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Role of Receptor Activity Modifying Protein 1 in Function
of the Calcium Sensing Receptor in the Human TT
Thyroid Carcinoma Cell Line
Aditya J. Desai, David J. Roberts, Gareth O. Richards., Timothy M. Skerry*.

The Mellanby Centre for Bone Research, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom

Abstract

The Calcium Sensing Receptor (CaSR) plays a role in calcium homeostasis by sensing minute changes in serum Ca2+ and
modulating secretion of calciotropic hormones. It has been shown in transfected cells that accessory proteins known as
Receptor Activity Modifying Proteins (RAMPs), specifically RAMPs 1 and 3, are required for cell-surface trafficking of the
CaSR. These effects have only been demonstrated in transfected cells, so their physiological relevance is unclear. Here we
explored CaSR/RAMP interactions in detail, and showed that in thyroid human carcinoma cells, RAMP1 is required for
trafficking of the CaSR. Furthermore, we show that normal RAMP1 function is required for intracellular responses to ligands.
Specifically, to confirm earlier studies with tagged constructs, and to provide the additional benefit of quantitative
stoichiometric analysis, we used fluorescence resonance energy transfer to show equal abilities of RAMP1 and 3 to
chaperone CaSR to the cell surface, though RAMP3 interacted more efficiently with the receptor. Furthermore, a higher
fraction of RAMP3 than RAMP1 was observed in CaSR-complexes on the cell-surface, suggesting different ratios of RAMPs to
CaSR. In order to determine relevance of these findings in an endogenous expression system we assessed the effect of
RAMP1 siRNA knock-down in medullary thyroid carcinoma TT cells, (which express RAMP1, but not RAMP3 constitutively)
and measured a significant 50% attenuation of signalling in response to CaSR ligands Cinacalcet and neomycin. Blockade of
RAMP1 using specific antibodies induced a concentration-dependent reduction in CaSR-mediated signalling in response to
Cinacalcet in TT cells, suggesting a novel functional role for RAMP1 in regulation of CaSR signalling in addition to its known
role in receptor trafficking. These data provide evidence that RAMPs traffic the CaSR as higher-level oligomers and play a
role in CaSR signalling even after cell surface localisation has occurred.
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Introduction

The G-protein coupled receptor (GPCR) family is the largest

family of cell-surface receptors in mammals and is involved in

numerous vital functions such as taste, odour, memory, response

to light, and the action of hormones and neurotransmitters [1].

The Calcium Sensing Receptor (CaSR) is a family C GPCR that

binds calcium principally and plays an essential role in systemic

calcium homeostasis [2]. The CaSR is involved in regulation of

parathyroid hormone (PTH) secretion from parathyroid chief cells

[2], and calcitonin secretion from thyroid parafollicular C-cells [3].

PTH has complex physiological functions, increasing serum

calcium by enhancing bone resorption and (through its promotion

of activation of Vitamin D) absorption of calcium from the gut and

reducing renal calcium excretion [4]. Transient high PTH levels

have the opposite effect, mediating increased bone formation by

an as yet poorly understood pharmacological mechanism [5]. In

contrast, calcitonin inhibits the function of bone-resorbing

osteoclasts and reduces urinary calcium excretion[6]. The

importance of CaSR in calcium homeostasis is emphasized by

the pathological conditions of calcium homeostasis caused by

inactivating and activating CaSR mutations such as Familial

Hypocalciuric Hypercalcaemia (FHH), Neonatal Severe Hyper-

parathyroidism (NSHPT) [7,8]; and Autosomal Dominant Hypo-

calcaemia (ADH) [9]. The CaSR is a promiscuous receptor which

binds a variety of natural and synthetic ligands such as the cations,

Ca2+, Mg2+, Gd3+, Zn2+, Ni2+ [2,10,11]; the polyamines, spermine

and spermidine [12]; aminoglycoside antibiotics such as neomycin

[13], phenylalkylamine derivatives including calcimimetics (allo-

steric activators) [14,15] and calcilytics (antagonists) [16]. Follow-

ing activation of the CaSR, downstream signalling is complex and

cell-type dependent. CaSR is shown to couple to more than one

G-protein subtype (Gq, Gi, Gs, G12/13 [17–20]) and to activate

MAPKs such as ERK1/2 [21,22] that elicit different actions based

stimulus and the cell type. It has been demonstrated that in

transfected cells, the CaSR is unable to traffic to the cell

membrane alone [23,24], and that two members of a family of

type-1 trans-membrane proteins known as Receptor Activity

Modifying Proteins (RAMPs 1 and 3) interact with CaSR and

facilitate its localization at the cell surface.
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The RAMPs were discovered in attempts to clone the receptor

for calcitonin gene-related peptide (CGRP) [25]. It was discovered

that the ‘‘CGRP receptor’’ was a heteromer of the calcitonin-like

receptor (CLR) and RAMP1. The CLR forms an adrenomedullin

receptor with either RAMPs 2 or 3 [25], while RAMP association

of the calcitonin receptor forms 3 variants of a receptor for Amylin

[26]. Since then, the roles of RAMPs in regulation of ligand

selectivity and trafficking have become well-established in several

high profile studies. The role for RAMPs in trafficking was

detected first in association with the CLR [25], which like the

CaSR, requires a RAMP for expression at the cell surface [23].

Other receptors are known to traffic with RAMPs (including the

PTH, glucagon, VIP [27], and secretin receptors [28]), but these

are not obligate relationships and those receptors do not require

RAMPs for surface expression. In the case of VPAC1/VIP

receptor, association of RAMP2 leads to an increase in inositol

phosphate hydrolysis [27], showing a direct role of RAMP in

modifying the signalling of the receptor. So far, the only known

family C GPCR partner of RAMPs is the CaSR [23], and no

other functions except for cell surface trafficking of the receptor

have been identified.

The aims of the current study were: 1) to acquire more detailed

information about the CaSR/RAMP interactions during traffick-

ing and cell surface presentation, and 2) to determine whether

CaSR/RAMP interactions in cells naturally expressing endoge-

nous levels have functional relevance.

Here we show, using sensitized FRET and FRET-based

stoichiometry, new data regarding interactions of RAMPs 1 and

3 with the CaSR. Additionally, we show that in human medullary

thyroid carcinoma cells (TT), a significant reduction in the

signalling of the CaSR when RAMP1 is knocked down or blocked

with a RAMP1 antibody.

Methods

Cell lines
COS-7 and TT cell lines (ATCC) were maintained in T-

175 cm2 flasks (Nunclon, Thermo scientific) in complete DMEM

and F-12K medium (GIBCO, Paisley) respectively, at 37uC in 5%

CO2 incubator. The complete medium contained 10% heat

inactivated Fetal Calf Serum (FCS, GIBCO Paisley), 1 mM

Sodium Pyruvate (Sigma-Aldrich) and 1% penicillin and strepto-

mycin (Sigma-Aldrich). Thereafter, the media were changed twice

a week until the cells were confluent. Cells used in experiments

were in their exponential growth phase.

Preparation of constructs for FRET and COS-7 cell
transfection

Citrine or Cerulean cDNAs were engineered into a pcDNA3.1

vector (Invitrogen) between the Not1 and Xho1 restriction enzyme

sites. RAMPs and CaSR were engineered into pcDNA3.1

Cerulean and Citrine vectors respectively excluding their stop

codons, between the Kpn1 and Not1, and HindIII and Not1

restriction enzyme sites, so that the fluorophores were present at

the C-terminal of RAMP/CaSR. As a negative control, pcDNA

3.1 containing Citrine alone were co-transfected with a pcDNA3.1

RAMP Cerulean vector. As a positive control, we created a

pcDNA3.1 vector containing a Cerulean cDNA fusion construct

followed by 18 amino acid linker sequence and then Citrine

cDNA.

COS-7 cells were grown to confluency and harvested using

trypsin/EDTA (Sigma), washed with PBS, and resuspended in

electroporation buffer (composition [mM] 20 HEPES, 135 KCl, 2

MgCl2, 2 ATP, 5 glutathione, 0.5% Ficoll 400 adjusted to pH 7.6

using KOH) at a concentration of ,3.5– 4 million cells into 4 mm

gap electroporation cuvettes (York Biosciences, UK) and the

required concentration of DNA was added (10mg receptor, 15mg

RAMP constructs). The cells were then electroporated at 0.25 kV

and 960 mF using a Gene Pulser (Biorad) and cultured for 72 hr in

35 mm glass-bottom plated (Ibidi, München) after which they

were fixed with 4% PFA and mounted with Mowiol.

FRET imaging
Images were captured using a Zeiss Plan apo 636/1.4 oil

immersion lens on a Zeiss LSM 510 inverted laser scanning

confocal fluorescence microscope fitted with an argon laser at

room temperature. Confocal images of the fluorescent proteins

were acquired using an argon laser together with an HFT458/

514 nm dichroic, a NFT515 nm beam splitter, pin hole set to

496mm, detector gain 550 and individually as a separate channel

under the following conditions: Cerulean was excited using the

458 nm laser line with a 100% laser intensity and a band pass

BP480–520 emission filter; Citrine was excited using the 514 nm

laser line attenuated to 20% laser intensity and a band pass

BP535–590 emission filter; FRET was excited using the 458 nm

laser line with a 100% laser intensity and a BP480–520 emission

filter. All fluorescence channels were scanned and the collected

together, line by line with a mean of 1.

Cerulean and Citrine fluorescence bleed-through into the

FRET channel were calculated using FRET and co-localization

analyser plugin for ImageJ [29]. NFRET calculations for FRET

efficiency for sensitized emission were done using pixel-by-pixel

analysis by PixFRET plugin for ImageJ [30]. The threshold for

pixel intensity to be included in analysis was set to 1.5 times the

background intensity. The following equation was used to

calculate FRET efficiency:

NFRET~
FRET{½CFP|(CFPBT)�{½YFP|(YFPBT)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(CFP|YFP)

p

BT = bleed through

The correction factors calculated were: b (proportionality

constant relating donor fluorescence detected at the acceptor

emission relative to that detected at the donor emission): 0.31, a
(proportionality constant relating acceptor fluorescence at the

acceptor excitation to the donor excitation): 0.126, c (ratio of the

extinction coefficient of the acceptor to the donor at the donor

excitation): 0.3, j (proportionality constant relating the sensitized

acceptor emission to the decrease in donor fluorescence due to

FRET): 0.2.

Cell surface FRET was separated from whole cell FRET by

constructing a series of 50-pixel diameter dots around the cell

surface of the raw acceptor image using the selection tool of Image

J. Each dot was taken as a ROI and the combined ROIs for each

image were used to calculate mean membrane NFRET and

stoichiometry values. All FRET-based stoichiometric analysis was

performed as previously described [31] using ImageJ software.

Knock-down of RAMP1 mRNA expression in TT cells
using siRNA

In order to knock-down RAMP1 mRNA expression, TT cells

were transfected with RAMP1 siRNA or negative control

scrambled (sc) siRNA using electroporation. The RAMP1 and sc

siRNA sequences were the same as used successfully by Bouschet

et al [23]. Approximately 1.5 million TT cells were transfected with

1.5mg of RAMP1 or sc siRNA in 0.4 ml final volume at 960mF and

RAMP1 Is Involved in CaSR Signalling
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0.22 kV. After electroporation, TT cells were cultured in 24-well

clear bottom plates in complete F-12K medium for 72 hr, before

using them for further experiments.

To confirm efficient knock-down of RAMP1 expression, RNA

was extracted from the experimental and control transfected cells

using Trizol (Invitrogen) 72 hr after transfection and cDNA was

synthesized from equal amounts of RNA using high-capacity RNA

to cDNA kit (Applied biosystems). Gene expression was measured

using TaqmanH probes for quantitative PCR using the ABi

7900HT sequence detection system (Applied biosystems). The

cytoskeletal protein beta actin (Actb) was used as an endogenous

control for normalizing the expression of target genes. 22DCt

method was used for relative expression analysis.

Immunocytochemistry
TT cells were seeded on 15615 mm glass coverslips (Menzel-

Glaser). The cells were washed twice with PBS and fixed for

10 min at room temperature using 4% PFA (Sigma Aldrich), 48 hr

post transfection. Cells were incubated with 10% rabbit serum

(Vector labs) and 0.5% BSA (w/v) for 30 min at room

temperature. Following this, primary antibodies (RAMP1 sc-

8850- Santacruz biotech or Goat IgG- Vector labs) were incubated

overnight at 4uC in 1% rabbit serum with 0.5% BSA (w/v) in PBS

at 1:50 v/v dilution of the 0.2mg/ml stock concentration.

Coverslips were washed with 0.5% BSA (w/v) in PBS and then

incubated with secondary antibody (Rabbit anti goat IgG

conjugated with FITC, DAKO) for 45 min in dark at room

temperature in 1% rabbit serum with 0.5% BSA in PBS at 1:400

dilution of 2.5mg/ml stock concentration. Following the incubation,

Figure 1. Spatial localization of CaSR and RAMPs in COS-7 cells. (A) COS-7 cell transfected with CaSR-citrine alone showing intracellular
localisation of CaSR (red circle) in the absence of RAMP expression. (B) COS-7 cells co-transfected with RAMP-cerulean (left column) and CaSR-citrine
(column 2) were imaged by confocal microscopy 48 hr post transfection. 50 pixel dot ROI was manually drawn around the cell membrane of the
CaSR-citrine image to measure cell-surface FRET (column 3). Scale bar 10mm. Red arrows on the FRET images (right column) indicate areas of co-
localization between CaSR and RAMP on the cell-surface, which are shown magnified in the insets.
doi:10.1371/journal.pone.0085237.g001

RAMP1 Is Involved in CaSR Signalling
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the coverslips were washed with 0.5% BSA (w/v) in PBS and

incubated with DAPI counterstain at 1:5000 dilution of 5 mg/ml

stock concentration for 3 min followed by further three washes

with 0.5% BSA (w/v) in PBS. The coverslips were drained to

remove excess liquid and mounted on a clean glass slide (VWR

international) using Prolong Gold (Invitrogen) and stored in dark

at room temperature overnight before imaging.

HCX PL FLUOTAR L 40.060.60 dry objective on an Inverted

widefield fluorescence microscope LeicaDMI4000B was used to

capture images at 8-bit resolution and 161 binning at room

temperature. Separate channels were set each for FITC (exposure

1.5 sec, gain 3.5, filter-L5), DAPI (exposure 150 ms, gain 3.0, filter

A4) to capture RAMP1 or control IgG staining and nuclear

staining respectively.

Western blotting
Sub confluent cultures of transiently transfected COS-7 cells or

TT cells were harvested using 2 mm glass beads in ice cold PBS.

The cells were then spun and lysed on ice using a Dounce

homogeniser, and the resulting lysate was spun at 40,000 g for 40

minutes at 4uC. The pellet containing membranes was then

resuspended in buffer containing 100 mM NaCl, 50 mM HEPES,

Figure 2. Cell-surface FRET efficiencies of CaSR+RAMPs and fraction of receptor components involved in FRET complex. (A) Cell-
surface FRET efficiencies of individual RAMPs with CaSR compared among themselves and also with respective negative control Citrine alone+RAMP-
Cerulean. Data are expressed as a percentage of a positive control comprising cells expressing a Citrine-Cerulean fusion protein. *** p,0.001 (2-way
ANOVA, Bonferroni post-test) ***p,0.001 (Kruskal-Wallis test, Dunn’s multiple comparison test) (B) and (C) Stoichiometric analysis of fraction of donor
RAMP (Fd) and acceptor CaSR (Fa) present in FRET complex on the cell-surface, respectively.* p,0.05 Mann Whitney test. The graph represents data
from three independent experiments.
doi:10.1371/journal.pone.0085237.g002

RAMP1 Is Involved in CaSR Signalling
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5 mM MgCl2, adjusted to pH 7.4 with KOH [32]. For western

blots of COS-7 cells to determine the localization of CaSR

expression transfected with the different RAMPs, both total cell

lysates and membrane samples were analysed.

Immunoblotting was performed by separating the components

of 10–15mg of CaSR+RAMP transfected COS-7 or TT cell

membrane on 8% or 12% SDS-PAGE gel to probe for CaSR or

RAMP expression respectively. The gel was electrophoresed at

90 V and proteins were transferred to Hybond-P polyvinylidene

Table 1. Mean and SEM values of cell membrane FRET efficiency and fraction of receptor components involved in FRET between
the CaSR and RAMPs.

CaSR+RAMP
NFRET % of
positive control

Fraction of acceptor
CaSR Fa (%)

Fraction of donor
RAMP Fd(%) R

Calculated ratio
CaSR:RAMP

CaSR+RAMP1 a40.063.4*** vs b 58.467.1 16.0 61.4 0.660.09 2.19: 1

CaSR+RAMP2 b9.961.5 - - 0.5 60.11 -

CaSR+RAMP3 65.364.4 *** vs a,b 67.00610.0 26.064.3* 0.660.2 1.5: 1

Significant difference in the NFRET value was observed between CaSR+RAMP1 and 3 vs. CaSR+RAMP2, and between CaSR+RAMP1 vs. CaSR +RAMP3 (***p,0.0001,
Kruskal-Wallis test, Dunn’s multiple comparison test). Significant differences were also observed in the fraction of RAMP3 and RAMP1 donor (Fd) in cell-surface FRET
complex (*p,0.05, Mann Whitney test). There was no significant difference between fraction of CaSR acceptor in the FRET complex between RAMPs 1 and 3 (Fa). The
table displays combined data of three independent experiments.
doi:10.1371/journal.pone.0085237.t001

Figure 3. Cell surface expression of non-tagged CaSR. (A) Western blot of membrane and total cell lysate preparations from COS-7 cells
transfected with CaSR alone (lane 1), CaSR and RAMP1 (lane 2), and CaSR and RAMP3 (lane 3), incubated with antibody to the CaSR, demonstrating
the ability of RAMPs 1 and 3 to traffic the CaSR to the cell surface. (B) FACS analyses of non-permeabilised COS-7 cells expressing CaSR with either
RAMPs 1, 2 or 3 showing shift from the IgG control in number of cells with surface fluorescence in RAMP1 and RAMP3 expressing cells, but not
RAMP2 expressing cells.
doi:10.1371/journal.pone.0085237.g003

RAMP1 Is Involved in CaSR Signalling
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chloride (PVDF) membrane (Amersham) at 100 V for 80 min.

Proteins of interest were detected by first incubating with primary

antibodies (RAMP1, sc-8850 Santacruz biotechnology 1/300 v/v

dilution from 0.2mg/ml stock concentration, the CaSR ab-19347,

Abcam was diluted 1/500 v/v from 1mg/ml stock concentration.)

overnight at 4uC, followed by a HRP conjugated secondary

antibody (anti goat or anti mouse HRP conjugated IgG

immunoglobulin, Sigma Aldrich at 1:10,000 dilution) for 1 hour.

Chemiluminescence was detected using detecting photographic

film (HyperfilmTM ECL, Amersham).

Intracellular calcium imaging
TT cells were seeded at a density of 100,000 cells per well in a

24-well clear-bottom plate (Costar, Corning) for two days before

intracellular calcium assays. Media were removed and cells were

washed twice with PBS and loaded for 45 min at 37uC with 500ml

of physiological salt solution (buffer) containing: (contents [mM]: 2

CaCl2, 100 NaCl, 5.4 KCl, 1.2 MgSO4, 5.5 Glucose, 6 NaHCO3,

1.2 Na2HPO4, 20 HEPES, pH 7.4), 5mM Fluo-4AM dye (5 mM

stock in DMSO) and 2.5 mM water soluble probenecid. After

incubation cells were washed three times with the buffer and

further incubated with 500ml of buffer containing 2 mM CaCl2 for

45 min at 37uC. During this incubation, the cells were treated with

antibodies (RAMP1 goat polyclonal antibody, sc-8850, Santacruz

biotech; Goat control IgG, Vector labs) according to the

requirement of the experiment. After 45 min, the buffer was

replaced with 360ml of physiological salt solution containing

1.5 mM CaCl2 when using Cinacalcet, or containing 2 mM

CaCl2, when using Neomycin as an agonist. The cells were imaged

using an HCX PL FLUOTAR 10.060.30 dry objective on an

Inverted wide field fluorescence microscope (Leica AF6000 Time

Lapse) at 37uC (single channel fluorescence image using the L5

filter, with exposure of 1 sec, at gain and intensity of 5). Images

were taken at 12-bit resolution at every 1.2 sec with first 35 frames

recorded as baseline after which 40ml of 10X solution of agonist

was added carefully and images were recorded for further 3 min.

Images from each well were exported in.tiff format and were

analysed using ImageJ software. A time-dependant response curve

was plotted using GraphPad Prism version 5.00 for Windows

(GraphPad Software, San Diego California USA, www.graphpad.

com) and peak value of response for each cell was calculated using

AUC function. The peak value of response for each cell was then

calculated as percentage change from baseline fluorescence and

expressed in the graph as percentage above baseline.

Fluorescence-Activated Cell sorting (FACS)
COS-7 cells were transfected as mentioned before and 48 hr

later were washed with PBS, harvested using non-enzymatic

dissociation and fixed using 4% PFA for 15 min and resuspended

in FACS buffer (PBS, 1% FBS). Cells were then treated with 5%

Figure 4. Expression of CaSR and RAMP1 in TT cells. (A) mRNA expression levels of CaSR and RAMPs in control TT cells. (B) Representative
western blot showing protein expression of CaSR and RAMP1 in TT cell membranes. (C) Concentration-dependent Cinacalcet-induced increase in
intracellular calcium release in TT cells in presence of 1.5 mM CaCl2 (Ec50 50361.29 nM). The data are combined from three independent experiments
with a total of n = 50 cells analysed at -4.5, -5, -5.5, -6 and -11 M; 20 cells analysed at 26.5, 27, 27.5 and 28 M; and 30 cells analysed for 29 and
210 M concentrations. (D) Concentration-dependent Neomycin-induced response in presence of 2 mM CaCl2 (Ec50 9161.45 mM). The data are
combined from three independent experiments with a total of n = 43, 48, 45, 46, 88, 74, 23 and 29 cells analysed per concentration respectively,
going from high to low doses.
doi:10.1371/journal.pone.0085237.g004
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FBS, washed and incubated with 1.2mg mouse CaSR antibody

(abcam, Cambridge, USA) per 106 cells for 1 hr at room

temperature, and subsequently with secondary antibody conju-

gated with FITC (DAKO, Carpinteria, USA) (1mg/106 cells) for

30 min. As negative controls cells were incubated with mouse IgG

control, as well as with the secondary antibody only. From each

sample, ten thousand cells were analysed using a flow cytometer

(FACSCalibur, Becton Dickinson, San Jose, CA) after excluding

cell debris.

Statistical analysis
All data shown are mean6 SEM. The graphs were plotted in

and the statistical analysis was performed using GraphPad Prism

version 5.00 for Windows (GraphPad Software, San Diego

California USA, www.graphpad.com). The statistical tests per-

formed for each specific experiment is shown in the relevant results

section. Normalcy test was performed on each set of data using

D’Agostino & Pearson omnibus normality test using Graphpad

prism 5 software. The precise number of cells and replicate

experiments is detailed in the relevant figure legends.

Results

Cell membrane FRET-based stoichiometric analysis of the
interaction of CaSR with RAMPs

The interaction of RAMPs with CaSR in transfected COS-7

cells was confirmed using FRET. Sensitized emission FRET was

used to compare the efficiency of interaction of RAMPs with

CaSR, and FRET-based stoichiometry to calculate the fractions of

RAMP and CaSR in the FRET complexes on the cell membrane.

As a negative control in order to measure the background levels of

FRET- a combination of Citrine only, along with different

RAMP-Cerulean constructs were used.

Figure 5. Effect of RAMP1 mRNA knockdown on TT cells. (A) mRNA expression levels of RAMP1, RAMP2 and CaSR in TT cells transfected with
RAMP1 or scrambled siRNA, 72 hr post-transfection expressed as fold change normalised to Actb. (B) Representative images from immunofluorescent
staining for RAMP1 expression in cells transfected with scrambled siRNA (top panel) and RAMP1 siRNA(bottom panel), 72 hr after transfection. (C)
Intracellular calcium response of the RAMP1 siRNA cells to 1mM Cinacalcet in presence of 1.5 mM CaCl2 and (D) 100mM Neomycin in presence of
2 mM CaCl2 The responses were decreased by ,42% and ,50% respectively compared to scrambled siRNA transfected cells. The data are combined
from five independent experiments with a total of 241, 231 and 154 cells analysed in (C), and 354, 354 and 118 cells analysed in (D) for knock-down,
control and normal conditions respectively. **** p,0.0001 analysed by two-tailed Mann-Whitney test.
doi:10.1371/journal.pone.0085237.g005

RAMP1 Is Involved in CaSR Signalling
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When COS-7 cells were transfected with CaSR alone, majority

of the receptor was localized within the peri-nuclear region

(figure 1A). However, when either RAMP1-Cer or RAMP3-Cer

were co-transfected with the CaSR, distinct regions of co-

localization of FRET complexes were seen ranging from the

peri-nuclear region and cytoplasm, towards the cell membrane

(figure 1B). Red arrows on the FRET figures indicate cell-surface

FRET complexes of CaSR+RAMP1/3 (figure 1B and high power

insets). In case of RAMP2-Cerulean, co-localization with CaSR

could be seen in the perinuclear region only with no detectable

cell-surface co-localization (figure 1B).

Intensity values from the donor, acceptor and FRET images

were obtained from cell membrane regions using a series of 50

pixel-dots to define regions of interest (ROI) on the acceptor image

(figure 1B third column). Using these values, cell-surface NFRET

values and stoichiometric calculations were performed for the

CaSR (figure 2A,B and C and Table 1). The cell-surface NFRET

values for CaSR+RAMP1/3 combinations were significantly

higher than their corresponding negative controls, and CaSR+
RAMP2 cell-surface FRET complex (figure 2A; Table 1). NFRET

between CaSR and RAMP2 was not significantly different from

the corresponding negative control (RAMP2-Cerulean and Citrine

alone). CaSR+RAMP3 cell-surface FRET efficiency was found to

be significantly higher by ,1.6 fold compared to CaSR+RAMP1

(figure 2A, Table 1). As shown by the R value (ratio of total CaSR

to RAMP expression on the cell surface), there was an equal excess

of RAMP expression compared with CaSR in both CaSR+
RAMP1/3 transfected cells. Of this, the fraction of total RAMP1

that was at the cell surface, involved in cell-surface FRET complex

was 1661.4%, whereas for RAMP3 the proportion on the surface

was 26.064.3% (figure 2B and Table 1). So the fraction of

RAMP3 on the cell surface was ,1.6 fold higher than RAMP1 in

FRET complex with CaSR, which was significant. The fraction of

CaSR present in the FRET complex on the cell-surface was

58.467.1% (with RAMP1) and 67.00610.0% (with RAMP3)

(figure 2C and Table 1); out of its total population. There was no

statistically significant difference between the fraction of CaSR in

RAMP1 and RAMP3 cell-surface FRET complexes. This means

that both RAMP1 and 3 exhibited equal efficiencies in trafficking

CaSR to the cell surface, however there was a higher fraction of

RAMP3 (donor) in the FRET complex on the cell surface,

consequently causing an increased FRET efficiency, compared to

RAMP1.

Cell surface expression of non-tagged CaSR
In membrane preparations from COS-7 cells expressing CaSR

alone, no CaSR protein could be detected by western blotting

(figure 3A, lane 1). In contrast, when CaSR was expressed with

either RAMP1 or RAMP3, in the western blots, there were clear

bands between 140 and 200 kDa corresponding with the predicted

size of the CaSR (Figure 3A, lanes 2 and 3 respectively). As a

control, CaSR was detected in all the three conditions in samples

prepared from COS-7 cell lysates, indicating total protein

expression.

We confirmed these results using FACS on the same (non-

permeabilised) COS-7 cells. In cells expressing the CaSR with

RAMP1, we measured clearly increased levels of surface

fluorescence compared with binding of isotype control antibodies,

indicating RAMP1-mediated cell surface expression of CaSR

(figure 3B left panel). In cells expressing CaSR and RAMP2,

which we know from the FRET studies to not be an effective

trafficking partner, there was no shift with CaSR compared with

isotype control antibodies, indicating no surface expression

(figure 3B, centre panel). In cells expressing CaSR and RAMP3,

we observed surface expression greater than the isotype controls

(figure 3B right panel), and greater than in cells expressing CaSR

with RAMP1.

Attenuation of CaSR signalling by modulation of RAMP1
expression in TT cells

To explore the role of RAMP1 in CaSR signalling, we used TT

cells that express mRNA and protein endogenously for CaSR,

RAMP1 and RAMP2 but not RAMP3 (figure 4A and 4B). To

confirm the functional activity of the CaSR in TT cells, increases

in the intracellular calcium levels were measured using live cell

imaging. We obtained concentration-response curves for the

allosteric modulator of the CaSR, Cinacalcet in presence of

1.5 mM CaCl2 (Ec50 50361.29 nM), and the agonist Neomycin in

presence of 2 mM CaCl2 (Ec50 9161.45 mM) (figure 4C and 4D)

by recording images for , 3.5 min at every concentration.

The functional responses to Cinacalcet were compared between

TT cells, whose RAMP1 expression had been attenuated using

siRNA and controls, transfected with an appropriate scrambled

sequence. 72 hr after transfection, significant decrease in mRNA

(by ,80%) and protein expression levels of RAMP1 were

observed in RAMP1 siRNA-transfected TT cells compared to

the scrambled control (Figure 5A and B respectively). There was

no effect of RAMP1 or scrambled siRNA transfection on the

mRNA expression levels of RAMP2 or CaSR (Figure 5A). TT

cells transfected with RAMP1 or control scrambled siRNA were

treated with 1mM Cinacalcet in presence of 1.5 mM CaCl2 or

100mM Neomycin in presence of 2 mM CaCl2 and signalling was

quantified by measuring increase in intracellular calcium using a

live cell imaging system. The response to 1mM Cinacalcet was

significantly attenuated by ,42% in RAMP1 siRNA-transfected

cells compared to the negative control (figure 5C). There was no

difference between the signalling of the negative control and

control non-transfected TT cells, excluding non-specific effects

due to transfection. 100mM Neomycin, induced ,50% less

elevation in the intracellular calcium release in RAMP1 siRNA-

transfected cells compared with both scrambled transfected and

native controls (figure 5D).

Attenuation in CaSR signalling by RAMP1 antibody in TT
cells

TT cells were treated with a characterised commercial RAMP1

polyclonal antibody [33–35], which induced a concentration-

dependent attenuation of intracellular calcium release in response

to 1mM Cinacalcet in presence of 1.5 mM CaCl2 (figure 6A). The

response to 1mM Cinacalcet was significantly attenuated by

0.0125mg/ml and 0.025mg/ml dose of RAMP1 antibody by 35%

and 57% respectively (both p,0.001). The differences between the

effect of 0.0125mg/ml and 0.025mg/ml RAMP1 antibody (21%) was

statistically significant (p,0.01). It was also observed that

0.025mg/ml RAMP1 antibody reduced 100mM Neomycin re-

sponse in presence of 2 mM CaCl2, significantly by ,48%

compared to Control IgG (p,0.001) (figure 4B).

Discussion

RAMPs are promiscuous proteins that are shown to engender

different receptor phenotypes to a few family B GPCRs

[25,27,28,36]. It was discovered that the association of the CaSR

with RAMP 1 or 3 is essential for its cell-surface trafficking in

transfected cells [23,24]. In order to investigate further the

consequences of this interaction, we hypothesized that RAMPs

associate with the CaSR to form higher-order oligomeric

complexes, and play a role in signalling of the CaSR. Particularly,
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this study has characterized additional functions of RAMP1 in

complex with the CaSR, implying a two-tier regulation which

comprises cell surface trafficking and signalling of the CaSR.

In this study we have used a series of well-established techniques

to confirm and extend previous work in the area using transfected

cells, and to determine the relevance of those findings in a more

physiological setting of a cancer cell line. The FRET techniques

we have used differ from established techniques only in our use of

a membrane region of interest to compare total and cell surface

interactions. This very simple analysis of FRET data could be

useful in other research where proteins are trafficked to the cell

surface from inside the cell. Our studies increase knowledge of the

RAMP/CaSR interactions because we have analysed the

stoichiometric relationships between the proteins involved, some-

thing which was not performed in earlier studies using tagged

constructs. It should be emphasised that our results were obtained

only by FRET, a recognised method to determine protein-protein

interactions. Further confirmatory studies using different methods

such as co-immunoprecipitation in both over-expressing and

native cells could be used to provide additional support for our

findings. Such techniques may have the ability to reveal shifts in

the proportion of oligomers, dimers and monomers.

It could be suggested that the fluorophore-protein constructs

may not behave identically to native proteins. However, we show

using cells expressing untagged receptor constructs, that RAMPs 1

and 3 but not 2 are required for cell surface expression of the

receptor by FACS and western blotting. In addition, FRET is well

established, and our data are entirely consistent with studies using

a different technique to show interactions of RAMPs 1&3 but not

RAMP2 with the CaSR [23]. The other techniques we have used

are well-established. Knockdown siRNA sequences are those used

by others [23], and we demonstrate their effectiveness in reducing

mRNA and protein expression. The effects of the knockdown and

antibody treatments are disclosed using a well-established readout

of elevation of intracellular calcium after treatment with pharma-

cological ligands.

FRET-based stoichiometric analysis in this study indicated that

a unit of CaSR-complex on the cell surface with either RAMP

consist of ,1.6 times more RAMP3 than RAMP1. Recently the

presence of high order oligomers of other GPCRs at cell surface

has been reported [37-39]. However, it still remains to be

understood how many units of CaSR and RAMPs heteromerize to

form larger oligomeric complexes on the cell membrane. It is

possible that such large oligomers could contain different RAMPs

with the CaSR, but the complete functional consequences of such

complex heteromeric structures are not understood yet. An

additional level of regulation could be provided by the PDZ-

binding motif which is present on RAMP3 [40], which can have

effects on recycling and internalization of the CaSR, as already

reported in the case of the adrenomedullin receptor-2

(CLR+RAMP3) [40,41].

The demonstration that knockdown of RAMP1 expression

attenuates CaSR signalling could be due to a decreased population

of CaSR+RAMP1 complexes at the cell-surface. However, the

ability of antibodies to attenuate the ability of CaSR ligands to

induce elevation of intracellular calcium release points to an

additional more complex role for RAMPs in CaSR signalling.

There are several potential mechanisms for this. The physical

presence of the antibody bound to the RAMP1 part of the

RAMP1/CaSR complex could prevent normal ligand binding.

Alternatively, the antibody may interfere with the interaction

between the RAMP and CaSR so that they no longer form a

functional heteromer. A third possibility is that antibody bound to

the RAMP1 may affect the internalisation of the receptor complex

to reduce the presence of functional receptor heteromers on the

cell surface. It is also conceivable that antibody induces

conformational changes in the receptor that normally follow

ligand binding or coupling to the G-proteins of the CaSR so as to

alter downstream signalling. It is unlikely, though still possible, that

RAMP1 is directly involved in the formation of the ligand binding

pocket, since the sites for binding of Ca2+ [42] (ECD), neomycin

(ECD) [43], and the calcimimetic Cinacalcet (TM domain)

[44,45], have been mapped on the CaSR itself.

Figure 6. Attenuation of CaSR response in TT cells by RAMP1 antibodies. (A) Concentration-dependant decrease in Cinacalcet-induced
intracellular calcium release in presence of 1.5 mM CaCl2, by RAMP1 antibodies in TT cells. Total cells analysed combined from five independent
experiments are 272 (1mM Cinacalcet), 261 (0.0125mg/ml control IgG), 240 (0.025mg/ml control IgG), 252 (0.0025mg/ml RAMP1 Ab), 272 (0.0125mg/ml
RAMP1 Ab) and 250 (0.025mg/ml RAMP1 Ab). (B) 0.025mg/ml RAMP1 antibody caused a significant inhibition of 100mM Neomycin response in presence
of 2 mM CaCl2 compared to control IgG. Total cells analysed combined from five independent experiments are 192 (100mM Neomycin), 177 (0.025mg/
ml control IgG) and 166 (0.025mg/ml RAMP1 Ab). *** p,0.001 determined by Kruskal-Wallis test, Dunn’s multiple comparison post-test, ** p,0.01 two-
tailed Mann-Whitney test.
doi:10.1371/journal.pone.0085237.g006
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The physiological relevance of the findings remain to be

confirmed in detail, and studies in cells from a range of species,

and to measure calcitonin secretion in cells with altered RAMP

expression would be valuable. The development of tissue-specific

knockout mice for the RAMPs will also provide opportunities for

greater insight into their roles in calcium homeostasis specifically

and endocrinology generally.

In conclusion, this study has provided novel insights into the

interaction of CaSR and RAMPs which point towards the

presence of a higher oligomeric receptor-complex, with the

possibility of more than one RAMP molecule per CaSR. Secondly,

RAMP1 is essential for the cell surface trafficking of the CaSR in

endogenously expressing cells. Finally, RAMP1 plays a role in the

signalling of CaSR in TT cells that are at the cell surface, by an

unknown mechanism. Therapeutic targeting of RAMP1 may be a

method to modulate calcium homeostasis via the CaSR.
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