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Abstract

Phase-field models, consisting of a set of highly nonlinear coupled parabolic partial
differential equations, are widely used for the simulationof a range of solidification
phenomena. This paper focuses on the numerical solution of one such model, repre-
senting anisotropic solidification in three space dimensions. The main contribution of
the work is to propose a solution strategy that combines hierarchical mesh adaptivity
with implicit time integration and the use of a nonlinear multigrid solver at each step.
This strategy is implemented in a general software framework that permits parallel
computation in a natural manner. Results are presented which provide both qualitative
and quantitative justifications for these choices.

Keywords: phase-change problems, phase-field models, nonlinear partial differential
equations, stiff systems, multiscale problems, adaptive methods, multigrid methods.

1 Introduction

This paper describes the parallel and adaptive numerical solution of systems of non-
linear partial differential equations (PDEs) which are derived from phase-field models
of solidification problems, [5, 6, 9, 11, 12, 13]. In particular, we demonstrate that
it is possible to solve such systems efficiently in three space dimensions using fully-
implicit time stepping. Previous research into the numerical solution of systems of
this type has already shown the necessity of mesh adaptation, [8, 9, 21], however such
results have typically been based upon the use of explicit time stepping, at least for
the nonlinear components of the differential equations. Our earlier publications for
systems in two space dimensions have clearly illustrated the advantages of using im-
plicit time stepping once the maximum level of spatial refinement exceeds a certain
threshold, [23, 24]: the key to obtaining these advantages being the efficient solution
of the nonlinear algebraic equations that arise at each timestep, through the use of
nonlinear multigrid techniques [2, 4, 7, 28].
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In this work we have taken the initial steps towards the generalization of our earlier
work in two space dimensions, [23, 24], to three dimensions.It should be noted
that in order to make the extension to three dimensions computationally tractable it
is necessary to combine adaptivity and multigrid techniques with the use of parallel
computer architectures, primarily in order to provide sufficient memory for runs of the
required resolution, but also to reduce execution times. Parallel implementations of
3-d phase-field models are already described in the literature, [6, 9, 26] for example,
however the combination of parallel, adaptive, implicit and multigrid has not been
presented before to our knowledge.

The layout of this paper is as follows. In the next section themodel equations are
introduced, along with a brief description of their spatialand temporal discretization.
The following section then provides an overview of the adaptive, parallel and multi-
grid techniques that have been applied, along with an overview of the PARAMESH
software library, [19, 20], that has been used to realize an implementation of these
techniques. In order to complete this work a number of extensions to PARAMESH
have been developed and so, in Section 4, these are briefly described. Finally, in
Sections 5 and 6 respectively, a selection of numerical results are presented and the
contributions and future potential of this work are discussed.

2 Equations and Discretization

The phase-field method is one of the most powerful techniquesto have emerged in
recent years for the computational modelling of phase change problems. The novelty
of the method is that the mathematically sharp interface between the solid and liq-
uid phases is assumed diffuse, allowing the definition of a continuous (differentiable)
order parameter,φ, which represents the phase of the material (typically−1 in the
liquid and+1 in the solid regions). The evolution ofφ is governed by a free energy
functional which can be solved using standard techniques for PDEs without explicitly
tracking the solid-liquid interface, thus allowing the simulation of arbitrarily complex
morphologies. One such morphology, which has been widely studied in the solidifi-
cation literature, is the dendrite [1, 3, 5, 18]: a branched needle-like crystal. Dendrites
are ubiquitous in nature, occuring in many cast metals and igneous minerals as well as
giving rise to the multitude of patterns found in snowflakes.This morphology, which
is one of the prime examples of spontaneous pattern formation, is indicative of the
outward diffusion of either heat or some chemical species from the growing solid into
the host medium (generally a melt, supersaturated solutionor supersaturated vapour).
Dendrites generally display either cubic or hexagonal symmetry, which reflects the
underlying symmetry in the atomic packing in the crystal. This gives rise to a small
anisotropy in the surface energy of the crystal that profoundly effects the final growth
morphology.
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2.1 Phase-field equations

A variety of different phase-field models have been proposedin recent years, many of
which have been demonstrated to capture the formation of of dendritic structures, e.g.
[11, 14, 15, 17, 21, 29] and, more recently, [6, 9, 12, 13], in three dimensions. In this
paper we work exclusively with the three-dimensional modeldescribed in [13], which
is appropriate for simulating the solidification of an under-cooled pure melt and de-
pends only upon the temperature fieldu (in addition to the phase fieldφ). This model
is formulated in the so-called thin-interface limit which means that the numerical re-
sults are independent of the width chosen for the solid-liquid interface and thus have
a quantitative validity not possessed by many other formulations of the phase-field
problem. In order to impose the asymmetry in the model that isrequired for the simu-
lation of dendritic growth, use is made of an anisotropy termA(θ, ψ), whereθ andψ
are the standard spherical angles that the outward pointingnormal to the solid-liquid
interface, and its projection in thex− y plane, make with respect to thez-axis and the
x-axis, respectively. Letn denote the outward pointing unit normal to the solid-liquid
interface and lete1, e2 ande3 denote the usual Cartesian basis vectors. The connection
betweenφ, n and the anglesθ andψ are

∇φ = |∇φ|n

= φxe1 + φye2 + φze3 (1)

and
n = sinψ(cos θe1 + sin θe2) + cosψe3 , (2)

leading to

tan θ =
φy

φx

and cosψ =
φz

|∇φ|
or tanψ =

√

φ2
x + φ2

y

φz

. (3)

Without repeating aspects of the derivation here (see [12, 13] for details), the math-
ematical formulation may be stated as the following nonlinear system of coupled
parabolic PDEs:

τ(θ, ψ)
∂φ

∂t
= ∇ · (W (θ, ψ)2∇φ) + φ(1 − φ2) − λu(1 − φ2)2 +

∂

∂x

[

W (θ, ψ)

(

−
∂W (θ, ψ)

∂θ

φy|∇φ|
2

φ2
x + φ2

y

+
∂W (θ, ψ)

∂ψ

φzφx
√

φ2
x + φ2

y

)]

+

∂

∂y

[

W (θ, ψ)

(

∂W (θ, ψ)

∂θ

φx|∇φ|
2

φ2
x + φ2

y

+
∂W (θ, ψ)

∂ψ

φzφy
√

φ2
x + φ2

y

)]

−

∂

∂z

[

W (θ, ψ)
∂W (θ, ψ)

∂ψ

√

φ2
x + φ2

y

]

(4)

and
∂u

∂t
= α∇2u+

1

2

∂φ

∂t
. (5)
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The first of these is the phase equation and the second is the temperature equation.
The latter is linear (since the thermal coefficient,α, is constant) however the former is
highly nonlinear:λ is a prescribed constant, whilstτ andW take the formτ0A(θ, ψ)2

andW0A(θ, ψ) respectively. For the purposes of this paper, we take the anisotropy
termA(θ, ψ) to be given by

A(θ, ψ) = A0(1 + ǫ̃
(

cos4 ψ + sin4 ψ
{

1 − 2 sin2 θ cos2 θ
})

) , (6)

whereτ0, W0 andA0 are prescribed constants. As will be evident from the numerical
results below, this has the effect of prescribing a cubic symmetry, similar to that found
in most simple metals, with preferred growth along the coordinate axis (see [22] for
further details). The strength of the anisotropy is controlled by ǫ̃.

For practical purposes, in order to obtain the term∇2φ explicitly, it is necessary
to expand out the first term on the right-hand side of the phaseequation prior to dis-
cretization. This is achieved as follows:

∇ ·
(

W (θ, ψ)2∇φ
)

=
∂

∂x

(

W (θ, ψ)2
) ∂φ

∂x
+

∂

∂y

(

W (θ, ψ)2
) ∂φ

∂y

+
∂

∂z

(

W (θ, ψ)2
) ∂φ

∂z
+W (θ, ψ)2∇2φ

=

(

2W (θ, ψ)
∂W (θ, ψ)

∂x

∂φ

∂x

)

+

(

2W (θ, ψ)
∂W (θ, ψ)

∂y

∂φ

∂y

)

+

(

2W (θ, ψ)
∂W (θ, ψ)

∂z

∂φ

∂z

)

+W (θ, ψ)2∇2φ

= 2W (θ, ψ)

(

∂W (θ, ψ)

∂θ

[

∂θ

∂x

∂φ

∂x
+
∂θ

∂y

∂φ

∂y
+
∂θ

∂z

∂φ

∂z

]

+

∂W (θ, ψ)

∂ψ

[

∂ψ

∂x

∂φ

∂x
+
∂ψ

∂y

∂φ

∂y
+
∂ψ

∂z

∂φ

∂z

])

+W (θ, ψ)2∇2φ . (7)

This last expression may be evaluated with the following derivative expressions:

∂θ

∂x
=
φxφxy − φyφxx

φ2
x + φ2

y

,
∂θ

∂y
=
φxφyy − φyφxy

φ2
x + φ2

y

and
∂θ

∂z
=
φxφzy − φyφzx

φ2
x + φ2

y

; (8)

and

∂ψ

∂x
=

−φxz(φ
2
x + φ2

y) + φxφzφxx + φyφzφxy

|∇φ|2
√

φ2
x + φ2

y

∂ψ

∂y
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2
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√
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y

. (9)
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2.2 Discretization

We have successfully used both finite difference, [23], and low-order continuous fi-
nite element, [10], discretizations in combination with adaptivity and multigrid in two
space dimensions. Detailed comparisons of our implementations for both second and
fourth order schemes, see [22], show that the overhead of assembling the finite element
systems at each step means that the computational times required, to achieve equiva-
lent accuracy, are consistently greater than with the use offinite difference schemes.
For this reason we base our initial computations in three dimensions upon the use of
a second order seven point finite difference stencil for the∇2φ and∇2u terms. This
is selected for its relative simplicity, despite the complexity of the nonlinear equations
being solved.

Similarly, for the sake of simplicity, our implicit time discretization is based upon
the backward Euler scheme, although we note that in two dimensions the use of a
second order BDF scheme is significantly more efficient, [23].

An important feature, not described in detail here, of the equations introduced in
the previous section is that the width of the phase interface(i.e. the distance indicative
of the requirement forφ to vary from−1 to +1) is determineda priori by the choice
of the constantλ that is used in the model (see [12, 13]). For an accurate simulation
to be performed an interface width which is thin relative to the smallest feature to
be resolved by the simulation (typically the dendrite tip) is required, and so a corre-
spondingly fine spatial mesh is needed. It is not feasible, ornecessary, to have such
a fine mesh throughout the domain and so mesh adaptivity is required in order to re-
fine the mesh around the phase interface (and to un-refine the mesh after the interface
has passed through a region). Details of this are provided inthe next section however
such a refinement strategy clearly has an effect on the discretization scheme. In par-
ticular, the finite difference, or finite element, discretization must be consistent at the
boundary between regions of different levels of mesh refinement.

Fortunately, this issue may be handled efficiently within the implementation of the
solver, rather than explicitly within the discretization scheme. This is due to our use of
the MLAT (Multi-Level Adaptive Technique) scheme, [4], forthe multigrid solution
of the discrete systems of algebraic equations arising at each time step. This scheme
is designed to allow multigrid to be applied on domains wherenested local refinement
has taken place. Assuming that the coarsest grid covers the entire domain, an initial
solution is obtained on this grid. This is then interpolatedonto the locally refined grid
(just two grid levels are used in this explanation for simplicity) and pre-smoothing
takes place on the refined region only, using the interpolated values at the boundary
of this region as Dirichlet conditions. A coarse grid correction then takes place, in
which the boundary conditions on the refined region may be updated, followed by the
post-smoothing steps in the refined region only. For multigrid V-cycles this process is
repeated. One of the advantageous side-effects of this approach is that the discretiza-
tion scheme used for the smoother is only ever applied on regions of uniform levels of
refinement. Consequently, no special consideration is required to account for the local
mesh refinement at the discretization stage.
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3 Solver Details

3.1 Nonlinear multigrid

When a fully implicit time integrator, such as the backward Euler scheme, is used,
it is necessary to solve a large nonlinear system of algebraic equations at each step.
As indicated above, this is achieved using a nonlinear multigrid version of the MLAT
scheme: namely the FAS (full approximation scheme), as described in [28]. For a
given time step, let the discrete equations on a fine mesh, of sizeh say, be denoted as
the nonlinear system

F h(vh) = Nh[vh] − fh = 0 , (10)

wherevh is the set of unknown nodal values at the new time level. The pre-smoothing
stage of the FAS multigrid requires the current estimate ofvh, vh,k say, to be updated
using nonlinear sweeps of the form

v
h,k+1

i = v
h,k
i −

F h
i (vh,k)

∂F h

i

∂vi

(vh,k)

v
h,k+1

i = ω × v
h,k+1

i + (1 − ω) × v
h,k
i . (11)

Use of the under-relaxed Jacobi iteration (in our case with avalueω = 0.85) is known
to yield better smoothing properties than standard Jacobi iteration (at least in the linear
case, [28]) – a nonlinear Gauss-Seidel form is also possiblebut we only consider this
weighted-Jacobi smoother in this work. The next step is to move to the coarser grid in
order to correct this latest solution. The transfer betweenthe fine and the coarser grids
requires a restriction operator,I2h

h , and a prolongation operator,Ih
2h, to be defined. If

the defect on the fine grid,dh, is written as:

dh = fh −Nh[vh], (12)

then on the coarser grid
N2h[w2h] = f 2h (13)

must be solved, wheref 2h = I2h
h [dh] + N 2h[v2h]. Once a solution to this has been

found the coarse grid correction,e2h is recovered frome2h = w2h − I2h
h [vh] and

transferred back to the fine grid in order to correct the previous fine grid solution as
follows:

eh = Ih
2h[e

2h] (14)

vh → vh + eh. (15)

Having completed this coarse grid correction step the solution on the finest grid is
smoothed further and a check is made for convergence. If thishas not occurred the
whole process is repeated.

The procedure described above applies to two grids of spacing h and2h respec-
tively. However, this procedure may be applied recursively, up to a coarsest level, in
order to solve (13). This recursive form defines the multigrid scheme.
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3.2 Parallel adaptivity using PARAMESH

In order to ensure that sufficient memory and processing power is available for large
three-dimensional simulations it is necessary to make use of parallel computing ar-
chitectures. In order to facilitate mesh adaptivity in parallel this work makes use
of the open source library PARAMESH [19, 20]. This is a collection of Fortran90
functions designed to support the development of adaptive numerical solvers in one,
two or three space dimensions (from now on, only the three-dimensional case will be
discussed however). In particular, the functions permit the seamless use of parallel
processing by taking control of all issues associated with data locality and message
passing.

The key structure that PARAMESH uses to permit, and control,adaptive mesh
refinement is the data block. Each block contains a number of data cells corresponding
to a uniform hexahedral mesh: this mesh consists of a constant number ofreal cells
in each co-ordinate direction and a constant number ofguard cells which surround
the real cells in each direction. The real cells store the data for this particular block
while the guard cells hold copies of data from neighbouring blocks. The number of
real and guard cells per block is decided by the programmer. However the number of
guard cells must be sufficient for the size of stencil that is used by the discretization.
It is the use of this block structure which allows the seamless use of parallelism: the
programmer need not worry as to whether two neighbouring blocks are stored by the
same process or not, a guard cell update algorithm handles any necessary parallel
communication. Dynamic load-balancing, [27, 31], is also used to ensure that the
computational load is evenly distributed across the available processes. For all of the
results presented in this paper data blocks with eight real cells and one guard cell in
each direction have been used (in practice there are two guard cells in each direction:
one at each end of the real cell region). Consequently, each block contains 1000 (103)
cells in total, of which 512 (83) contain degrees of freedom whilst the remainder must
be updated with copies of data owned by neighbouring cells. This significant storage
overhead is the price that is paid for the flexibility of the data block approach.

The data block is also the fundamental unit that is used by themesh refinement and
coarsening functions within PARAMESH. Indeed, the locallyrefined mesh, at any
point in time, is stored as a hierarchical oct-tree structure (possibly with more than
one block at the root level), where each node of the tree is a data block and the leaf
nodes of the tree (i.e. those without children) form the blocks on which the current
solution is sought. Each block may be refined into eight children, and these blocks
may themselves be refined, until a predefined maximum level isreached, or some other
criterion is satisfied. The refinement (and coarsening) of the blocks is based upon the
use of flags that are set by the programmer based upon a chosen error estimate or error
indicator. Once the flags are set therefine derefine subroutine is called, which
in turn calls all the required subroutines to create new datablocks (or release data
blocks in the case of derefinement) and any required restriction/prolongation of data.
In addition, subroutines are called to carry out load balancing and to attempt, where
possible, to ensure that neighbouring blocks are on the sameprocess. The overall
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structure of this PARAMESH adaptive solution process is illustrated by the following
pseudo-code:

1. Create non-uniform mesh hierarchy up to the highest level;

2. Set up initial conditiont = 0 and fill guard cells;

3. Go to next time step

• Advance solution tot+ dt

• Fill guard cells

• Mark for refinement or coarsening

• Refine and/or coarsen mesh

• Interpolate the data to the new mesh and update guard cells;

4. Got to step 3.

Note that there is an important trade-off that must be considered in selecting the
dimension of each data block. If the local adaptivity is to befocused only in the regions
where it is needed (for example, around a phase interface) then the number of real cells
in each block should be small, however this leads to two significant problems: firstly,
the total number of guard cells will be much greater, thus increasing the overhead;
secondly, more frequent remeshing events will be triggeredas the interface evolves,
providing a further computational overhead. Hence the optimal choice of block size
requires a balance between the need for an efficiently refinedmesh against the costs
of additional guard cells and excessive remeshing.

4 Parallel Adaptive Multigrid for PARAMESH

PARAMESH already includes routines required to carry out multigrid prolongation
and restriction since these are also needed following localmesh refinement. A number
of additional components are required however in order to implement the nonlinear
multigrid solver on the non-uniform hierarchical data structure. In the interests of
brevity only a very short outline of these developments is provided here: the first
concerns the implementation of the FAS algorithm, described above, and the second
relates to the use of the locally refined mesh hierarchy for the MLAT scheme.

The main issue that must be addressed in implementing the FASscheme is to man-
age the data that exists at each level of the mesh hierarchy. For example, when restric-
tion operations are undertaken on the latest solution estimate and the corresponding
defect, this data is copied into temporary (work) variableswhich are then passed to
the restriction functions. This requires some modificationof the PARAMESH data
tree however, because the default restriction operation isdesigned to be applied after
a mesh has been coarsened and so the labelling of the leaf nodes is normally updated.
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Whilst the next set of solver operations are indeed requiredat this coarser level it is
important to ensure that the finer blocks are available for the subsequent prolongation
of the coarse grid correction. Furthermore, another temporary array must be used for
this prolongation so as to ensure that the saved (pre-corrected) solution value on the
fine grid is not over-written by the prolongation function. The situation is made more
complicated by the fact that for each cell in the block there are two unknowns: the
phase and the temperature values. Hence the restriction andprolongation functions
must be called separately for each variable at each stage, requiring the labelling of the
leaf nodes to be reset after each such function call.

The application of the MLAT scheme also requires some care due to the fact that
PARAMESH only carries out guard cell updates upon blocks which are leaf nodes
in the tree or which are the parents of leaf nodes. This is all that is required for a
non-multigrid solver with local adaptivity, however during an FAS multigrid cycle the
blocks which hold the current solution will change (and willnot necessarily be leaf
nodes of the tree hierarchy). This means that the blocks uponwhich the guard cell
update function operates must also change. We have achievedthis by temporarily
re-labelling the cells at the current level of the multigridhierarchy to ensure that the
guard cell updates apply to the correct data. The motivationfor accepting this addi-
tional bookkeeping overhead (and the associated code development) was to provide
wrapper subroutines which sit around the existing PARAMESHfunctions, rather than
to modify the PARAMESH routines themselves.

5 Numerical Results

5.1 Qualitative features

Figures 1 to 3 show snapshots of a typical dendritic structure that has been simulated
using the solution techniques described in this paper. These results have been com-
puted using an anisotropy parameterǫ̃ = 0.05, λ = 3.2 and an initial undercooling,
∆, of 0.65 (that isu is set initially everywhere to -0.65). For this run, up to sixlevels
of refinement of the initial8 × 8 × 8 block (level 0) have been permitted, which pro-
vides equivalent resolution to that of a uniform mesh of dimension512 × 512 × 512,
containing∼ 134.2M cells. An initial spherical seed of solid phase is defined atthe
centre of the domain ([−200, 200]3) and the evolution of the solution is computed. In
this example a fixed time step is used and the spatial adaptivity is based upon the gra-
dient of the phase variable. Results were computed on a dual (quad-core) processor
workstation with 16Gb of RAM.

Figure 1 shows theφ = 0 isosurface at the end of this representative computation,
by which time a clear dendritic structure has formed. Figure2 shows part of this
isosurface along with cuts through the locally refined mesh at this final time. It is
apparent that the maximum level of refinement (level 6 in thiscase) occurs in the
vicinity of the solid-liquid interface and that, by this stage of the computation, the
coarsest mesh is at level 3 (equivalent to a64× 64 × 64 grid). Figure 3, which shows
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Figure 1: snapshot of a typical anisotropic solution, showing theφ = 0.0 isosurface at
the end of a simulation

the adapted mesh only, illustrates that mesh coarsening hasbegun to occur at the centre
of the domain: which was originally refined to the maximum level.

5.2 Quantitative comparison with an explicit code

In this section we compare the performance of the implicit, multigrid solver described
above with a much simpler explicit model employing forward Euler time-stepping.
This solver, full details of which are given elsewhere [22],is also based around the
PARAMESH package. Both solvers use the block-based adaptive capabilities of
PARAMESH and comparative tests have been conducted on the same multi-processor
workstation with up to 4 cores and 8Gb of RAM available. In each case exactly the
same equation set is solved however, when using explicit methods, [9, 21], a major
constraint in the computation is the time-step restrictionin order to assure stability of
the scheme. The unconditional stability of the implicit scheme allows much greater
time steps to be taken but, even with the efficiency of multigrid, the cost per step is
far greater. The purpose of these tests is to ascertain the extent to which this higher
computational overhead per time step is compensated by the ability to take larger time
steps. However, the comparison also provides a useful checkof the solver integrity,
provided both explicit and implicit models converge to the same result.

Comparative tests have been run for an initial seed growing into a uniformly under-
cooled melt with∆ = 0.65 on a[−200, 200]3 domain. As above, the interface width
has been fixed by settingλ = 3.2. Tests have been performed for both isotropic growth
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Figure 2: snapshot of the same solution as in Fig. 1, showing the adapted grid as well
as theφ = 0.0 isosurface

(ǫ̃ = 0), in which case a simple spherical morphology results, and anisotropic growth
(ǫ̃ = 0.05), giving rise to dendrites such as that shown in Figure 1.

In order to show the effect of moving to progressively finer mesh spacing, tests have
been conducted for 5-7 levels of refinement, corresponding to minimum mesh sizes
of h = 1.56 to h = 0.39 respectively on the[−200, 200]3 domain employed here. For
the explicit model, the maximum stable time-step, as determined by numerical exper-
imentation, was 0.15, 0.0375 and 0.009375 for 5, 6 and 7 levels of refinement respec-
tively, irrespective of whether the solution was isotropicor anisotropic. Conversely,
for the implicit model the selected time step was held constant for all simulations, at
0.15, except the anisotropic case with 7 levels of refinement. In this case the nonlinear
multigrid did not always converge and so the step was reducedto 0.06.

On the coarsest meshes employed some differences in the solutions obtained us-
ing explicit and implicit methods are observed (of the order5 % in the position of the
dendrite tip), which is most likely due to the structured hexahedral mesh imparting ad-
ditional anisotropy into the solution. This problem is welldocumented in phase-field
simulation and has been shown to be most severe when coarse meshes are used, [16].
Convergence to the same result for the explicit and implicitsolvers is observed as the
mesh spacing is reduced, with the results on level 7 being virtually indistinguishable.

Results of the comparative run time are reported based on thereal time required
on four cores for the model to reach a (non-dimensional) simulation time oft = 150
and are given in Table 1. Note that, on the coarsest mesh (level 5) the same time step,
dt = 0.15, has been used for both the explicit and the implicit runs. Consequently,
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Figure 3: snapshot of the locally adapted grid corresponding to the solution shown in
Fig. 1

due to the lower computational load per time step, the explicit model clearly performs
much better in this case. However, as we move to progressively finer meshes the
time step for the explicit model scales, as expected, ash2, while the time-step for the
implicit model remainsh independent. Consequently, with 6 levels of refinement we
see similar computational times, while with 7 levels of refinement the implicit scheme
clearly performs much better.

Isotropic Anisotropic
h level Explicit Implicit Ratio Explicit Implicit Ratio

1.56 5 2052 6480 3.14 2412 13788 5.78
0.78 6 27108 35064 1.29 42912 47484 1.11
0.39 7 307476 176688 0.57 437832 537912 1.23

Table 1: Comparative execution times required for the explicit and implicit solvers to
advance the phase-field simulation tot = 150. Times based on parallel execution on
4 cores.

Results for the anisotropic case follow a similar trend except that at the highest
level of refinement the implicit time step has been reduced todt = 0.06, leading to
computational times that are marginally longer than for theequivalent explicit scheme.
While this result is somewhat inconclusive with regard to the choice of explicit ver-
sus implicit scheme for this system, we have demonstrated elsewhere in 2-dimensions,
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[22, 24], that for the much stiffer system that result when chemical, as well as thermal,
diffusion is introduced into the crystallization problem,solution via explicit methods
becomes infeasible once the ratio of thermal to chemical diffusivity (the Lewis num-
ber) becomes significant. Conversely, stiff implicit multigrid methods permit solution
in 2-dimensions even when Lewis numbers of order 10000 are used, [25]. Conse-
quently, we believe that implicit, multigrid methods are the only way in which such
systems can be tackled in 3-dimensions.

5.3 Parallel performance

The primary purpose of implementing the three-dimensionalsolver in parallel using
PARAMESH is to allow larger problems to be solved than would otherwise be pos-
sible (on a single processor). Before considering the degree to which this has been
achieved however it is also informative to assess the efficiency of the underlying par-
allel implementation for problems of a fixed size. Table 2 shows the results of two
such tests using uniform mesh refinement up to levels 3 and 4 respectively. For the
smaller of these two problems it is possible to obtain a parallel efficiency of just over
50% on 16 cores, and for the larger problem an efficiency of just under 50% (rela-
tive to the 8 core case) is achieved using 64 cores. As the problem size is increased
(by increasing the number of levels of refinement) the memoryrequirement grows,
and so the minimum number of cores needed to run the problem also goes up. The
system used for all of the parallel runs in this sub-section consists of dual core AMD
processors with up to 2Gb of RAM per core.

Case One:262144 Cells Case Two:2097152 cells
Cores Time Speed-up Efficiency Cores Time Speed-up Efficiency

1 5198 - -
2 2755 1.89 94%
4 1445 3.60 90%
8 770 6.75 84% 8 6611 - -
16 616 8.44 53% 16 4298 1.54 77%

32 2796 2.36 59%
64 1734 3.81 48%

Table 2: Parallel scalability results for the phase-field solver on two problems of fixed
sizes

Clearly the overhead associated with managing the block data structures and the
oct-tree hierarchy means that the efficiency figures in Table2 are not particularly good
for cases where the problem size remains fixed as the number ofprocessors grows. An
alternative assessment of parallel scalability is presented in Table 3, which considers
the impact of scaling the problem size in proportion to the number of processors.
In this case the problem size is measured by the number of cells in the finest mesh
(uniform mesh refinement is used once more), which grows by a factor of 8 each time
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the number of cores is increased by this factor. The execution time of each V-cycle
of the multigrid solver grows linearly with the problem sizeand so, even though the
total number of V-cycles is dependent on the mesh size (primarily due to smaller time
steps being required on a finer mesh), the execution time per V-cycle should remain
constant in each run if the parallel efficiency is100%. Table 3 clearly shows that this
parallel efficiency, when the work per core is kept constant,is indeed very good. The
figure of136% for the 8 core case is quite difficult to explain but may be due to the
single core runs being adversely affected by other users on the system.

Cores Cell count Time per V-cycle Efficiency
1 262k 27.9 -
8 2097k 20.5 136%
64 16777k 30.5 91%

Table 3: Parallel scalability results for the phase-field solver as the problem size is
scaled with the number of cores

Of course, the primary goal of this work is not to achieve parallel scalability on
uniformly refined meshes but to allow a parallel capability for the implicit solution of
phase-field problems on locally adapting meshes. Table 4 shows how well this has
been achieved by comparing the simulation capability that is possible using a parallel
solver with uniform mesh refinement versus the capability that adaptive mesh refine-
ment allows. It is clear that, for this particular run (whichdepends upon the dendrite
morphology and the domain size in the adaptive case), the same spatial resolution
may be obtained on just 2 cores with adaptivity as on 64 cores without. Similarly,
adaptivity permits refinement level 7 to be reached using just 20 cores however the
memory requirement for uniform refinement to level 7 (savingthe mesh hierarchy for
the multigrid solver) would require approximately 4096 cores. Although limits on the
cpu time available to us have prevented a full simulation from being completed (and
so the results are not shown in Table 4) we have also been able to show that adaptive
simulations up to refinement level 8 (equivalent to over 8 billion cells on a uniform
grid) are possible using 128 cores.

Cores Uniform Grid Level (Cells) Adaptive Grid Level (Equiv. Cells)
1 3 (262k) 4 (2.1M)
2 5 (16.8M)
8 4 (2.1M) 6 (134.2M)
20 7 (1073.7M)
64 5 (16.8M)

Table 4: Comparison of the capability of the parallel adaptive solver (right) versus a
uniform solver (left)
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6 Discussion

This paper presents what the authors believe to be the first example of the successful
application of parallelism, adaptivity, implicit time-stepping and multigrid together,
for the solution of three-dimensional phase-field systems.The work is a natural ex-
tension of our earlier results in two space dimensions, [22,23], where the advantages
of implicit time-stepping are shown, provided that the meshis sufficiently fine and
a fast (i.e. multigrid) algebraic solver is implemented. The implementation of the
multigrid solver in three dimensions presents no additional mathematical difficulties
however the technical problems associated with moving fromtwo to three dimensions
are significant. These have been overcome through the use, and further development,
of the PARAMESH software library [19, 20].

Results presented show that the development of complex structures, such as den-
drites, can be successfully simulated in three dimensions,and that the adaptive data
structure permits an efficient representation of the solution fields. Comparison with
an existing explicit solver, [22], demonstrates both the accuracy and the potential effi-
ciency of the implicit approach. Finally, the parallel performance is shown to be ade-
quate to allow a significantly improved capability over the use of either parallelism or
adaptivity alone.

There are a number of important extensions of this work that are still to be devel-
oped. Relatively minor examples, already available in our 2-d solver [23], include the
use of a second order time-stepping scheme, such as BDF2, thedevelopment of adap-
tive time-stepping based upon a local error estimate, and the use of symmetry bound-
ary conditions to permit simulations in just one eighth of the current computational
domain. More substantial developments that are planned centre primarily around the
generalization to a much wider class of phase-field models. In particular, our main
motivation for this work is to be able to solve not only thermal problems, but those
involving the diffusion of a chemical species (alloy solidification). This problem is
somewhat more complex as the transport equation now also becomes non-linear due
to the complex form of the source and anti-trapping terms. Inthe first instance this can
be solved in the isothermal approximation (the temperaturefield is assumed constant),
which is appropriate to very slow solidification: although ultimately it is desirable to
be able to solve coupled thermal-solutal models which arisein the non-isothermal so-
lidification of binary alloys [24]. These PDE systems have the additional complexity
of requiring highly disparate length and time scales to be resolved, leading to ex-
tremely stiff differential systems. Based upon our observations in two dimensions,
[24, 25], the advantages of a fully implicit solver are likely to be highly significant
in these cases however there is additional complexity due toan increased number of
nonlinear PDEs.
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