is adequate to represent the

system the residuals should be unpredictable from all linear and

nonlinear combinations of past inputs and outputs. This means

that the identified model has captured all the predictable infor-

mation in the data and is, therefore, the best that can be achieved

by any model. It is, therefore, perfectly acceptable to fit a model

that includes just bivariate or trivariate terms initially. The model

validity tests should then be applied to test if the model that is

obtained has captured all the predictable information in the data.

If the model fails the model validity tests higher order terms

should be included in the initial search set and the procedure

should be repeated. It is, therefore, not necessary to prove that

it is always possible to proceed based on just bi- and tri-variate

terms. The identification proceeds a stage at a time and uses

model validation as the decision making process. This is the

NARMAX methodology [9], which is implemented here, and

which mimics the traditional approach to analytical modeling.

In the latter case, the most important model terms are included in

the model initially then the less significant terms are added until

the model is considered to be adequate. This is exactly what

the OLS algorithm and the ERR does but based on the data. The

most significant model terms are added first, step by step, a term

at a time. The ERR cutoff value is used as a stopping mechanism

but the model should never be accepted without applying model

validity tests. If these tests fail go back and either reduce the

ERR cutoff, or allow more complex model terms in the initial

model library, or both and continue until the model validity tests

are satisfied.

In practice, many types of functions, such as kernel func-

tions, splines, polynomials and other basis functions [46] can

be chosen to express the functional components in model (2). It

is known that wavelet basis functions have the property of local-

ization in both time and frequency. With the excellent approx-

imation properties associated with multiscale decompositions,

wavelet models outperform many other approximation schemes

and are well-suited for approximating arbitrary functions [1],

even functions with sharp discontinuities. It has been shown that

the intrinsic nonlinear dynamics related to real nonlinear sys-

tems can easily be captured by an appropriately fitted wavelet

model consisting of a small number of wavelet basis functions

[31], [34], and this makes wavelet representations more adap-

tive compared with other basis functions. In the present study,

therefore, wavelet decompositions, which are discussed in the

next section, will be chosen to describe the functional compo-

nents in the additive models (2), and this was referred to as the

wavelet-NARX model, or the WANARX [45], where multires-

olution wavelet decompositions were employed and a class of

compactly supported wavelets was considered.

III. WNs AND TRUNCATED WAVELET DECOMPOSITIONS

This section briefly reviews some results on wavelet decom-

positions and WNs which are relevant to the present work. For

more details about these results, see [1]–[3], [18], [31], [47], and

[48]. In the following, it is assumed that the independent vari-

able of a function of interest is defined in the unit

interval . In addition, for the sake of simplicity, one-dimen-

sional (1-D) wavelets are considered as an example to illustrate

related concepts.

A. Wavelet Decompositions

Let be a mother wavelet and assume that there exists a

denumerable family derived from

(4)

where and are the scale and translation parameters. The

normalization factor is introduced so that the energy of

is preserved to be the same as that of . Rearrange the

elements of so that

(5)

where is an index set which might be finite or infinite. Note

that the double index of the elements of in (4) is replaced

by a single index as shown in (5). Under the condition that

generates a frame, it is guaranteed that any function

can be expanded in terms of the elements in in the sense that

[1], [2], [18]

(6)

(7)

where are the decomposition coefficients or weights. Equa-

tion (7) is called the wavelet frame decomposition.

In practical applications the decomposition (7) is often dis-

cretized for computational efficiency by constricting both the

scale and dilation parameters to some fixed lattices. In this way,

wavelet decompositions can be obtained to provide an alterna-

tive basis function representation. The most popular approach to

discetize (7) is to restrict the dilation and translation parameters

to a dyadic lattice as and with (

is the set of all integers). Other nondyadic ways of discretization

are also available. For the dyadic lattice case, (7) becomes

(8)

where and .

Note that in general a frame provides a redundant basis.

Therefore, the decompositions (7) and (8) are usually not

unique, even for a tight frame. Under some conditions, it is

possible to make the decomposition (8) to be unique and in

this case this decomposition is called a wavelet series [1]. An

orthogonal wavelet decomposition, which requires stronger

restrictions than a wavelet frame, is a special case of a wavelet

series. Although orthogonal wavelet decompositions possess

several attractive properties and provide concise representa-

tions for arbitrary signals, most functions are excluded from

being candidate wavelets for orthogonal decompositions. On

the contrary, much more freedom on the choice of the wavelet
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Fig. 1. Two-dimensional Gaussian and Marr mother wavelets. (a) Gaussian wavelet. (b) Marr wavelet.

functions is given to a wavelet frame by relaxing the orthogo-

nality.B.

B. WNs

In practical applications for either static function learning or

dynamical system modeling, it is unnecessary and impossible

to represent a signal using an infinite decomposition of the form

(7) or (8) in terms of wavelet basis functions. The decomposi-

tions (7) and (8) are therefore often truncated at an appropriate

accuracy. WNs are in effect nothing but a truncated wavelet de-

composition. Taking the decomposition (8) as an example, an

approximation to a function using the truncated

wavelet decomposition with the coarsest resolution and the

finest resolution can be expressed in the following:

(9)

where are subsets of and often

depend on the resolution level for all compactly supported

wavelets and for most rapidly vanishing wavelets that are not

compactly supported. The details on how to determine at a

given level will be discussed later. Define

(10)

Assume that the number of wavelets in is . For con-

venience of description, rearrange the elements of so that

the double index can be indicated by a single index

in the sense that

(11)

The truncated wavelet decompositions (9) and (11) are re-

ferred to as fixed grid WNs, which can be implemented using

neural network schemes by choosing different types of wavelets

and employing different training/learning algorithms. This will

be discussed in Section IV.

Note that although the WN (9) or (11) involves different res-

olutions or scales, it cannot be called a multiresolution decom-

position related to wavelet MAR, which involves not only a

wavelet, but also another function, the associated scaling func-

tion, where some additional requirements should be satisfied.

C. Extending to High Dimensions

The results for the 1-D case described previously can be ex-

tended to high dimensions. One commonly used approach is

to generate separable wavelets by the tensor product of several

1-D wavelet functions. For example, an -dimensional wavelet

can be constructed using a scalar wavelet as

follows:

(12)

Another popular scheme is to choose the wavelets to be some

radial functions. For example, the -dimensional Gaussian type

functions can be constructed as

(13)

where . Similarly, the -dimensional

Mexican hat (also called the Marr) wavelet can be expressed as

. In the present study, the

radial wavelets are used to implement WNs. The two-dimen-

sional (2-D) Gaussian and Mexican hat wavelets are shown in

Fig. 1.

D. Limitations of Existing WNs

It has been found that most exiting WNs are limited to han-

dling problems in low-dimensional space due to the difficulty
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of the so called curse-of-dimensionality. The following discus-

sion will illustrate why existing WNs are not readily suitable for

high-dimensional problems.

Assume that a function of interest is defined in

the unit hypercube . Let be a scalar wavelet function

that is compactly supported on . From Section III-C, this

scalar wavelet can be used to generate an -dimensional wavelet

by (12). This multidimensional wavelet

can then be used to approximate the -dimensional function

using the WN (9) in the following:

(14)

where is an -dimensional index.

Noting that for and that the wavelet

is compactly supported on . Then for a given reso-

lution level , it can easily be proved that the possible values

for should be between and , that is,

. Therefore, the number of

candidate wavelet terms to be considered at scale level will

be , where . Setting 5

and 5, this number will be , , , and

for 0,1,2, and 3, respectively. If and are

set to be 10 and 5, the number of candidate wavelets will then

become , , , and for 0,1,2, and

3, respectively. This implies that the total number of candidate

wavelet terms involved in the WN can become very large even

for some low resolution levels . This means that the

computation task for a medium or high-dimensional WN can

become very high. Thus, it can be concluded that high-dimen-

sional WNs will be very difficult if not impossible to imple-

ment via a tensor product approach. This is the case where an

-dimensional wavelet is constructed by the tensor product of

scalar wavelets.

Similarly, applications of existing WNs, where the wavelets

are chosen to be radial wavelets, are also prohibited from high-

dimensional problems by the previously mentioned limitations.

In addition, most existing radial WNs possess an inherent draw-

back, that is, every wavelet term includes all the process vari-

ables as in the Gaussian and the Marr mother wavelets. This

is unreasonable since in general it is not necessary that every

variable of a process interacts directly with all the other vari-

ables. Moreover, experience shows that inclusion of the total-

variable-involved wavelet terms (here a total-variable-involved

term refers to a model term that involves all the process vari-

ables simultaneously) may produce a deleterious effect on the

resulting model of a dynamical process and will often induce

spurious dynamics. From the point of view of identification

studies, it is therefore desirable to exclude the total-variable-in-

volved wavelet terms.

The limitations and drawbacks associated with existing WNs

described previously suggest that new WNs need to be con-

structed to bypass the curse-of-dimensionality to enable the net-

works to handle more realistic and high-dimensional problems.

IV. NEW CLASS OF WNs

The structure of the new WNs is based on the ANOVA expan-

sion (2), where it is assumed that the additive functional compo-

nents can be described using truncated wavelet decompositions.

The construction and implementation procedure of the new net-

works is described as follows.

A. Structure of the New WNs

Consider the -dimensional functional component

in the ANOVA expan-

sion (2). From (9) or (11),

can be expressed using an -dimensional WN as

(15)

where the -dimensional wavelet function

can be generated from a

scalar wavelet as in (12) or (13). Taking the 2-D component

in (2) as an example, this

can be expressed using a radial WN as

(16)

where the Mexican hat function is used. Other wavelets can also

be employed.

By expanding each functional component in (2) using a radial

WN(15), anonlinearWNcanbeobtainedand thiswillbeusedfor

nonlinear system identification in the present study. Note that in

(16) the scale parameters for each variable of an -dimensional

wavelet are the same. In fact, the scales for different variables

of an -dimensional wavelet are permitted to be different. This

may enable the network to be more adaptive and more flexible.

However, this will also make the number of candidate wavelet

terms increase drastically and even lead to prohibitive calcula-

tions for high-dimensional systems. Therefore, the same scales

for different variables will be considered here.
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B. Determining the Number of Candidate Wavelet Terms

Assume that both the input and the output of a nonlinear

system are limited to be in the unit interval . If not, both the

input and output can be normalized into under the condi-

tion that the input and output are bounded in finite intervals [45].

The number of candidate wavelet terms is determined by both

the scale levels and translation parameters. For a wavelet with

a compact support, it is easy to determine the parameters at a

given scale level . For example, the support of the fourth-order

B-spline wavelet [1] is . At a resolution scale , the varia-

tion range for the translation parameter is .

The number of total candidate wavelet terms at different resolu-

tion scales in a WN can then be determined.

Most radial wavelets are not compactly supported but rapidly

vanishing. Using this property, a radial wavelet can often be

truncated at some points such that this radial wavelet becomes

quasi-compactly supported. Under this case, the support bound-

aries are design parameters and some good reference results

were obtained for the boundary values given in the following:

(17)

or (18)

The support of the one and 2-D Gaussian wavelets can then be

defined as and . Similarly,

for the 1-D and 2-D Mexican hat wavelets, for

and for or .

Therefore, the one and 2-D Mexican hat wavelets can also be

defined as and . The compactly supported one and 2-D

Mexican hat wavelets can be defined as

otherwise
(19)

otherwise .
(20)

The compactly supported Gaussian wavelets can be de-

fined in the same way. The support for three-dimensional

(3-D) Gaussian and Mexican wavelet can be defined as

. Note that from experience

the wavelet support boundaries are not critical design param-

eter, this means that the proposed identification techniques

enjoys some robustness with respect to the choice of wavelet

boundaries.

For the scalar Gaussian or Mexican hat wavelet, given a res-

olution scale , since and , the choice

for the translation parameter should satisfy .

This means that the number of candidate 1-D wavelets at a given

scale can be determined beforehand. Similarly, the number of

candidate -dimensional candidate wavelets terms can be de-

termined. Therefore, the number of the total candidate wavelet

terms is now deterministic.

C. Significant Term Detection

Assume that candidate wavelet terms are involved in a

WN. The WN can then be converted into a linear-in-the-param-

eters form

(21)

where are regressors (model terms)

produced by the dilated and translated versions of some mother

wavelets. For a high-dimensional system, where and/or

in (1) are large numbers, the model (21) may involve a great

number of model terms. Experience shows that often many of

the model terms are redundant and therefore are insignificant to

the system output and can be removed from the model. In other

words, only a small number of significant terms are necessary to

describe a given nonlinear system with a given accuracy. There-

fore, there exists an integer (generally ), such that

the model

(22)

provides a satisfactory representation over the range considered

for the measured input–output data.

A fast and efficient model structure determination approach

has been implemented using the forward OLS algorithm and

the ERR criterion, which was originally introduced to determine

which terms should be included in a model [35], [36]. This ap-

proach has been extensively studied and widely applied in non-

linear system identification [31], [35], [36], [49]–[52]. The for-

ward OLS algorithm involves a stepwise orthogonalization of

the regressors and a forward selection of the relevant terms in

(21) based on the ERR [36]. See the Appendix for more details

of the forward OLS algorithm.

D. Procedure to Implement the New WNs

Two schemes can be adopted to implement the new WN. One

scheme starts from an over constructed model consisting of both

low and high dimensional submodels. This means that the li-

brary of wavelet basis functions (wavelet terms) used to con-

struct a WN is over-completed. The aim of the estimation pro-

cedure is to select the most significant wavelet terms from the

deterministic over-completed library, so that the selected model

terms describe the system well. Another scheme starts from a

low-order submodel, where the library of wavelet basis func-

tions (wavelet terms) used to construct a WN may or may not be

completed. The estimation procedure then selects the most sig-

nificant wavelet terms from the given library. If model validity

tests [53], [54] suggest that the selected wavelet terms cannot

adequately describe a given system over the range of interest,

higher dimensional wavelet terms should then be added to the

WN (library). Significant terms are then reselected from the new

library. This procedure may repeat several times until a satisfac-

tory model is obtained. These two identification procedures to

implement the WN are summarized in the following.
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1) Implement a WN Starting From an Over-Constructed

Model: This identification procedure contains in general of the

following steps.

Step 1) Data preprocessing. For convenience of imple-

mentation, convert the original observational

input–output data and

into the unit interval . The converted input and

output are still denoted by and .

Step 2) Determining the model initial conditions. This in-

cludes the following.

i) Select initial values for and .

ii) Select the significant variables from all candidate

lagged output and input variables

,

. This involves the model order determina-

tion and variable selection problems.

iii) Determine , the highest dimension of all the

submodels (functional components) in (2).

Step 3) Identify the WN consisting of functional compo-

nents up to -dimensions.

i) Determine the coarsest and finest resolution

scales and , where

indicates the scales of the

associated -dimensional wavelets. Generally

the initial resolution scales 0, and the fines

resolution scales can be chosen

in a heuristic way.

ii) Expand all the functional components of up to

-dimensions using selected mother wavelets of

up to -dimensions.

iii) Select the significant model terms from the can-

didate model terms and then form a parsimo-

nious model of the form (22).

Step 4) Model validity tests. If the identified th-order

model in Step 3) provides a satisfactory rep-

resentation over the range considered for the

measured input–output data, then terminate the

procedure. Otherwise, set and/or

, go to and repeat

from Step 3.

2) Implement a WN Starting From Low-Order Sub-

models: This identification procedure can be summarized

in the following.

Step 1) The same as in 4.4.1.

Step 2) Determining the model initial conditions. This in-

cludes: i) and ii) The same as in 4.4.1. iii) Set 1.

Step 3) The same as in 4.4.1.

Step 4) Model validity tests.

E. Noise Modeling

In many cases the noise signal in (1) may be a corre-

lated or colored noise sequence. This is likely to be the case for

most real data sets The NARX model (1) will then become the

NARMAX model [38]

(23)

Model (23) is obviously more general than the NARX model

(1) and which includes as special cases several linear and non-

linear representations [43]. The NARMAX model (23) is easily

accommodated in the ANOVA expansion (2) by defining

in (3) to include noise terms

(24)

where . Note that the noise signal in

model (23) is generally unobserved and is often replaced by the

model residual sequence. Let represent an estimator for the

model , the residuals can then be estimated as

(25)

In this case the algorithm in Sections IV-D.1 and II will in-

clude an extra step in Step 3) which consists of the following:

• compute the prediction errors ;

• use the value of from the previous iteration so that

noise model terms are included in model .

In some situations it may be possible to use just a linear noise

model where

(26)

But if this is insufficient then for

can be included in the ANOVA expansion (2) where is

defined as

.
(27)

The model validity tests [53], [54] can be used to determine

if the process and noise models are adequate.

V. EXAMPLES

Three bench test examples are provided to illustrate the per-

formance of the new WNs. The first data set comes from a simu-

lated continuous-time input–output system, the second is from a

high-dimensional chaotic time series, and the third is the sunspot

time series. Note that the original data sets used for identifica-

tion were initially normalized to , the identification pro-

cedure is therefore performed using normalized variables. The

outputs of an identified model can then be recovered to the orig-

inal system operating domain. The varying bounds of a variable

in the original system operating domain were determined by in-

specting the data sets available for identification rather than by

physical insight.

A. Nonlinear Continuous-Time Input–Output System

Consider the Goodwin equation described by a nonlinear

time-invariant continuous-time model [55]

(28)
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where , , and are time-invariant parameters. Under the initial

conditions 0 and with ,

0.1, 0.5, 0.5, 37, a fourth-order Runge–Kutta

algorithm was used to simulate this model with the integral step

size 0.01, and 3000 equi-spaced samples were obtained

from the input and output with a sampling interval of 0.02

time units. The sampled input and output, and for

, were normalized into the unit interval

using the fact that and . The

normalized input and output sequences were still designated by

and .

The 3000 data points of input–output samples were divided

into two parts: the estimation set consisting of the first 1000 data

points was used for WN training and the test set consisting of

the remaining 2000 data points was used for model testing. A

variable selection algorithm [56] was performed on the estima-

tion data set and three significant variables

were selected. The initial WN was chosen as

(29)

where for 1,2 and .

The 1-D, 2-D, and 3-D Mexican hat radial WNs were used in

this example to approximate the univariale functions , the bi-

variate functions , and the tri-variate function , respec-

tively, with the coarsest resolutions and finest

resolutions and . A forward OLS algo-

rithm, together with the ERR criterion [35]–[37] was applied to

select significant model terms. The final identified model was

found to be

(30)

where and

are the one and two dimensional

compactly supported Gaussian wavelets, , , and are

some integer numbers.

Setting the input signal , and starting

from the initial value [this is equiv-

alent to the original initial condition 0

for (28)], the model (30) was simulated and the output

was recovered to its original amplitude by the inverse

transform , where

. The recovered system output from the

model (30) was compared with that from the original model

(28) over the validation set and is shown in Fig. 2(a) and

(b), which clearly indicates that the model (30) provides an

excellent representation for the input–output data set generated

from the system (28) with an input of sine wave. For a closer

inspection of the result, the interval [1600, 2400], where the

maximum errors appear as shown in (b), was expanded and

this is shown in Fig. 2(c). Note that model predicted outputs or

Fig. 2. Comparison of the model output based on the WN (30) with the
measurements over the test set. (a) Overlap of the output of the WN (30) and
the measurements. (b) Discrepancy between the output of the WN (30) and
the measurements. (c) The interval [1600; 2400] was expanded for a closer
inspection. In (a) and (c), the solid lines indicate the measurements and the
dashed lines indicate the model predicted outputs.

the long term model predictions are used here as a much more

severe test compared with one-step-ahead predicted outputs.

For comparison, we have also tried other wavelet models

using only the total-variable-involved functional exponent

in (29) by expanding

this exponent using a 3-D radial wavelet decomposition (a

traditional 3-D fixed grid WN). For example, with the same

input–output data set and the same wavelet parameters as did

in the model (29), the 3-D Mexican hat radial wavelet was used

to fit a model. It was calculated that the root-mean-square-error

(RMSE) of the model prediction over the test data set (points

from 1001 to 3000) is 0.0889 for the traditional wavelet model.

The value of RMSE with respect to the same test data set

based on the proposed method, however, is only 0.0213, which

is much smaller. This implies that for this example the new

proposed WN may be advantageous over a conventional fixed

grid WN, where only the total-variable-involved functional

exponent were considered.

B. High-Dimensional Chaotic System

Consider the Mackey–Glass delay-differential equation [57]

(31)

where the time delay was chosen to be 30 in this example.

This example was chosen to facilitate comparisons with other

results [25], [58]. Setting the initial condition 0.9 for

, a Runge–Kutta integral algorithm was applied to

calculate (31) with an integral step 0.01 and 6000 equi-

spaced samples, , were recorded with

a sampling interval of 0.06 time units.

The recorded sequence was normalized into the unit interval

using the a priori knowledge . Designate

the normalized sequence still by . The 6000 points were

then divided into two parts: the estimation set consisting of the

first 500 points was used for WN training and the validation

set consisting of the remaining 5500 points was used for model
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tests. Following [59], the dimension of the recorded time series

was assumed to be 6, and the significant variables were

therefore chosen to be . Sim-

ilar to the previous example, the initial WN was chosen to be

(32)

where the 1-D, 2-D, and 3-D compactly supported Mexican hat

radial WNs were used in this example to approximate the univar-

iale functions , the bivariate functions , and the tri-variate

function , respectively, with the coarsest resolutions

and finest resolutions , and .

A forward OLS-ERR algorithm was used to select significant

model terms. The final identified model was found to be

(33)

where and

are the 1-D and 2-D compactly

supported Mexican hat wavelets, .

Most of the results in the literature concern one-step-ahead

predictions of the sampled time series. In this example, however,

two-step-ahead predictions were considered and the predicted

results were compared with previous studies [25], [58], where

only one-step-ahead predictions were considered. To facilitate

comparisons, a measurement index, the relative error [25], was

used to measure the performance of the identified WN. This

index is defined as

(34)

where and are the measurements on the test set and asso-

ciated two-step-ahead predictions, respectively.

Fig. 3. Two-step-ahead predictions for the Mackey–Glass delay-differential
(31) using the identified WN (33) over the validation set. The stars “�” indicate
the measurements and the circles “�” indicate the predications. To allow a clear
inspection, the data are plotted once every 100 points.

Fig. 4. Relative errors between the two-step-ahead predictions from
the identified WN (33) and the measurements for the Mackey–Glass
delay-differential (31) over the validation set.

The results of two-step-ahead predictions of the WN (33)

were compared with the measurements and these are shown in

Fig. 3, where the data are plotted once every 100 points to allow

a clear inspection. The relative error is shown in Fig. 4,

which clearly indicates that the underlying dynamics have been

captured by the identified WN (33). Notice that from Fig. 4 the

result of two-step-ahead predictions of the WN (33) is by far

better even than that of the one-step-ahead predictions provided

by the WNs proposed in [25]. In fact, simulation results show

that the relative error with respect to the one-step-ahead pre-

dictions provided by the WN (33) are by far smaller than those

with respect to the two-step-ahead predictions. The standard

derivation over the test data set was calculated to be 0.0029 with

respect to the two-step-ahead predictions of the WN (33), which

is much smaller than 0.041 and is equivalent to 0.0016 given

by [58], where the one-step-ahead predictions were considered.

These results obviously show that the new WNs are more ef-

fective than conventional fixed grid WNs and are equivalent to

adaptive WNs.
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Fig. 5. Sunspot time series for the period from 1700 to 1999.

C. The Sunspot Time Series

The sunspot time series considered in this example consists

of 300 annually recorded Wolf sunspots of the period from 1700

to 1999, see Fig. 5. The objective here is to identify a WN model

to produce one-step-ahead predictions for the sunspot data set.

Again, the original measurements were

initially normalized into the unit interval using the infor-

mation . Designate the normalized sequence

by . The data set was separated into two parts: the training

set consisted of 250 data points corresponding to the period

1700–1949, and the test set consisted of 50 data points corre-

sponding to the period 1950–1999.

Following [56], the model order was chosen to be 9 here,

andthemostsignificantvariableswerechosentobe ,

and . The initial WN model was therefore chosen to be

(35)

where for ,

for 1,2, and . The 1-D, 2-D, and 3-D

compactly supported Gaussian radial WNs were used in this ex-

ample to approximate the univariate functions , the bivariate

functions , and the tri-variate function , respectively,

with the coarsest resolutions and finest res-

olutions . A forward OLS-ERR algorithm

[35], [36] was used to select significant model terms. The final

identified model was found to be

(36)

where are the wavelet terms formed by compactly sup-

ported Gaussian wavelets. The identified wavelet terms, the

corresponding parameters, and the associated ERRs are listed

in Table I. Roughly speaking, the values of the ERRs provide

an index indicting the contribution made by the corresponding

model term to a signal of interest, and in general, the larger a

ERR value is, the more significant the corresponding model

term is for representing a given signal. For details about

the meaning of ERR, see [25] and [36]. The result of the

TABLE I
WAVELET TERMS, PARAMETERS, AND ASSOCIATED ERROR REDUCTION

RATIOS FOR THE SUNSPOT TIME SERIES

one-step-ahead predictions based on the WN (36) over the test

set is shown in Fig. 6 (the dashed-star line), which clearly shows

that the identified model provides an excellent representation

for the sunspot time series.

In order to compare the predicted result of the WN with other

work [60], the following index, the mean-square-error on the test

set, was used to measure the performance of the identified WN

(37)

where is the length of the test set, and are the mea-

surements over the data set and associated one-step-ahead pre-
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Fig. 6. One-step-ahead predictions for the sunspot time series based the WNs
(36) and (38) over the test set. The point-solid line indicates the measurements,
the dashed-star line indicates the predictions from (36), and the dotted-circle
line indicates the predications from (38).

dictions, respectively, and . It was cal-

culated 0.0651 for the identified WN (36) that is smaller

than 0.076 (for the period of years 1921–1954) and 0.23 (for

the period of years 1955–1979) which are given by a wavelet

decomposition model proposed in [60].

An important point revealed by Table I is that the three vari-

ables , and are far more significant

than the other variables. This is consistent with the result given

in [55]. In fact, the sunspot time series can be satisfactory de-

scribed using a WN with respect to only these three significant

variables. This model is given in the following:

(38)

The one-step-ahead predictions from the WN (38) over the

test set is shown in Fig. 6 (the dotted-circle line), where the

normalized error was calculated to be 0.1044, which is still

very small.

VI. CONCLUSION

A new class of WNs has been introduced for nonlinear system

identification. The main advantage of the new identification ap-

proach compared with existing WNs, is that the new WNs are

more practical and can be applied to problems in medium and

high dimensions. This property arises due to the fact that the

structure of the new WNs are based on ANOVA expansions, for

which the high-dimensional subfunctions (submodels) can often

be neglected for many nonlinear systems.

It has been noted that a conventional WN always includes

the total-variables-involved wavelet terms, even though this is

not necessary for most systems in the real world. In addition, a

model that includes only high-order terms is liable to produce a

deleterious effect on the output behavior of the model which can

induce spurious dynamics. The new WNs avoid most of these

problems by decomposing a multidimensional function into a

number of low-dimensional submodels.

In theory, many types of wavelets can be used to approximate

the low-dimensional submodels by a scheme of taking tensor

products or adopting radial functions. In network training, how-

ever, it is often preferable to use a wavelet that is compactly sup-

ported, since the number of compactly supported wavelets at a

given resolution scale can be determined beforehand and, thus,

the total number of candidate wavelet terms involved in the net-

work becomes known. Radial wavelets are not compactly sup-

ported but rapidly vanishing. It is therefore reasonable to trun-

cate a radial wavelet to make it quasi-supported, this can then be

used as a normal compactly supported wavelet to implement a

WN. Most radial wavelets including the Gaussian and Mexican

hat wavelets are easy to calculate with a very small computa-

tional load and can therefore be chosen to implement the WN.

Other nonradial wavelets, which are either compactly supported

or not, can also be used if there is strong evidence that these

wavelets can easily be used to implement a WN.

A WN may involve a great number of wavelet terms for a

high-dimensional system. However, in most cases many of the

model terms are redundant and only a small number of signif-

icant terms are necessary to describe a given nonlinear system

with a given accuracy. In the present study, an efficient term de-

tection algorithm was employed to train the new WNs to yield

parsimonious models.

In summary, the new WNs appear to be advantageous com-

pared to conventional wavelet modeling schemes and provide

an effective approach for nonlinear system identification. The

results obtained from the bench test examples demonstrate the

effectiveness of the new identification procedure.

APPENDIX

FORWARD OLS ALGORITHM AND THE ERR

The OLS algorithm [35], [36] was initially introduced to

select the most significant model terms and estimate the model

parameters simultaneously for all linear-in-the-parameter

models. Consider the linear-in-the-parameters model (21),

where the regression matrix with,

, is the length of the obser-

vational data set. With the assumption that is full rank in

columns, then can be orthogonally decomposed as

(39)

where is an unit upper triangular matrix and is

an matrix with orthogonal columns

in the sense that with

. Model (21) can then be expressed as

(40)
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where are the observations of the

system output, is the parameter vector,

is the vector of the noise signal,

and is an auxiliary parameter vector,

which can be calculated directly from and by means of

the property of orthogonality as

(41)

The parameter vector , which is related to by the equation

, can easily be calculated by solving this equation using

a substitution scheme.

The number of all the candidate terms in model (21) is

often very large. Some of these terms may be redundant and

should be removed to give a parsimonious model with only

terms . Detection of the significant model terms

can be achieved using the OLS procedures described in the fol-

lowing.

Assume that the residual signal in the model (21) is un-

correlated with the past outputs of the system, then the output

variance can be expressed as

(42)

Note that the output variance consists of two parts, the desired

output which can be explained by the re-

gressors, and the part which represents the unex-

plained variance. Thus, is the increment

to the explained desired output variance brought by , and the

th ERR , introduced by , can be defined as

ERR

(43)

This ratio provides a simple but effective means for seeking

a subset of significant regressors. The significant terms can be

selected in a forward-regression manner according to the value

of ERR step by step. The selection procedure can be terminated

at the th step when ERR , where

is a desired error tolerance, or cutoff value, which can be learnt

during the regression procedure. The final model is the linear

combination of the significant terms selected from the

candidate terms

(44)

which is equivalent to

(45)

where the parameters can be calculated in

the selection procedure. Note that, since most significant model

terms can be selected in a forward-regression manner step by

step, or a term at a time, the assumption that the regression ma-

trix is full rank in columns becomes unnecessary [56].
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