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Summary 

Reduced graphs provide summary representations of chemical structures by collapsing groups of 

connected atoms into single nodes while preserving the topology of the original structures. This 

chapter reviews the extensive work that has been carried out on reduced graphs at The University of 

Sheffield and includes discussion of their application to the representation and search of Markush 

structures in patents; the varied approaches that have been implemented for similarity searching; their 

use in cluster representation; the different ways in which they have been applied to extract structure-

activity relationships; and their use in encoding bioisosteres. 
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Introduction 

Reduced graphs (1) provide summary or abstract representations of chemical structures and are 

generated by collapsing connected atoms into single nodes, edges are then formed between the nodes 

according to bonds in the original structure. Reduced graphs have been used in a variety of 

applications in chemoinformatics ranging from the representation and search of Markush structures in 

chemical patents to the identification of structure-activity relationships (SARs). Many different graph 

reduction schemes have been devised and the optimal scheme is likely to depend on the particular 

application. Examples of different types of reduced graphs are shown in Figure 1. The idea of 

characterising chemical structures by their structural components is long established in chemical 
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information and is implicit in most systematic chemical nomenclature: structures are fragmented into 

ring systems and acyclic components which are described individually with conventions used to 

indicate how they are connected, for example, N-(4-hydroxyphenyl) acetamide (the systematic name 

for paracetemol).! Reduced graphs also aim to summarise structures according to their structural 

components, however in contrast to nomenclature systems, they retain structural information on how 

the components are connected in graphical form. This encoding of topology enables structural 

comparisons to be made which cannot be achieved through the use of nomenclature. 

In this chapter, we focus on the extensive work that has been carried out on reduced graphs at The 

University of Sheffield for a variety of different applications. We also recognise the substantial efforts 

made by other groups in related methods, notably the feature trees approach by Rarey et al.(2, 3) and 

the extended reduced graph, ErG, by Stiefl et al.(4, 5), and provide a brief summary of these 

approaches. 

Reduced graphs for searching Markush structures 

Reduced graphs were first used at Sheffield as a component of a search system for Markush structures 

(1, 6). Markush structures (also known as generic structures) are chemical structures that involve the 

specification of lists of alternative substituents attached to a central core structure. They occur 

frequently in chemical patents where they are used to describe a large and often unlimited number of 

structures with the aim of protecting a whole class of compounds rather than a few specific examples. 

An example Markush structure is shown in Figure 2 and consists of a central core group with variable 

R-groups that are used to represent lists of alternative substituents (or substructures) attached to the 

core. Markush structures pose several difficulties for storage and retrieval. In addition to handling the 

large number of compounds encoded in a single representation and dealing with different ways of 

partitioning a structure into substructures, one of the major difficulties is the use of generic 

nomenclature to indicate that a substituent may be any member of a homologous series, for example, 

in expressions such as “R1 is an alkyl group”. Generic nomenclature presents difficulties for search 
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since it is necessary to be able to match specific instances of a homologous series with the generic 

term, for example, to recognise that “methyl” is an instance of “alkyl”.  

Reduced graphs were developed in the Sheffield Generic Chemical Structures Project (7)  to provide 

an additional level of search that is intermediate in complexity between the traditional fragment 

screening and atom-by-atom search methods that were developed for specific structures, and to 

provide an effective way of dealing with generic nomenclature (6). In the Sheffield project, 

homologous series are represented by parameter lists which indicate the structural features that 

characterise the series such as: the number and type of rings present and the presence or absence of 

heteroatoms etc. Most of the substituents that are expressed as homologous series in patents can be 

classified as ring or non-ring (for example, aryl, heterocycle, alkyl, alkene etc) and can therefore be 

represented as single nodes in a ring/non-ring (R/N) graph reduction scheme. The reduced graph 

representation of the generic structure is also shown in Figure 2; the reduced graph is rooted on the 

central ring node which is derived from the core structure and contains alternative nodes indicated by 

the branched edge labelled “OR” and an optional node indicated by the dashed edge. In the example 

shown, the partitioning of the generic structure into partial structures corresponds with the node 

definitions. However, in other cases, a single reduced graph node might span different partial 

structures in the generic structure.  

The searching of Markush structures is carried out at three levels. The first level is a fragmentation 

search in which fragments are generated from both the structural fragments and the parameter lists 

used to represent the generic nomenclature: the fragments are organised as those which MUST be 

present in the generic structure and those that MAY be present since they occur in alternative 

substructures. The reduced graph search is based on graph matching procedures and is considerably 

faster than graph matching at the atom and bond level due to the relatively small size of the reduced 

graphs. The final search is an atom-by-atom search modified to deal with the generic nomenclature. 

The three search methods are applied in sequence: for a given query, those database compounds 

which pass the fragment stage are passed to the reduced graph search and finally those compounds 

remaining after the reduced graph search are subjected to the most time-consuming atom-by-atom 
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search.  Although the Sheffield search system did not become a public system in its own right, it 

undoubtedly had a major influence on the Markush DARC system of Derwent Information Limited 

(8) and the MARPAT system of Chemical Abstracts Service (9, 10). 

Reduced graphs for similarity searching 

Since the advent of similarity searching in the 1980s much effort has been expended on developing 

new descriptors with the aim of identifying compounds that share the same activity. The first 

similarity searching procedures were developed using fragment bitstrings that were devised for 

substructure search (11, 12). These proved to be remarkably successful, although this good 

performance was, in part, due to the nature of the datasets on which they were evaluated, which often 

consisted of series of structural analogues.  A more recent focus in similarity searching has been the 

identification of compounds exhibiting the same activity but belonging to different lead series; a 

technique that has become known as scaffold hopping (13). Such compounds offer important 

advantages over structural analogues: there is the potential to move away from the patent space of the 

query compound; and they provide the possibility of exploring more than one lead in parallel with 

clear advantages should one series fail due to poor ADME properties or difficult chemistry. 

Various graph reduction schemes have been developed for similarity searching. In this context the 

challenge is to reduce structures so that their pharmacophoric features are highlighted to enable 

compounds that share the same activity but belong to different chemical series to be perceived as 

similar. Figure 3 shows a series of compounds that are active at opioid receptors. The similarities of 

each of codeine, heroin and methadone to morphine are shown based on Daylight fingerprints (14) (a 

conventional 2D fingerprint) and the Tanimoto coefficient. The obvious 2D structural similarities of 

codeine and heroin to morphine are reflected in the high scores. However, methadone scores poorly 

despite having similar activity. The shaded spheres indicate a mapping between the structures that is 

based on their common functional groups and reveals similarities between methadone and the other 

compounds which are not evident using conventional 2D fingerprints. When used for similarity 
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searching the aim of the graph reduction approach is to recognise such mappings so that the resulting 

reduced graphs can be thought of as topological pharmacophores.  

Varying the level of specificity 

Different graph reduction and node labelling schemes have been devised that vary in the level of 

specificity that is encoded and therefore in the degree of discrimination that is achieved between 

different structures. Figure 4 shows four levels of node specificity for a reduction scheme based on 

three node types: Rings, Features and Linkers. In this scheme, linkers and features are distinguished 

using the concept of isolated carbons which are acyclic carbon atoms that are not doubly or triply 

bonded to a heteroatom (14). Connected isolated carbon atoms form linker nodes with the remaining 

connected acyclic components defining feature nodes. Non-hydrogen bonding terminal atoms are 

removed, as indicated by the exclusion of the terminal methyl groups in structure A, Figure 5. The 

different levels in the hierarchy are derived by further describing the nodes according to the properties 

of their constituent atoms in terms of aromaticity and hydrogen bonding character. As the level of 

detail encoded within the nodes is increased the number of unique reduced graphs that are represented 

in a database increases, see Figure 5. In experiments on the World Drug Index database, Gillet et al. 

determined that reduced graphs at level four in the hierarchy were most effective in discriminating 

between actives and inactives (15).  

Variations on this basic approach have since been described which include the definition of additional 

nodes types such as positively and negatively ionisable groups. Flexibility in the definition of node 

types is generally achieved through the use of user-defined SMARTS definitions for various groups 

such as hydrogen bond donors and acceptors. 

Comparing reduced graphs using fingerprints 

Various approaches have been devised to enable the similarity between a pair of molecules to be 

calculated based on their reduced graph representations.  In analogy with the use of fragment 

bitstrings to compare chemical graphs, a similar approach has been taken to represent reduced graphs 

as binary vectors. For example, a mapping of node types to atoms not in the usual organic set, such as 
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the transition metals, allows the reduced graphs to be represents as SMILES strings, as shown in 

Figure 6, and the Daylight fingerprinting routines to be used to generate path-based fingerprints from 

reduced graphs (15). While this approach provided a convenient way of comparing reduced graphs, 

the different characteristics of reduced graphs, relative to the structures from which they are derived, 

are such that the resulting fingerprints are suboptimal for quantifying the similarity between reduced 

graphs. For example, reduced graphs consist of fewer nodes than their corresponding chemical graphs 

so that the resulting fingerprints can be quite sparse and small changes in a chemical structure, such as 

the insertion of a heteroatom into an acyclic chain, can result in a quite different set of nodes and 

therefore fingerprint.  

Improved performance was obtained by representing the reduced graphs as node-pair descriptors (16), 

which are similar in concept to the more familiar atom-pair descriptors developed by Carhart et al. 

(11). For example, Harper and colleagues developed fingerprints based on node-edge pairs in which 

additional bits are set, for example, to encode branch points so that more of the topology of the 

reduced graph is represented and to encode paths of length one shorter than the actual length to 

introduce a fuzziness to the fingerprint (17). The “fuzzy bits” enable the similarity between RGs that 

differ by the insertion or deletion of a single node to be perceived, which would otherwise give rise to 

a set of node-edge pairs of different lengths.  

Harper et al. also developed an edit distance method to quantify the similarity between reduced graphs 

which is based on the cost of converting one reduced graph to the other by considering mutation, 

insertion and deletion of nodes.  The edit distance technique is well known in computational biology 

where it is used for sequence comparisons with similarity related to the number of operations required 

to change one sequence to another. In the context of reduced graphs, edit distance is well suited to 

dealing with the problem of small changes in chemical structure leading to different patterns of nodes, 

for example, by the insertion of a heteroatom into a carbon chain. Furthermore, different weights can 

be assigned to different node operations to reflect similarities in node types. For example, in Harper’s 

work the substitution of a “donor” to a “donor & acceptor“ node was assigned a low cost, whereas, 

the substitution of a “donor” to a “negatively ionisable group” was assigned a high cost. Harper 
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showed that combining the edit distance similarity measure with a node-pair fingerprinting method 

improved the performance of the reduced graphs in similarity searches compared to the path-based 

fingerprints. The edit distance method is illustrated in Figure 7: the left hand side shows the minimum 

cost of converting reduced graph B into A based on the matrix of substitution costs and the 

insertion/deletion costs shown on the right. 

The costs assigned to the individual node operations by Harper were based on intuition. Subsequently, 

Birchall et al. (18) used a genetic algorithm to identify optimised sets of weights that gave improved 

performance over a variety of activity classes extracted from the MDL/Symyx Drug Data Report 

(MDDR) database (19). They also generated sets of weights optimised on specific activity classes and 

showed that class specific weights could not only improve retrieval performance but could also 

provide some clues on the underlying structure-activity relationship.  

Comparing reduced graphs using graph matching procedures 

By definition, reduced graphs contain fewer nodes and edges than the chemical graphs from which 

they are derived, making them more amenable to graph matching procedures. Takahashi et al. 

described an early approach to the use of graph matching techniques to compare reduced graph 

representations, albeit based on a very small number of compounds (20). They considered a set of five 

structurally diverse antihistamines and a set of six antipsychotropic agents, and in both cases, some of 

the structural similarities were found. In more recent work, Barker et al. represented the reduced 

graph as a fully connected graph in which the edges represent bond distances in the original chemical 

graph and used maximum common subgraph techniques to calculate the similarity between pairs of 

reduced graphs using much larger datasets (21). They demonstrated improved performance of the 

reduced graph relative to Daylight fingerprints both in terms of the recall of actives and in the 

diversity of the actives retrieved thus suggesting that reduced graphs might be beneficial in scaffold 

hopping applications.  
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Clustering 

The reduced graph approach has also been used for various clustering applications. Clustering is 

widely used to present sets of compounds to chemists for review, for example, typically the results 

from a high-throughput screening exercise will be clustered and clusters that are enriched in active 

compounds will be examined in an attempt to extract structure-activity information. The most 

commonly used clustering techniques are based on traditional 2D fingerprints that are derived from 

the chemical structures themselves, however, when using such fingerprints, it may be difficult to 

decipher the structural commonalities that are present within a cluster. Harper et al. used reduced 

graphs to cluster high throughput screening data (17). Each molecule is represented by several motifs 

which include the reduced graph, near neighbours of the reduced graph in which single nodes are 

deleted or changed, and Bemis and Murcko frameworks (22). Molecules that share a common motif 

are clustered together and the clusters are sorted with large clusters consisting predominantly of active 

compounds being presented to the user first. The reduced graphs and frameworks allow the structural 

characteristics of the compounds to be easily seen, in contrast to clustering based on conventional 

fingerprints.  

In related work, Gardiner et al. have used reduced graphs to identify cluster representatives (23).  

Here a dataset is clustered using conventional 2D fingerprints, the members of a cluster are then 

represented as reduced graphs and a maximum common subgraph (MCS) algorithm is applied 

iteratively in order to obtain one or more reduced graph cluster representatives. The reduced graphs 

offer two advantages for this application: first, their small size means that the MCS comparisons can 

be run in real-time; and second, the cluster representatives can be mapped back to the original 

structures that they represent, allowing the chemists to interpret the key functionalities required for 

activity. The method also enables multiple series present within the same cluster to be identified as 

well as related clusters by comparing representatives from different clusters. 
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Reduced graphs for identifying SARs 

Reduced graphs have been used in conjunction with recursive partitioning in order to derive structure-

activity relationship models. As proof of principle, an SAR model was developed for angiotensin II 

receptor antagonists and compared with the known literature (16). A fingerprint representation of the 

reduced graph was used to determine the splitting criteria in a decision tree based on a training set of 

100 actives and 2000 inactives extracted from the MDDR database (19). A portion of the resulting 

tree is shown in Figure 8 with the shaded box highly enriched in actives and containing 70 of the 

active compounds. The splits in the tree are based on the presence/absence of node-edge pairs: Ard-2-

Arn represents an aromatic ring containing a hydrogen bond donor separated by two edges from and 

aromatic ring with no hydrogen bonding character; Arn-1-Arn represents two aromatic rings with no 

hydrogen bonding characteristics separated by a single edge. These two node-edge pairs can be 

combined to represent the substructure A which compares well with the 2D SAR model for 

angiotensin II receptor antagonists described by Bradbury et al. (24). The approach was subsequently 

used in a procedure to select compounds for screening against a kinase inhibition assay with a hit rate 

of around 7% reported. 

A disadvantage of the use of fingerprint representations to represent SARs is the loss of information 

on how the node-edge pairs are connected. For example, substructure A in Figure 8 represents one 

way in which the node-edge pairs could be combined, however, there are other arrangements of rings 

that are also consistent with the same set of node-edge pairs, for example, substructure B. More 

recently, Birchall et al. have developed an evolutionary algorithm (EA) to grow reduced graph queries 

(subgraphs) with the aim of discriminating between actives and inactives in high throughput screening 

data (25). The reduced graph queries are encoded as SMARTs strings (such as that shown in Figure 9) 

and allow a more detailed description of the structure-activity relationship to be developed. For 

example, a query can consist of any number of connected (or even disconnected nodes). Moreover, 

the use of atom primitives in the SMARTs language (such as OR and NOT logic) enables the range of 

substructures that can be captured in a single expression to be extended. For example, a series of 

alternative node types can be specified at a given location in a subgraph to allow expressions such as 
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“non-feature ring node OR acceptor ring node”. The SMARTS expressions are mapped to tree-based 

chromosomes with the primitives tagged to nodes as shown in Figure 9. Tree-based evolutionary 

operators have been developed to enable new trees to be evolved through the exchange of subtrees 

between chromosomes and various mutation operators. 

A chromosome is evaluated by parsing the tree to generate a SMARTS query which is then searched 

across a training set of actives and inactives, also represented as reduced graphs. Fitness is measured 

using the F-measure which is the harmonic mean of precision (P), the ratio of actives to total 

compounds retrieved, and recall (R), the fraction of the actives retrieved, as follows: F= 2PR/(P+R). 

The EA has been configured to evolve reduced graph queries that maximise the F-measure.  

When applied to various activity classes extracted from the MDDR database (19) the EA was able to 

evolve reduced graph queries that give good classification rates and which encode structure-activity 

information that is readily interpreted by chemists. The approach was subsequently extended to first, 

explore trade-offs in recall and precision and second, to allow multiple SARs to be extracted from a 

single activity class (26). The rationale for exploring the trade-off between precision and recall is that 

the optimum balance between these two objectives may depend on the application. For example, 

when seeking a structure activity model it may be of interest to evolve a query with high precision at 

the expense of relatively low recall. Conversely, when evolving a query to be used in virtual screening 

it may be more appropriate to choose a query that has higher recall but lower precision or even to 

choose a query that returns the same number of hits as the screening capacity. By treating recall and 

precision as independent objectives in a multiobjective optimisation procedure, a range of solutions 

are found which vary from high recall-low precision queries through to low recall-high precision 

queries. Multiple queries are evolved through the introduction of a third objective, called uniqueness, 

which compares each query with all others in the population. A query receives a high uniqueness 

score if the actives that it retrieves are not found by other queries in the population. This enabled 

multiple SARs to be derived where each SAR described a different set of active compounds. The 

combination of these complementary SARs allows for improved recall and precision as well as 

increasing the level of detail in the overall SAR description of a given activity class. 
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Reduced graphs for encoding bioisosteres 

Bioisosteres are structural fragments that can be exchanged without significant change to a molecule’s 

biological activity. Since bioisosteres may be quite different in structure, e.g. tetrazole and carboxylic 

acid, it is challenging for conventional similarity measures to reflect their functional similarity. Graph 

reduction approaches are an attractive means of dealing with such equivalences as they allow several 

different structures to be encoded as the same node type. Birchall et al (27) investigated how 

bioisostere information could be exploited in similarity searching using a graph-matching approach. 

Bioisosteres extracted from the BIOSTER database (28) were often found to be encoded by the same 

node type, supporting the applicability of the reduced graph encoding. However, there were also many 

cases where the bioisosteric fragments were not encoded as the same node type or even by the same 

number of nodes. The graph reduction and matching schemes were then modified to recognise and 

permit matches between instances of bioisosteric fragments, enhancing the similarity between 

molecules containing such fragments. Similarity searches in the WOMBAT database (29) found that 

although this approach clearly demonstrates scaffold hopping potential, there is a significant trade-off 

in terms of the number of inactives that are also retrieved. The issue here arises from the fact that 

bioisosteric equivalences are often dependent on the specific context in which they are considered, 

both in terms of the intra-molecular environment and the extra-molecular environment, something that 

is perhaps too complex for broad generalisation based on the available data. By altering the rules used 

for graph partitioning, node type assignment and node type matching, reduced graphs provide the 

flexibility to allow the recognition of increasingly structurally distinct equivalences. However, this 

must be balanced against the degree of information loss inherent in graph reduction that may lead to 

the recognition of unreasonable equivalences.  The key is in deciding what constitutes a reasonable 

equivalence. 

Related Approaches 

The intention of this chapter has been to summarise the extensive work carried out on reduced graphs 

at Sheffield, however, in acknowledgement of the significant contributions made by other groups we 
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briefly summarise the closely related approaches of feature trees and ErG. The feature tree, developed 

by Rarey and Dixon, also seeks to generalise chemical structures by emphasising their functional 

features (2). A ring/non-ring reduction similar to that in Figure 1a is carried out except that a separate 

node is assigned to each non-terminal acyclic atom. The resulting structure is a tree (ie it does not 

contain any cycles) which allows significant improvements in speed when comparing two feature 

trees due to the greater efficiency of tree-matching algorithms relative to graph-matching. Each node 

in the tree is “labelled” with a range of features derived from its constituent atom(s) such as their 

volume and molecular interaction capabilities. Calculating the similarity between two trees is based 

on first finding a match of sub-trees and then using a weighted combination of the feature similarities 

of the matching nodes. Feature trees of a lower specificity can be derived by collapsing sub-trees into 

single nodes to give rise to a hierarchy of representations which allows similarities to be determined at 

varying levels of specificity. Feature trees have been applied to a number of applications including: 

similarity searching based on a single query (2); similarity searching based on multiple queries by 

combining the queries into a multiple feature tree model called MTree (30); and fast similarity 

searching in very large combinatorial libraries (3).  

The extended reduced graph (ErG) approach developed by Stiefl et al. (31) is similar to the reduced 

graph but includes a number of extensions. For example, charged and hydrophobic features are 

encoded explicitly and rings are encoded as ring centroids with substituted ring atoms encoded as 

separate nodes. The nodes are connected according to the shortest paths in the chemical graph. 

Although the ErG is a more complex graph than the reduced graph, positional information is better 

conserved and inter-feature distances in the original molecule tend to be more accurately represented. 

Furthermore, separation of the ring features from the ring itself permits similarity to be reflected 

between rings of different feature types. For example, while the reduced graph encodes pyrrole and 

phenyl rings as different node types, the ErG approach represents pyrrole as an aromatic node joined 

to a donor node which retains some commonality with the single aromatic node resulting from a 

phenyl group.  The ErG can be encoded in a fingerprint, similar to those developed for reduced 

graphs, however, Stiefl et al. use a hologram approach where each bit encodes a count of the fragment 
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frequency rather than binary presence or absence. Some fuzziness in matching is permitted by 

incrementing the bits for paths that are both longer and shorter than the path-length. In simulated 

virtual screening experiments across a range of activity classes, ErG was found to be comparable to 

Daylight fingerprints of chemical graphs, in terms of enrichments, however, they were found to be 

more effective for scaffold hopping since a greater diversity of structural classes were found. Stiefl 

and Zaliani (32) also describe an extension of ErG in which a weighting scheme is used to increase 

the significance of specified features. They demonstrated improved performance compared to the 

unweighted method, however, this approach is dependent on the availability of experimental data to 

identify the significant features. 

Conclusions 

Reduced graphs provide flexible ways of generalising molecular structures while retaining the 

topology of the original structures. They have proved to be useful for a number of different 

applications with the optimal graph reduction scheme being dependent on the particular application. 

For example, for the representation and search of Markush structures a simple ring/non-ring reduction 

permits the encoding of generic nomenclature expressions into single nodes which enables one of the 

difficulties of handling these structures to be overcome. In applications that aim to identify structure-

activity relationship, more complex graph reduction schemes are usually required so that 

pharmacophoric groups can be identified. It is usually possible to allow the definitions of 

pharmacophoric features to be determined at run time through the use of SMARTS representations of 

features such as hydrogen bond donors, hydrogen bond acceptors and ionisable groups. This allows 

different properties to be emphasised in different applications. Reduced graphs enable similarities to 

be perceived between heterogeneous compounds which is beneficial for scaffold hopping applications 

and for the capture of SARs from structurally diverse compounds. Furthermore, the small size of the  

reduced graphs relative to the structures from which they are derived permits the use of graph 

matching algorithms so that mappings between structures can be generated which assists in 

interpreting the results of similarity and SAR analyses. 
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Figure Legends 

Figure 1. Different graph reduction schemes. a) A ring/non-ring reduction where a fused ring system 

is reduced to a single node. b) A ring/non-ring reduction where each smallest ring is treated as an 

individual node. c) A carbon/heteroatom reduction. d) A homeomorphic reduction in which atoms of 

degree two are removed. The node types are denoted as follows: R: ring; N: non-ring; C: carbon; and 

H: heteroatom. 

Figure 2. A Markush structure and its reduced graph representation based on a ring/non-ring reduction 

scheme. 

Figure 3. The similarities of codeine, heroin and methadone are shown to morphine based on Daylight 

fingerprints and the Tanimoto coefficient. 

Figure 4. A hierarchy of reduced graphs. 

Figure 5. The reduced graph for compound A at each level in the hierarchy in Figure 4 is shown 

together with a series of related compounds: B to F. At level one, all compounds are represented by 

the same reduced graph, at level 2, compounds A to E share the same reduced graph through to level 4 

where only compounds A to C share the same reduced graph. The discrimination between structures 

is dependent on the level of descriptions encoded within the reduced graph. 

Figure 6. A reduced graph represented as a SMILES string. Note that terminal, non-hydrogen bonding 

atoms have been removed when forming the reduced graph and that the fused ring nodes are 

represented by the “=” symbol. 

Figure 7. The edit distance cost of converting the pattern of nodes in A to B is 3 based on the 

substitution cost matrix and insertion/deletion costs shown on the right. 

Figure 8. A decision tree generated for angiotensin II antagonists based on reduced graph 

representations. Substructure A is consistent with the node-edge pairs in the shaded box and is 

consistent with the known SAR.  However, a limitation of the use of node-edge pairs for this 
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application is that these two node-edges pairs are also present in other substructures, such as, B which 

may not be relevant to the SAR. 

Figure 9. A reduced graph query is shown as a SMARTS string in the centre. The left-hand side 

shows how the SMARTS string is mapped to a tree-based chromosome. The SMARTS primitives are 

tagged to nodes in the chromosome: D1 indicates degree 1; AND indicates a disconnected node 

(shown as “.” in the SMARTS); RF indicates a ring fusion which is represented by a double bond in 

the SMARTS string. Two nodes are grouped to indicate that they represent alternative nodes. The 

right-hand side shows a molecule that matches the query with the nodes corresponding to the query 

highlighted. 

 


