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Solution processed nickel oxide anodes for organic photovoltaic devices
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and Alastair R. Buckleya)

Department of Physics and Astronomy, Hicks Building, Hounsfield Road, University of Sheffield,
Sheffield S3 7RH, United Kingdom

(Received 18 December 2013; accepted 23 January 2014; published online 11 February 2014)

Nickel oxide thin films have been prepared from a nickel acetylacetonate (Ni(acac)) precursor for

use in bulk heterojunction organic photovoltaic devices. The conversion of Ni(acac) to NiOx has

been investigated. Oxygen plasma treatment of the NiO layer after annealing at 400 �C affords

solar cell efficiencies of 5.2%. Photoelectron spectroscopy shows that high temperature annealing

converts the Ni(acac) to a reduced form of nickel oxide. Additional oxygen plasma treatment

further oxidizes the surface layers and deepens the NiO work function from 4.7 eV for the annealed

film, to 5.0 eV allowing for efficient hole extraction at the organic interface. VC 2014 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution
3.0 Unported License. [http://dx.doi.org/10.1063/1.4865090]

Silicon, cadmium telluride, and a minority of other solar

cell technologies are being adopted in many nations for

domestic rooftop, commercial rooftop, and ground mounted

power plant electricity generation.1,2 However photovoltaic

(PV) electricity generation still suffers high capital costs.3

Therefore there is a continued emphasis on research to

reduce the financial barrier to PV deployment through the

development of cell technologies and fabrication processes

that result in substantial cost reductions.4 One technology

group that addresses this is the polymer organic PV cell

(OPV) that incorporates a bulk heterojunction (BHJ) donor-

acceptor structure.5,6 These systems have been studied inten-

sively because of advantages that include low production

cost, simplicity of fabrication, compatibility with flexible

and conformable substrate, and the non-toxicity of the waste

left behind after production.1,7–9 However even with dra-

matic increases in both the power conversion efficiencies

(PCEs) and lifetimes over the past decade, they are still not

considered commercially viable.

The workhorse organic bulk heterojunction used in

OPVs is a blend of poly(3-hexylthiophene) (P3HT) and

[6,6]-phenyl C61-butyric acid methyl ester (PCBM).10 There

are several factors that limit the PCE of P3HT-based devices.

The large electronic band gap of P3HT (�2.5 eV) leads to

only limited absorption of the solar spectrum11 and poor

energetic alignment of the donor (polymer) and the acceptor

(fullerene) limit the open circuit voltage (Voc) to �0.6 V.7

The use of newer donor materials such as [poly[N-900-hepta-

decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30- ben-

zothiadiazole)]] (PCDTBT) have overcome these limitations

with lower bandgap (1.8 eV) and deeper HOMO/LUMO lev-

els of �5.3 eV/�3.5 eV.12 Devices incorporating PCDTBT

and PC70BM obtain PCEs above 7% and internal quantum

efficiencies approaching 100% when the optical thickness

and electrical properties of devices are optimised.13–15

PEDOT:PSS (polyethylene di-oxythiophene polystyrene

sulphonate) is used as a standard anode interface in OPVs to

increase the extraction of holes.16–19 However PEDOT:PSS

exhibits several undesirable degradation mechanisms. PSS

leads to the decomposition of In2O3 in indium tin oxide (ITO)

due to its high acidity and due to the deep HOMO level of

PCDTBT and similar donor materials, energy barriers to

charge extraction can form.19–22 To overcome these issues

metal oxides such as MoO3,23 WO3,24 V2O5,25 and NiO (Refs.

10 and 19) have recently been used with promising results.

In this work we show that it is possible to solution pro-

cess nickel oxide from a nickel acetylacetonate precursor

and obtain a power conversion efficiency of 5.2%. This is

achieved by the use of post deposition thermal annealing and

oxygen plasma treatment. We show that annealing leads to

the thermal decomposition of the acetylacetonate precursor

causing a deepening of the work function and a reduction in

oxidation state. Post annealing oxygen plasma treatment fur-

ther reduces the work function by oxidizing the surface layer

of the sample that facilitates charge extraction at the organic

interface.

To prepare the OPV devices, nickel acetylacetonate

(99.99%) was purchased from Sigma Aldrich and was dis-

solved in toluene at a concentration of 15 mg/ml. Organic

photovoltaic devices were fabricated on ITO coated glass

substrates. The substrates were cleaned in de-ionized water

and Hellmanex by sonicating for 10 min at 75 �C. After soni-

cation, they were washed with the de-ionized water. They

were then placed in iso-propanol and sonicated for 10 min at

75 �C. Finally, they were dried with nitrogen gas. Thin films

(�3 nm) of nickel acetylacetonate were deposited via spin

coating onto cleaned ITO substrates and were either

annealed at between 100 �C and 400 �C for 30 min in air, or

left un-annealed. O2 plasma treatment of NiO thin films was

carried out in a 10 cm diameter barrel reactor for 1, 2, and 3

min at varying pressures and powers. The active layer was

prepared by mixing solutions of PCDTBT and PC70BM at a

weight ratio of 1:4 in chlorobenzene with an overall concen-

tration of 20 mg/ml. The PCDTBT:PC70BM solution then

was spin coated at 700 rpm in a glove box. Samples were

loaded into a vacuum chamber and pumped down to a base

pressure of (<10�6 mbar). A calcium (3 nm) then aluminium

(100 nm) double layer cathode was deposited via thermala)alastair.buckley@sheffield.ac.uk
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evaporation. After deposition of the cathode, devices were

encapsulated using an inert UV curable epoxy and a glass

cover slide. Each device had an area of approximately 4.5

mm2 as defined by a shadow mask and were measured under

ambient conditions using a Keithley 2400 source meter and a

Newport 92251A-1000 AM1.5 solar simulator. An NREL

calibrated silicon diode was used to calibrate the power out-

put at 100 mW/cm2. XPS and UPS were carried out using a

Kratos Ultra AXIS photoelectron spectrometer. XPS meas-

urements were taken using the Al Ka emission line

(1486 eV), a band pass energy of 10 eV, a step size of

0.025 eV, and a dwell time of 250 ms. UPS measurements

were taken using the He (I) emission line (21.2 eV), a band

pass energy of 10 eV, a step size of 0.025 eV, and a dwell

time of 250 ms.

Figure 1 shows the current density-voltage characteristics

of the devices that use a nickel acetylacetonate (Ni(acac)) film

as the hole extraction layer. The effects of thermal annealing

and the post annealing O2 plasma treatments of Ni(acac) film

are shown. In Figure 1(a), devices incorporating as cast films of

Ni(acac) and Ni(acac) films that have been thermally annealed

at temperatures ranging between 200 �C and 300 �C are shown.

Devices with an as cast Ni(acac) layer show the lowest

performance. However, annealing at higher temperatures leads

to an increase in device performance up until a maximum value

of 400 �C. The J-V curves show a dramatic increase in the

shunt resistance of the devices as the Ni(acac) film is annealed

beyond a critical point, as indicated by the reduced gradient in

the reverse bias region. The origin of this dramatic shift is likely

due to the thermal decomposition of the Ni(acac) layer leading

to the formation of NiO. For non-annealed NiO, the highest

PCE, fill factor (FF), short circuit current density (Jsc), and

open circuit voltage (VOC) were 0.06%, 31.5%, �2.91 mA/cm,

and 0.06 V, respectively. Annealing of NiO from 100–400 �C
showed an increase in device performances, continuously with

increasing the annealing temperature. For example, PCE, FF,

Voc, and Jsc were increased from 0.1%, 32.8% (at 100 �C) to

3.5%, 56.2% (at 400 �C) respectively. It was found that opti-

mum annealing temperature for Ni(acac) films was between

350 �C and 400 �C (Table I).

Ni(acac) thin films were also treated using an O2-plasma

following thermal annealing at 400 �C. Varying oxygen pres-

sures and treatment times were used. Figure 1(b) shows devi-

ces using films that were not treated with an O2-plasma

against films that were treated at the optimal pressure and

time. For films treated at 1.5 Torr for 2 min it is observed

that there is an increase in the VOC of approximately 0.19 eV

and in addition a small increase in the Jsc of 0.6 mA/cm2

occurs. The device efficiency parameters are summarised in

Table II for the various pressures and times used. The

enhancement in power conversion efficiency for all plasma

treated device is driven by the increase in Voc of over 25%

and slight increases in the JSC and FF. These changes are

likely caused by the oxidation of the surface layer of the NiO

film, as the results indicate that both the VOC and FF are in-

dependent of the time and pressure that the films are treated

for. XPS of the C1s spectra (not shown) indicate that re-

moval of residual organic content from the surface is not the

cause as the thermal annealing leads to the removal of this

material. The enhancement in efficiency however could be

due to further oxidation of the surface layer leading to a

deepening of the work function. Both of these would lead to

reduced charge carrier recombination and contact

resistances.26

Ultraviolet photoelectron spectroscopy is a useful tool

for probing the work function (U), interfacial dipole, and

ionization energy (IE) of films.27,28 Figure 2 shows the sec-

ondary electron cut off and the valence band region of He(I)

UPS spectra of Ni(acac) films that have undergone thermal

annealing and post annealing O2-plasma treatment. Figure

2(a) shows the UPS spectra of Ni(acac) as deposited and for

FIG. 1. The current density-voltage characteristics of organic photovoltaics.

(a) is for thermally annealed films (filled squares for the as cast Ni(acac),

filled circles for 200 �C anneal, filled triangles for 300 �C, open squares for

400 �C, and open circles for 500 �C anneal) and (b) is for films with (filled

circles) and without (filled squares) oxygen plasma treatment post annealing

at 400 �C.

TABLE I. Performance of OPV test devices containing nickel oxide anode

buffer layer annealed at different temperatures. Test conditions were at

25 �C under AM1.5 irradiance.

Annealing

temperature [ �C] FF [%] PCE [%] Jsc [mA/cm2] Voc [V]

Non-annealed 31.5 0.06 �2.91 0.06

100 32.8 0.1 �3.39 0.097

300 50.4 2.42 �9.2 0.52

400 56.22 3.55 �9.33 0.67
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films annealed at 250 �C and 500 �C. The work function for

as deposited films is determined to be �3.7 eV and upon

annealing this value shifts to �4.7 eV. In addition the va-

lence states appear closer to the Fermi level however the

states do not extend to the Fermi level indicating that the

films are still semiconducting in nature. This deepening of

the work function is likely to lead to more favourable energy

level alignment between the HOMO of PCDTBT. In addi-

tion, XPS measurements of the C1s peak (not shown in

manuscript) indicate that the thermal decomposition of the

Ni(acac) occurs to completion at 300 �C. This will remove

any trap states that are present on the ligand of the Ni(acac)

precursor. These combination of would explain the observed

changes within the device results. Figure 2(b) shows Ni(acac)

thin films with and without O2-plasma treatment (after anneal-

ing at 400 �C). The work function shows a further deepening

by �0.3 eV to �5 eV upon treatment of the films. This deep-

ening of work function and the deepening of the valence band

of the material in comparison to the Fermi level is typical of

highly oxidized hole extracting metal oxides such as molybde-

num oxide.29 This suggests that the annealed precursor is a

slightly reduced form of NiO and that O2-Plasma treatment

leads to the oxidation of the surface layer at the anode/organic

interface.

XPS results for Ni(acac) films with and without post

annealing O2-plasma treatment are shown in Figure 3. The O

1s spectra is shown in Figure 3(a) and contains a main peak at

529.4 eV and originates from oxygen atoms bound to nickel

within the nickel oxide film.26 A secondary peak is also present

at a higher binding energy of 531.0 eV and is attributed to hy-

droxide ions that are present in adsorbed water. A final diffuse

peak manifests itself as tail states in the spectra and this is due

to oxygen in adsorbed water on the surface. It can be seen that

for the treated films both the relative intensity of the hydroxide

and the water peak increase in relation to the oxygen present

within the NiO lattice. This indicates that an increased amount

of water is present at the film surface. Previous studies on

metal oxides show that water adsorption relates strongly to

film density.30,31 Since the density of the fully oxidised NiO

film is less than that of metallic Nickel it is likely that highly

oxidized surface layers would lead to increased water adsorp-

tion. The Ni 2p peaks shown in Figure 3(b) consists of several

doublet peaks separated by approximately 18 eV, the ratio of

the area of these doublet peaks is 1:2. The spectrum consists of

3 sets of doublet peaks with the larger, low energy peaks being

TABLE II. Performance of OPV test devices containing nickel oxide anode buffer layer annealed at 400 �C and exposed to O2 plasma for different times and

pressures. Test conditions were at 25 �C under AM1.5 irradiance.

Baseline O2 plasma treatment

Device performance

parameters 400 �C anneal 0.5 mbar 1 min 0.5 mbar 2 min 0.5 mbar 3 min 1.5 mbar 2 min 1.5 mbar 2 min 1.5 mbar 3 min

VOC [V] 0.67 0.86 0.86 0.86 0.84 0.86 0.86

Jsc [mA/cm2] �9.3 �8.9 �9.5 �9.6 �9.5 �9.9 �9.6

FF [%] 56.2 61.1 60.5 59.8 59.9 60.8 59.8

PCE [%] 3.5 4.68 5.0 5.0 4.84 5.2 5.0

FIG. 2. UPS measurements for Ni(acac) films deposited onto ITO. (a)

Shows films as-deposited (solid line) and with post deposition annealing at

250 �C (dashed line) and 500 �C (dotted line), (b) shows films with (solid

line) or without (dashed line) oxygen plasma treatment after post deposition

annealing at 400 �C.

FIG. 3. XPS spectra of Ni(acac) films with (solid line) and without (solid

line with squares) post annealing O2-plasma treatment. (a) Shows the O 1s

spectra and (b) shows the Ni 2p spectra.
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found at, for metallic nickel (Ni0), 853.9 eV, for oxidized

nickel (Niþ1), at 854.8 eV, and for doubly oxidized nickel

peak (Niþ2), at 856.4 eV. The relative peak intensities depend

on both the average oxidation state of the film between the sur-

face and the penetration depth of the XPS instrument.

However it can be observed that upon treating the films with

an O2-Plasma that the total amount of Ni0 is reduced in relation

to the other two peaks. This decrease is accompanied by an

increase in the Niþ1 oxidation state. This indicates that the

plasma treatment converts the metallic Ni0 states to Niþ1 states

at the surface.

The combination of XPS, UPS, and device data suggest

that as the Ni(acac) precursor is heated beyond a critical tem-

perature the conversion of the precursor to NiO occurs. The

high temperatures required to do this however lead to the

reduction in oxidation state of the NiO to a sub oxide

NiO1�x. However these metallic states at the surface of the

film cause a reduction in the depth of the work function in

comparison to that of fully oxidized Nickel. Upon treatment

with an O2-plasma further metallic surface states are oxi-

dized. The deep work function of this oxidized interface

allows for the efficient extraction of holes due to a reduced

energy barrier in comparison to that of the NiO1�x film. For

metal oxide precursors that require high temperature anneal-

ing the use of an O2-plasma post-treatment could be an effec-

tive way of increasing device performance by reducing any

potential interfacial barriers that may occur due to the pres-

ence of metallic states. It is possible that the change in sur-

face electronic structure on annealing and/or plasma

treatment has a knock on effect on the morphology of the

bulk heterojunction. Such an effect could be correlated with

changes due to the energetic alignment at the anode inter-

face. However we can be fairly sure that this morphology

effect is negligible compared with the impact anode energy

alignment in the case of plasma treated versus untreated

since the short circuit current of the devices without plasma

treatment (�9.3 mA/cm2) are within the experimental range

of the plasma treated devices (�8.9 to �9.9 mA/cm2) indi-

cating there has been no significant change in the mobility of

the bulk polymer layer between these devices. For unan-

nealed Ni(acac) devices we cannot be so sure that morphol-

ogy changes are not present, however, given the severity of

the open circuit voltage reduction for unannealed films

(<0.1 V versus >0.8 V for annealed devices) we are confi-

dent they are minor compared to the changes in performance

caused by the influence of the interface electronic structure.

In conclusion, the solution processing of thin films of

nickel oxides from a Ni(acac) precursor for use in organic

photovoltaics have been studied. This work has shown that

the performance of OPVs containing NiO films deposited

from these precursors depend strongly upon post deposition

treatment. Thermal annealing at temperatures of 300 �C and

above is needed to drive the conversion of the precursor into

the metal oxide leading to an increase in PCEs from 0.06%

to 3.5%; this has been attributed to the deeper work function

of nickel oxide, �4.7 eV compared to �3.7 eV for the pre-

cursor, and reduced recombination at the organic interface.

Treatment of annealed films with an oxygen plasma leads to

further increases in efficiency with a reported peak PCE of

5.2%. This is attributed to the oxidation of reduced states at

the films surface that appear due to the high temperature

thermal annealing needed to convert the precursor. This oxi-

dation leads to a further deepening of the work function to

�5.0 eV leading to a reduced extraction barrier at the organic

interface.
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