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Summary 

Pharmacophore methods provide a way of establishing a structure-activity relationship for a 

series of known active ligands. Often, there are several plausible hypotheses that could 

explain the same set of ligands and, in such cases, it is important that the chemist is presented 

with alternatives that can be tested with different synthetic compounds. Existing 

pharmacophore methods involve either generating an ensemble of conformers and 

considering each conformer of each ligand in turn or exploring conformational space on-the-

fly. The ensemble methods tend to produce a large number of hypotheses and require 

considerable effort to analyse the results, whereas methods that vary conformation on-the-fly 

typically generate a single solution that represents one possible hypothesis, even though 

several might exist. We describe a new method for generating multiple pharmacophore 

hypotheses with full conformational flexibility being explored on-the-fly. The method is 

based on multiobjective evolutionary algorithm techniques and is designed to search for an 
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ensemble of diverse yet plausible overlays which can then be presented to the chemist for 

further investigation. 

Introduction 

A pharmacophore is the three-dimensional arrangement of functional groups required for 

activity. Pharmacophore methods are generally used in an attempt to establish a structure-

activity relationship for a series of known active ligands in the absence of the three-

dimensional structure of the target protein binding site. Thus, a pharmacophore hypothesis 

can be used to infer the characteristics of the binding site. Given a set of active molecules, 

pharmacophore methods involve analysing the molecules to identify pharmacophoric features 

(atoms or functional groups that can potentially interact with atoms in the binding site) and 

then aligning the active conformations of the molecules such that their corresponding 

pharmacophoric features are overlaid. A recent review on alignment methods is provided by 

Lemmen and Lengauer [1] and reviews on pharmacophore methods can be found in 

references [2-4]. 

There are two major issues to consider when generating pharmacophore hypotheses. First, 

most molecules can adopt more than one low-energy conformation and in many cases the 

number of accessible structures is very large. Thus, it can be very difficult to identify the 

active conformations of the molecules. Second, there can be several different pharmacophoric 

features within each molecule so that there can be many different ways of combining groups 

from different molecules. In general, the aim is to identify the pharmacophore(s) with the 

maximum number of pharmacophoric features, which must be presented by each molecule in 

a low-energy conformation. 

Often, there are several plausible hypotheses that could explain the same set of molecules. In 

the absence of an experimental structure of the binding site it may not be possible to 
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distinguish between them. For example, it is frequently impossible to optimise the fit of the 

pharmacophoric features in each molecule to the pharmacophore points while at the same 

time minimising the conformational energy of each molecule. Thus, there can be different 

alternative compromise hypotheses. Even when considering fixed conformations, there may 

be different ways of aligning the molecules that are equally plausible. In such cases, it is 

important that the chemist is presented with alternative overlays that can be subsequently 

tested using different synthetic compounds. 

When overlaying flexible molecules, it is necessary to perform conformational analysis, 

given that the active conformations are unknown a priori. There are two main approaches to 

this. One is to generate an ensemble of conformers and to consider each conformer of each 

ligand in turn for the alignment. This is the approach used in the commercially available 

programs Catalyst/HipHop [5, 6] and DISCO [7]. Ensemble methods tend to produce a large 

number of hypotheses and require considerable effort to analyse the results [8]. Furthermore, 

the results are dependent on the extent to which conformational space is sampled and on the 

structure generation method used. 

An alternative approach is to explore conformational space on-the-fly, that is, at the same 

time as the alignment. This is the approach taken in GASP [9] which is based on a genetic 

algorithm that aims to optimise conformation simultaneously with the goodness of the 

alignment. Methods that vary conformation on-the-fly typically generate a single solution that 

represents one possible hypothesis, even though several might exist. For example, GASP 

attempts to find an optimum alignment that is based on a fitness function comprising three 

different objectives. These are: a similarity score, known as the feature score, which is based 

on the number of features in the pharmacophore and the goodness of the overlay, i.e. the 

degree to which the feature alignments are optimal; the van der Waals energy of the 
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individual conformers; and the volume integral of the overlay. The objectives are combined 

into a single function using a weighted-sum fitness function and the aim is to find the solution 

that maximises the function.  

A difficulty with this approach is that the objectives are typically in competition. For 

example, Figure 1 illustrates two different (not particularly good) overlays of the three 5-

HT1D agonists shown in Figure 2. The solution on the left has a relatively high feature score 

but this is achieved by distorting the geometries of the molecules away from their minimum 

energy conformations. The solution on the right is more favourable in terms of energy but has 

a poorer feature score. In the absence of further information both solutions are equally 

plausible: they simply represent different compromises in the objectives. Thus a trade-off 

surface exists as illustrated schematically in Figure 3. The trade-off in two objectives only is 

shown, namely the feature score and energy, and the axes are arranged such that the best 

value for each objective is towards the origin. The two examples described occupy different 

relative positions on the trade-off surface with the surface itself representing all possible 

trade-off solutions. The trade-off surface is also known as the Pareto surface [10]. Combining 

the different objectives into a single weighted-sum fitness function effectively defines their 

relative importance and hence determines which particular compromise solution is found. 

The default weights assigned in GASP have been chosen empirically based on a small 

number of datasets and it is highly unlikely that they are optimal for all datasets. The 

appropriate set of weights for overlaying any given set of molecules is therefore unknown a 

priori.  

In order to explore a range of possible hypotheses, GASP can be run a number of times and 

the best result from each run evaluated. However, the experiments reported later show that 

while carrying out multiple runs of GASP does generate a set of solutions, several of them 
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are typically suboptimal in terms of the fitness function (i.e., the GA has not converged). 

More importantly, the solutions are usually not distinct from one another in terms of the 

pharmacophores they represent.  

Here, we describe a new method for generating multiple pharmacophore hypotheses with full 

conformational flexibility being explored on-the-fly. The method is based on multiobjective 

evolutionary algorithm (MOEA) techniques and Pareto ranking [10] and aims to generate a 

manageable number of different, yet plausible, hypotheses. Multiple solutions are explored in 

a single run, thus allowing cooperation between the solutions that are generated. The 

algorithm is designed to ensure that a diverse family of solutions is found.  

To our knowledge, the first use of Pareto ranking in chemoinformatics is the work of 

Handschuh et al. [11] who used Pareto optimisation in their GA for the flexible superposition 

of 3D structures. Their method finds a set of common substructures between two molecules, 

based on two criteria: the number of atoms in the substructure and the fit of the matching 

atoms. These are conflicting criteria since a substructure which is a superstructure of a 

smaller substructure will tend to have a larger deviation in the coordinates of the 

superimposed atoms. Rather than attempting to combine the different criteria into a single 

weighted-sum fitness function, a set of Pareto-optimal solutions is obtained whereby an 

optimal geometric fit is found for each possible size of common substructure. While this 

approach is clearly related to the work described here, there are significant differences in the 

way in which the Pareto-optimal sets are identified. In the work of Handschuh et al., a finite 

set of solutions exists, with one solution for each size of common substructure. In our work, 

the continuous nature of the objectives being optimised (conformational energy, the volume 

score and the feature score) means that an infinite number of solutions exists and, as will be 

seen, identifying a useful subset of solutions has been a major challenge. 
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Since the work of Handschuh et al., Pareto ranking has been successfully applied to 

combinatorial library design [12, 13] where there is a requirement for libraries to be optimal 

over a number of conflicting properties; for example, they should be simultaneously diverse, 

cheap to synthesis and comprise of compounds with drug-like properties. It has also been 

applied to the derivation of quantitative structure-activity relationships [14] where model 

accuracy often conflicts with model complexity. More recently, Pareto ranking has been used 

for the evolution of median molecules [15]. 

Method 

In a multiobjective evolutionary algorithm, the objectives to be optimised are treated 

independently. The concept of Pareto dominance is used to evolve a family of trade-off 

solutions in a single execution of the algorithm. In Pareto dominance, one solution dominates 

another if it is equal or better in all objectives, and strictly, it is better in at least one objective. 

A solution is classified as non-dominated or Pareto optimal, if no solution exists in the 

current population that dominates it. Thus, there are no solutions that are superior to a non-

dominated solution, although there may be other equally good solutions. The set of all non-

dominated solutions is known as the Pareto optimal set and the corresponding objective 

vectors are described as the Pareto front or the trade-off surface. The globally optimal trade-

off surface of a multiobjective problem can contain a potentially infinite number of Pareto 

optimal solutions, and the task is usually to provide an accurate and useful representation of 

the trade-off surface. Thus, the solutions should have objectives values that are close to the 

true Pareto front; there should be good diversity in the solutions; and the solutions should be 

limited to pertinent regions of the search space (for example, pharmacophore solutions that 

involve molecules with very high conformational strain may not be relevant). 
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In this paper, we are concerned with exploring the benefits to be gained from the use of a true 

multiobjective optimisation method for pharmacophore identification over the more 

traditional GA. The main difference between a MOEA and a traditional evolutionary 

algorithm, such as a GA, is the way in which the fitness of an individual within the 

population is calculated. Thus, while many of the features of our algorithm are based on 

methods developed for GASP, there are significant differences in the way in which the 

objectives are handled. This is necessary to ensure that a family of equivalent solutions is 

found and considerable effort has been directed towards ensuring that the solutions found 

consist of diverse and relevant pharmacophore hypotheses. 

The input, as with GASP, is the set of molecules to be overlaid, usually presented as energy-

minimised conformers. The pharmacophoric features within each molecule are identified and 

virtual points created from them. Specifically, a virtual point is created at the centre of each 

aromatic ring and at 2.9Å from the heavy atom attached to each hydrogen-bond donor proton 

and each acceptor lone pair (to represent acceptor and donor atoms in the binding site, 

respectively). The molecule that contains the fewest features is then chosen as the base 

molecule onto which the other molecules are overlaid. As in GASP, the chromosome 

structure encodes the conformation of each molecule together with a mapping onto the base 

molecule of each molecule other than the base molecule itself. A molecular overlay 

consisting of N molecules therefore comprises 2N-1 strings: N strings to encode the 

conformational information and N-1 strings to encode the mappings. 

The first step of the fitness evaluation is to generate the alignment encoded in a chromosome. 

A conformation for each of the molecules is generated by applying the rotations encoded in 

the chromosome. Each molecule is then aligned to the base molecule according to the 

mapping encoded in the chromosome. The transformation is calculated to minimise the least-



 8

squares distance between all the virtual points in the base molecule and the corresponding 

virtual points in the other molecules, as encoded in the mapping. 

Once an alignment has been generated, the energy, volume integral and feature scores are 

calculated as in GASP [9]. The energy score is the mean internal van der Waals energy of the 

molecules. The volume integral score is the sum of the volume overlap integrals between the 

base molecule and each of the remaining molecules. The feature score is summed over all 

pharmacophore points. Two centroids are calculated for each mapping specified in the 

chromosomes; one for the virtual points and one for the corresponding heavy atoms. Distance 

thresholds are applied to determine if the mapping represents a valid pharmacophore point. If 

the mapping is valid, a contribution to the feature score is calculated based on the RMSD 

between the virtual points and their corresponding centroid and between the heavy atoms and 

their corresponding threshold. 

Now, instead of summing the objective values into a single fitness value, as in GASP, the 

population is ranked using Pareto ranking as described by Fonseca and Fleming [10] in their 

Multiobjective Genetic Algorithm (MOGA). In MOGA, the rank of an individual is the 

number of individuals in the current population by which it is dominated. Thus, non-

dominated individuals are assigned the rank 0, an individual that is dominated by one other 

individual is given rank 1, and so on. The rank value of an individual is then mapped to its 

fitness value. The subsequent roulette-wheel parent selection method then biases selection 

towards individuals with lower fitness values. By ensuring that all individuals at the same 

fitness have equal chance of being selected, the MOGA evolves the population towards the 

globally optimal Pareto surface. At the end of the run, the set of non-dominated solutions 

represents the Pareto surface and, ideally, all would be global optimal solutions with each one 

representing a different trade-off in the objectives. 
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Generating a Diverse Subset of Solutions 

MOEAs have a tendency to converge to a restricted region of the Pareto surface so that not 

all of the search space is explored (“genetic drift”). This effect can be countered by 

implementing niching techniques that attempt to preserve the diversity of non-dominated 

solutions. Diversity can be a function of the objective values (objective-space niching) or the 

decision variables (decision-space niching). Objective-space niching is used to prevent the 

co-occurrence of solutions that differ only slightly in their objective values and can be used to 

ensure that solutions are evenly spread across the Pareto surface. Thus, objective-space 

niching could be used to ensure that the two 5-HT1D agonist hypotheses identified earlier, 

which occupy distant points on the surface, are found (Figure 3). Initial attempts at preserving 

diversity were based on objective-space niching and were implemented using a sharing 

method [16] where the fitness values of individuals that lie within a given distance of one 

another (niche radius) are reduced in order to encourage the population to diverge from the 

niche. The sharing method involves modifying the fitness of each solution by an amount that 

is proportional to the number and distance of other solutions that lie within the niche radius. 

Distance was measured using Euclidean distance in objective space and the niche radius was 

defined independently for each objective, as shown in Table 1. 

Initial results showed that while this method of niching was successful in spreading the 

solutions across the Pareto surface, it did not consistently result in the generation of 

chemically distinct overlays. Further investigation indicated that the lack of effectiveness was 

due to the weak correspondence between distance in objective space and distance in decision 

space. The two hypotheses illustrated in Figure 3 are distant in both objective and decision 

space, i.e. have different objective values and are chemically very different overlays. 

However, it is quite possible that solutions representing different overlays happen to have 

similar objective scores. For example, a small change in conformation may result in only a 
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small change in energy but may lead to a different atom in one molecule being matched to a 

given pharmacophoric feature in the base molecule. This would result in little change in the 

objective values, yet the solution represents a chemically different overlay. Conversely, it is 

also possible for solutions that represent similar overlays to be widely separated in objective 

space. For example, a small change in conformation may lead to a large change in energy 

without any significant change to the overlay. Figures 4 and 5 illustrate examples of both 

scenarios for the 5-HT1D agonists. 

The niching strategy was therefore modified to take account of decision-, or pharmacophore-

space, in order to identify a subset of solutions that represent distinct, yet reasonable, 

hypotheses. In this method, the population is clustered into groups of similar pharmacophores 

prior to performing objective-space niching. A leader clustering method is used in which the 

first pharmacophore encountered defines a cluster. If the next pharmacophore represents a 

mapping that is distinct from the first it is assigned to a new cluster, otherwise it is assigned 

to the same cluster as the first. Two pharmacophores represent distinct mappings when either 

of the following occurs:  

· Different sets of base molecule features are mapped.  

· The same set of base molecule features are mapped, but at least one feature maps to a 

different feature in at least one molecule.  

The definition of a cluster is extended to include pharmacophores that are subsets of other 

pharmacophores, i.e., that consist of a subset of the points contained in the other. In this case, 

the smaller pharmacophore is assigned to the same cluster as its parent. An individual may be 

a subset of more than one parent pharmacophore, in which case, its membership is shared 

between clusters.  
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The fitness values of individuals are then modified from their initial values (which 

correspond to their Pareto ranks) to differentiate solutions of the same Pareto rank according 

to cluster density. Thus, the probability of selecting an individual is adjusted by an amount 

that is inversely proportional to the density of the cluster to which it belongs. For example, 

the fitness of a non-dominated solution that belongs to a cluster containing four solutions is 

adjusted so that there is half the probability of it being selected compared to a non-dominated 

solution that belongs to a cluster containing two solutions. The probability of selecting a 

solution with a low rank is still greater than the probability of selecting one at higher rank, 

but within a given rank the probability of selecting a solution from a sparsely populated 

cluster is greater than the probability of selecting one from a more dense cluster. 

Finally, objective-space niching is applied to  solutions within the same cluster, with the 

fitness of an individual being further modified according to the number of individuals which 

lie within its niche-radius and which belong to the same cluster. The overall probability of 

selecting a solution from each cluster is unaffected. Restricting objective-space niching to 

within a cluster means that solutions that are close on the Pareto surface are only penalised if 

they represent the same mapping. Thus, the primary aim of the niching is to preserve 

diversity in terms of the number of different pharmacophore mappings, or clusters, that exist 

in the population, with the secondary aim being to ensure diverse coverage of the Pareto 

surface within a cluster, as defined by the objectives.  

A threshold value is placed on the energy objective to ensure that solutions are limited to 

pertinent regions of the search space. In pharmacophore generation, highly strained 

conformers are generally not of interest and the threshold (21000 kJ mol-1) is used to exclude 

individuals that have energies that exceed this value. The energy threshold is set to a high 

value because valence angles are not allowed to change when conformations are generated. 
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Thus, molecules do not have the ability to relieve short non-covalent contacts by minor 

valence-angle distortions.  No limits are placed on the feature or volume scores since it is 

necessary to allow individuals with low values of these scores to exist in the population, 

especially early in the search, and because these objectives have finite lower bounds. 

Results and Discussion 

Datasets 

Results are presented for three datasets: the three 5-HT1D agonists, shown in Figure 2; a set of 

four scytalone dehydratase inhibitors, Figure 9; and a set of three dopamine D2 antagonists 

shown in Figure 13. For each dataset, the solutions found in a single run of the MOGA are 

compared with those found by running GASP ten times. This approach allows a direct 

comparison to be made between the multiobjective optimisation approach used in the MOGA 

and the traditional weighted-sum approach used in GASP. 

As discussed in the methodology, the MOGA solutions are clustered such that all solutions 

within a cluster consist of the same pharmacophoric features, with the same mapping from 

each molecule to the features. While solutions within a cluster will have different values of 

the objectives (for example, the conformations of the molecules may be different and the 

feature scores may vary, so that the solutions are separated on the Pareto surface) the basic 

pharmacophore is the same. A representative solution from each cluster is shown in the 

results and solutions with fewer than three pharmacophoric features have been omitted. 

Where possible, a non-dominated solution is chosen as cluster representative, however, 

dominated solutions are chosen to represent clusters which do not contain any non-dominated 

solutions. The non-dominated solutions represent globally optimal solutions and are clearly 

solutions of interest. However, the dominated solutions may also represent plausible 

hypotheses even though there are other solutions with improved scores over each of the 
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objectives. This is due to the fundamental limitation of pharmacophore methods whereby the 

contribution of the receptor cannot be modelled and the objectives being optimised are based 

on the ligands only. 

MOGA and GASP Parameters 

The search space explored by a MOGA is considerably larger than that explored by a 

traditional GA, since it attempts to find multiple diverse solutions spanning the entire Pareto 

surface. In contrast, a GA attempts to find a single solution only. Thus, a MOGA requires a 

bigger population size to ensure adequate coverage of the search space. Unless otherwise 

stated, the runs reported here used the parameters as specified in Table 1. The run times for 

200000 iterations are approximately 2 hours on a Linux PC running at 2.8GHz. GASP was 

run using the default weights and with parameters as shown in Table 1.  

5-HT1D agonists.  

The exact structure of the 5-HT1D receptor is not known; however, Glen et al. have produced 

a 3D pharmacophore hypothesis using the active analogue approach [17].  Molecules 1–3 in 

Figure 2 form part of the much larger dataset used in that study. As methysergide (3) is 

relatively inflexible, it was used by Glen et al. as a scaffold to which more flexible molecules 

could be fitted.  A pharmacophore hypothesis was generated involving five features; in 

methysergide, these are: 

· the aromatic ring 

· the protonated amine (as a donor) 

· the amide oxygen (as an acceptor) 

· the hydrophobic region comprising the ethyl group 
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· the hydroxyl oxygen (as an acceptor) 

The last two features are not essential: active molecules have been found that do not contain 

them, such as 1 and 2, though their absence generally lowers affinity for the 5-HT1D receptor.  

According to Glen et al.’s hypothesis, the aromatic rings and the protonated amine hydrogens 

in 1, 2 and 3 are mapped to each other, and the amide oxygen of 3 is mapped to the carbonyl 

oxygen of 1 and one of the sulphonamide oxygens of 2.   

Five different, reasonably plausible ways of aligning the molecules are shown in Figure 6. 

The alignments vary in the pharmacophoric features identified and the features in the 

individual molecules that map to the pharmacophore. The variations arise from small changes 

either in the relative position of one or more of the molecules or in the conformations of the 

molecules. The hypothesis identified by Glen et al. corresponds to alignment 3 in Figure 6, 

although in the figure it is the hydroxyl oxygen rather than the amide oxygen of 3 that is 

mapped. 

The results for the ten GASP runs are shown in Table 2, which indicates the features of 

methysergide, 3, that are mapped to pharmacophoric points (the features of molecules 1 and 2 

that map to the pharmacophore are not indicated). Energy is reported relative to the energy of 

the input molecules. All solutions correspond to the general alignment 3 shown in Figure 6. 

The fittest solution contains the three features identified as important by Glen et al., but it 

also includes another feature generated from the overlay of the amide/sulphonamide 

hydrogens.  Furthermore, the conformation of 3 is considerably different to that reported by 

Glen et al., with the distorted conformation allowing the additional pharmacophoric feature to 

be identified. Therefore, the “best” GASP solution does not represent the pharmacophore 

derived by Glen et al. In fact, there are no solutions from the ten runs that correspond exactly 

to this pharmacophore model. 
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Figure 7a shows the objective values of the ten GASP solutions as a parallel coordinates 

graph. The objectives are plotted along the x-axis and the values of the objectives are plotted 

along the y-axis, linearly scaled so that the best value achieved for each objective is at 0 and 

the worst is at 1. Each solution is represented as a continuous line. The plot gives an 

indication of the variation found when performing multiple runs of GASP. Crossing lines in 

the plot indicate solutions that represent different compromises in the objectives whereas 

lines that do not cross indicate the presence of dominated solutions. Thus, solutions 2 and 9 

are both relatively good in terms of energy and features but they have relatively poor volume 

overlays. Conversely, solutions 3, 4, 6 and 8 are good in terms of volume and energy but are 

relatively poor in terms of their feature scores. Solution 5 is poor in all objectives. In a Pareto 

sense, it is dominated by all the others except solution 9 (only solution 9 crosses it in the 

graph), which may indicate that this run of GASP did not reach convergence. If all dominated 

solutions are removed, only 5 of the 10 solutions remain, as shown in Figure 7b.  

Table 3 shows the results for four runs of the MOGA. As for the GASP results, the 

pharmacophoric features are indicated with reference to methysergide. In addition, the 

solutions are labelled according to the alignment to which they are closest. Where a solution 

cannot be clearly assigned to one of the five alignments in Figure 6, the alignments that it 

shares characteristics with are indicated. Thus, it can be seen that each of the MOGA runs 

generates solutions that correspond to several of the alignments of Figure 6 and, considering 

all of the MOGA runs together, all five distinct alignments are found. 

The solution shown in bold corresponds exactly to the pharmacophore suggested by Glen et 

al. in terms of the pharmacophoric features identified and the inter-feature distances, which 

fall within the range specified by those workers (Figure 8). However, the conformation of 

methysergide differs from the conformation illustrated in Glen et al. Comparing the objective 
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values of this solution with those found by GASP shows that the GASP runs have a tendency 

to promote the feature score over the other objectives, as seen by the relatively small range of 

values for this score found over the multiple runs. The MOGA solution has a lower features 

score than any of the GASP solutions and therefore it is unlikely that it would be found using 

the default GASP weights. 

The ability of the MOGA to map out the Pareto surface is shown by the greater range of 

feature scores seen in the solutions found in a single run. The greater range of hypotheses 

generated clearly demonstrates the advantages of using the MOGA over GASP. However, 

there is a lack of consistency between MOGA runs. Increasing the population size to 2000 

results in greater consistency in the ranges of the values of the objectives that are seen in each 

run. However, considerable extra computational resource is required; these runs take around 

11 hours to complete, compared to two to three hours per run with a population of 1000. 

Scytalone dehydratase inhibitors.  

The scytalone dehydratase inhibitors were extracted from enzyme-inhibitor complexes in the 

Protein Data Bank (PDB) [18]. Therefore, the bound conformations of the inhibitors are 

known. Since 4–6 have a large common substructure (consisting of the amide and the 

aromatic ring to which the chlorine or bromine is attached), it seems likely that these 

common features will form the same interactions with the enzyme. However, the interactions 

of 7 are less obvious.  The four aromatic rings of 7 have been labelled for reference purposes.  

From inspection, overlays with each of the four rings mapped to the aromatic ring of 4 (the 

base molecule) seem plausible; example overlays are shown in Figure 10. Comparison of the 

crystal structures indicates that it is actually ring 3 of 7 that maps to the aromatic ring of 4. 

An alignment has been generated using the crystal structures (Figure 11). The flexibility of 
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the protein is such that it is not possible to align the complexes exactly and hence the 

alignment generated is somewhat arbitrary. 

The GASP results are shown in Table 4 with the different alignments labelled according to 

the ring of 7 that is mapped to the aromatic ring of 4. Three out of the four alignments are 

generated. However, only one of the runs produces the correct alignment and this solution is 

the one with lowest overall fitness score, i.e., at rank ten when the solutions are ranked on 

fitness. This solution has a relatively low score and is dominated by all of the other solutions 

except for solution nine, which is worse in energy. Thus, although this solution represents the 

correct overlay, it occupies a local maximum in the search space and has been found as a 

result of GASP’s failure to move towards the global maximum in this particular execution of 

the program. 

A run of the MOGA finds examples of all the overlays shown in Figure 10 (Table 5; the ring 

of 7 that is mapped to the aromatic rings of the other molecules is indicated). As for the 5-

HT1D dataset, considerable variation is seen over all of the objectives, indicating that the 

Pareto surface has been explored to a reasonable degree. The negative energy scores are due 

to the generation of conformations that are lower in energy than the starting conformations. 

The MOGA finds two solutions with the correct alignment. One of these is better than the 

GASP alignment in all objectives, i.e. this solution would dominate the “correct” GASP 

solution. An additional feature is seen in this solution relative to the manually derived 

solution, both lone-pairs of the carbonyl groups in 4-6 giving rise to acceptor points. The 

other solution has poorer feature and energy scores but the overlay has an improved volume 

integral. In both cases, the geometry of the pharmacophore fits the manually generated 

pharmacophore very accurately (RMSD 0.27Å and 0.21Å respectively). However, in both 
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cases the benzene ring of 7 is in a different position to that observed in the crystal structure. 

These two solutions are shown in Figure 12. 

A second run of the MOGA also produced examples of all four alignments, although some 

variation was seen in the individual objective values. Increasing the population size to 2000 

resulted in all of the alignments seen previously, together with an increased number of less 

plausible solutions. Therefore, a population size of 1000 would appear to be adequate in this 

case. 

Dopamine D2 antagonists.  

All three molecules in the dopamine dataset are very flexible and feature rich [19]. This 

makes the dataset difficult for any pharmacophore generation method since there are many 

different ways in which the molecules could reasonably be overlaid. 

Although the dopamine D2 receptor has been studied in detail, we are unaware of a published 

pharmacophore hypothesis for exactly the three molecules in our dataset. However, a 

receptor-interaction model has been published by Liljefors and Bøgesø [20], and close 

analogues of 8 and 10 were fitted to this model by Pettersson and Liljefors [21]. The essential 

features of this model are the aromatic ring and the protonated amine. 

The dopamine D4 receptor is very similar to the D2 receptor, and a pharmacophore model for 

the D4 receptor has also been published [22]. The only difference from the D2 pharmacophore 

is that the D4 model includes two receptor-essential volumes that are not part of the D2 

model. Compound 9 has been fitted to the D4 model in a way that implies a mapping between 

the fluorobenzene ring of 9 and the benzene rings of 8 and 10, and between the protonated 

amines of all three molecules. The chlorobenzene ring of 9 is also believed to be significant 
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to its activity, but as there are no equivalent features in 8 and 10, this feature will not be 

found by either method. 

In the absence of knowledge of these studies, compound 9 could reasonably be aligned either 

in the orientation described above, or it could be flipped completely such the fluorobenzene 

ring is aligned towards the pyrrolidinium rings in 8 and 10. Even within each of these general 

alignments, considerable variation is possible both in conformations and the relative positions 

of the molecules. This leads to many different potential pharmacophores. 

The results for the ten GASP runs are shown in Table 6. Six of the ten solutions represent 

alignments where the fluorobenzene ring of 9 aligns to the benzene rings of 8 and 10, 

indicated by a tick in the column headed RF. The other four solutions have 8 oriented in the 

opposite direction (indicated by a tick in the column headed RCL). However, none of the 

solutions corresponds exactly to the pharmacophore model described above. Comparing the 

objective scores across the runs shows that four of the solutions represent non-dominated 

solutions (solutions 1, 2 , 4 and 8 are non-dominated). 

The solutions found in a single run of the MOGA are shown in Table 7 and also include 

several examples of both alignments of 9. However, a greater range of values is seen in all 

the objectives, with a significant number of solutions with lower energies than is found in the 

GASP runs. Solutions with higher volume overlays are also seen. As for the previous 

datasets, the MOGA shows a bias towards solutions with favourable energies and volume 

scores relative to the feature scores. Figure 14 shown a diverse set of alignments as found by 

the MOGA. 

In this case, the large search space is such that it is unlikely that GASP will generate the same 

solution in different runs. Hence, it could be argued that the MOGA offers no advantage, 

since multiple runs of GASP will generate diverse solutions. However, in GASP there is no 
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cooperation between distinct runs, so the identification of diverse solutions is left to chance. 

Furthermore, the generation of a wide range of diverse solutions with GASP is likely to 

require repeated runs where the relative weights of the objectives are varied. With the 

MOGA, multiple solutions are sought within the same exploration of the search space and the 

search is explicitly directed towards a diverse set of solutions. 

Conclusions 

It is rarely possible to overlay unambiguously a set of molecules known to bind at the same 

protein binding site. Usually, pharmacophoric features in the different molecules may be 

matched in several ways, and, unless some of the molecules are rigid, the molecules may be 

superimposed in various conformations. Thus, it is important that a range of different, 

plausible overlays (i.e. structure-activity hypotheses) is identified and presented to the 

chemist for browsing and visual inspection. It is then possible for the chemist to design 

synthetic targets or pharmacophore searches that will test, and therefore confirm or eliminate, 

the more likely-looking hypotheses. Pharmacophore generation programs like GASP aim to 

produce a single hypothesis which optimises a reasonable, but essentially arbitrary, linear 

combination of objective functions. Repeated runs of GASP may, in fact, produce different 

overlays. When this occurs, however, it merely indicates that the search algorithm is 

unreliable at finding the global optimum; it is not a satisfactory way of searching for a diverse 

range of feasible overlays.  

In contrast, the MOGA described above looks for a representative ensemble of overlays in a 

concerted fashion. Our results show that a single run of the MOGA tends to find a wider 

range of overlay hypotheses than repeated runs of GASP. In particular, the weighting scheme 

in GASP clearly emphasises the feature-score term (goodness-of-fit to pharmacophore points) 

at the expense of volume integral and strain energy. In at least one case (5-HT1D agonists), 
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this makes it difficult if not impossible for GASP to find the pharmacophore hypothesis 

proposed in the literature. Even with the MOGA, however, we find that repeated runs will 

sometimes find different solutions, especially when relatively small population sizes are used. 

This is a reflection of the complexity of the search space and the small datasets we have used. 

In particular, we must expect any search algorithm to be unstable when applied to the three 

highly flexible and feature-rich dopamine antagonists 8-10. Even in this situation, however, it 

is better for the chemist to be presented with a large and unbiased range of credible solutions 

than a small arbitrary subset that is ultimately dependent on the particular weighting scheme 

used in GASP. 

The programs Catalyst and DISCO, described earlier, are both designed to generate multiple 

pharmacophore hypotheses. However, a fundamental difference between these programs and 

the MOGA (and also GASP) is that both Catalyst and DISCO require a precomputed set of 

conformers for each of the ligands. They then use rigid body alignment techniques which are 

applied to each conformer of each ligand in turn. As a consequence, the pharmacophores that 

are generated by these methods are highly dependent on the structure generation method that 

is used [23]. The MOGA allows a more complete exploration of conformational space and is 

not limited to finding conformational minima. A further major strength of the MOGA is that 

the steric overlay of the ligand is taken into account so that most of the alignments that are 

generated seem sensible. Catalyst, on the other hand, does not taken account of steric overlap 

and as a result a large number of the alignments can be generated that appear unlikely.  

A difficulty in assessing the performance of any pharmacophore generation method is that the 

correct answer is usually unknown. In previous work, we compared the performance of 

GASP with Catalyst and DISCO in generating pharmacophores for sets of ligands whose 

binding modes have been determined experimentally, so that the true pharmacophore is 
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known [8]. This work highlighted a significant limitation of GASP that has not been 

addressed here, which is that GASP requires every molecule to match every feature in the 

pharmacophore. The same limitation applies to the MOGA. Current work is focussing on 

relaxing this constraint so that we can apply the method to larger datasets. Efforts are also 

underway to improve the stability of the MOGA so that less variation is seen from one run to 

another. 
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Figure Captions 

Figure 1. The overlay on the left has the following objective values: feature score = 2.72 

(representing 4 pharmacophore points) and energy = 247 kJ mol-1. The overlay on the right 

has objective values: feature score = 1.22 (representing 2 pharmacophore points) and energy 

= 6 kJ mol-1. Thus, the higher feature score is achieved at the expense of conformational 

energy. Donors are shown in purple; acceptors in pink; and hydrophobes in cyan. Molecule 1 

is in white; molecule 2 in brown; and molecule 3 in blue (see Figure 2). 

Figure 2. 5-HT1D agonists. 

Figure 3. Schematic of the position of the two overlays illustrated in Figure 1 on the Pareto 

surface. Two objectives only are shown for simplicity. Colour scheme as for Figure 1. 

Figure 4. Similar overlays of the 5-HT1D ligands that occupy distant points on the Pareto 

surface due to differences in their objective values. Overlay (a) has the following objective 

values: feature score = 1.61; volume overlay = 1184 Å3 and conformational energy = 579 

kJmol-1. Overlay (b) has the following objective values: feature score = 0.72; volume overlay 

= 868 Å3 and conformational energy = 5 kJmol-1. Colour scheme as for Figure 1. 

Figure 5. Different overlays of the 5-HT1D ligands that have similar objective values and 

hence are close on the Pareto surface. Overlay (a) has the following objective values: feature 

score = 1.51; volume overlay = 1003 Å3 and conformational energy = 99 kJmol-1. Overlay (b) 

has the following objective values: feature score = 1.54; volume overlay = 983 Å3 and 

conformational energy = 30 kJmol-1. Colour scheme as for Figure 1. 

Figure 6. Alignments of 5-HT1D agonists. Colour scheme as for Figure 1. 

Figure 7. (a) Parallel coordinates graph representation of the GASP solutions. (b) Five of the 

GASP solutions are non-dominated solutions. 
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Figure 8. The “correct” alignment generated by the MOGA. The figure on the left indicates 

the distances between the site points whereas the figure on the right indicates the distances 

corresponding to the positions of the heavy atoms. Colour scheme as for Figure 1. 

Figure 9. Scytalone dehydratase inhibitors. 

Figure 10. Different alignments for the scytalone dehydratase inhibitors with the different 

rings of 7 aligned to the benzene ring of 4. Donors are shown in purple; acceptors in pink; 

and hydrophobes in cyan. Molecule 4 is in white; molecule 5 in orange; molecule 6 in blue; 

and molecule 7 in brown. 

Figure 11. The manual pharmacophore for the scytalone dehydratase inhibitors generated by 

overlaying the crystal structures. Colour scheme as for Figure 10. 

Figure 12. Two solutions generated by the MOGA that correspond to alignment 3. Colour 

scheme as for Figure 10. 

Figure 13. Dopamine antagonists. 

Figure 14. Alignments of dopamine D2 antagonists. Donors are shown in purple; acceptors in 

pink; and hydrophobes in cyan. Molecule 8 is in brown; molecule 9 in white; and molecule 

10 in blue. 
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Tables    

MOGA Parameters  

Population size 1000 

Selection pressure 1.05 

No of operations 200000 

Crossover rate 50% 

Mutation rate 50% 

Features niche radius 2 

Volume overlap niche radius 100 Å3 

Energy niche radius 42 kJ mol-1 

GASP Parameters  

Population size 100 

No. of subpopulations (islands) 5 

Selection pressure 1.1 

Crossover rate 47.5% 

Mutation rate 47.5% 

Migration rate 5% 

Niche size 2 

Energy weight* 0.05 

Features weight 750 

Volume weight 1 (by definition) 

Convergence criteria No increase in fitness > 0.01 over 6500 runs 

*Note that the energies in GASP are in kcal.mol-1 

Table 1. The parameters used in the MOGA and GASP runs, respectively. 
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Run Total Energy Volume Feature Ring Amine 

(donor) 

Carbonyl 

(acceptor) 

Hydroxyl 

(acceptor) 

Hydroxyl 

(donor) 

Amide 

(donor) 

2 3076.61 163.51 1065.80 2.68 ü ü ü   ü 

4 3046.21 231.04 1191.61 2.48 ü ü    ü 

6 3045.07 319.16 1228.58 2.43 ü ü   ü  
3 3027.16 236.21 1209.15 2.43 ü ü   ü  
9 3020.25 177.53 1007.00 2.69 ü ü  ü (x2)   
8 2972.20 442.05 1199.30 2.37 ü ü    ü 

1 2956.92 819.25 1182.92 2.38 ü ü     
10 2926.20 1240.05 1043.94 2.53 ü ü    ü 

7 2843.63 297.15 1046.11 2.40 ü ü ü   ü 

5 2708.31 1281.76 1023.30 2.27 ü ü    ü 

 

Table 2. GASP results for 5-HT1D dataset. The runs are ordered on fitness value. The 

dominated solutions are shown as shaded. Energies in this and in all subsequent tables are 

given in kJ mol-1. 
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Alignment Energy Volume Feature Ring 

Amine 

 (donor) 

Carbonyl  

(acceptor)  

Hydroxyl 

(acceptor) 

Hydroxyl  

(donor) 

Amide  

(donor) 

Run 1 

1 -0.25 699.39 1.08 ü  ü ü   

1 1.22 653.60 0.58 ü  ü (x2)    

3 64.22 1018.77 2.22 ü ü    ü 

4 11.21 923.36 1.04   ü (x2) ü (x2)   

Run 2 

1 -3.40 1065.66 0.71  ü  ü (x2)   
3 2.14 1015.81 1.98 ü ü   ü  

4 2.60 987.46 1.27 ü  ü (x2)    
5 242.68 982.73 1.54 ü ü    ü 

Run 3 

1/3 7021.69 1085.97 1.92 ü ü    ü 

4 3.53 857.57 1.38 ü ü  ü (x2) ü  

Run 4 

1 -3.40 900.17 1.04 ü  ü ü   

1 2.14 829.55 1.39 ü  ü (x2)    

2 2.60 909.50 0.93 ü ü    ü 

3 242.68 1085.53 2.23 ü ü  ü   

3 395.51 1115.69 2.17 ü ü  ü   

3 2.23 903.63 1.54 ü ü  ü  ü 

3 98.78 1003.41 1.51 ü ü ü    
4 -5.80 483.07 0.65   ü ü ü  

 

Table 3. MOGA solutions found over four runs. The column headed Alignment indicates the 

alignment in Figure 6 that the solution corresponds to. The shaded rows indicate solutions 

that are dominated. The solution given in bold matches the solution found by Glen et al. 

exactly in terms of the features found and the distances between them. 
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Run Alignment Fitness Energy Volume Features 

5 1 2891.08 654.11 1079.46 2.43 

3 2 2793.06 956.34 993.50 2.41 

8 1 2792.55 1266.76 990.19 2.42 

7 2 2684.94 95.55 986.19 2.27 

6 1 2631.01 894.81 931.72 2.28 

4 1 2587.76 106.64 957.32 2.18 

2 2 2586.81 995.27 974.65 2.17 

9 2 2538.65 1105.65 901.48 2.20 

1 1 2526.47 3320.10 947.88 2.16 

10 3 2309.28 2550.49 876.79 1.95 

 

Table 4. GASP results for the scytalone dehydratase dataset. The column headed Alignment 

indicates the ring of 7 that is superimposed to the aromatic ring of 4. The dominated solutions 

are shaded. 
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Alignment Energy Volume Features 

1 -4.91 897.98 0.82 

1 11.17 978.07 0.84 

2 28.60 838.82 1.78 

2 94.00 1000.16 1.63 

2 10.50 871.98 1.17 

2 -20.12 638.56 0.32 

3 45.11 989.68 2.09 

3 65.31 1004.30 1.47 

4 1311.83 1129.30 1.06 

4 1106.99 1074.46 1.39 

4 7.35 929.55 0.96 

4 47.12 974.17 1.06 

N 7.10 942.08 0.32 

N 4.79 910.03 0.78 

 

Table 5. MOGA results for the scytalone dehydratase dataset. The shaded rows represent 

dominated solutions. The column headed Alignment indicates the ring of 7 that is mapped to 

the benzene ring in 4. An N indicates that none of the rings of 7 map to the ring in 4.  
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Run Fitness Energy Volume Features H1 H2 LP1 LP2 LP3 LP4 RCl RF 

1 3073.45 572.92 1036.21 2.73  ü   ü ü  ü 

2 2918.41 329.66 1012.3 2.55  ü ü ü   ü  

5 2826.05 775.95 1006.95 2.44  ü   ü ü  ü 

7 2818.6 3129.42 968.88 2.52  ü   ü ü  ü 

3 2767.67 891.24 994.14 2.38 ü ü ü    ü  

8 2728.25 590.31 1050.68 2.25  ü      ü 

4 2666.54 200.68 969.09 2.27  ü    ü  ü 

10 2506.36 580.23 802.44 2.28  ü ü ü   ü  

9 2403.55 202.48 899.58 2.01  ü ü ü   ü  

6 2375.49 1404.31 903.16 1.99  ü      ü 

 

Table 6. GASP results for the dopamine dataset sorted on fitness. The dominated solutions 

are shaded. A tick in the column headed RF indicates that the fluorobenzene ring of 

compound 9 is aligned with the benzene rings in 8 and 10, whereas a tick in the column 

headed RCL indicates that compound 9 is flipped completely so that the chlorobenzene ring 

corresponds to the benzene rings. 
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Energy Volume Features H1 H2 LP1 LP2 LP3 LP4 RCl RF 

84.92 997.13 1.67      ü ü ü   ü 

5704.65 1065.34 1.54     ü   ü ü   ü 

2975.15 1086.32 1.53     ü   ü ü   ü 

277.83 1068.03 1.50 ü      ü ü   ü 

-1.09 631.01 1.47 ü   ü ü     ü   

4.79 754.47 1.44   ü ü    ü   

-3.15 930.90 1.43 ü ü     ü   ü 

86.48 1054.33 1.40 ü       ü   ü 

27.93 991.07 1.39 ü ü    ü     ü 

369.26 1163.89 1.37       ü ü   ü 

45.74 1044.92 1.33 ü     ü  ü 

5.42 863.84 1.26   ü ü     ü   

-6.85 809.11 1.06  ü  ü    ü   

-9.32 600.21 0.88   ü ü ü        

-8.44 657.50 0.83   ü    ü ü     

-11.55 720.39 0.75   ü ü ü       

-7.94 719.69 0.75   ü ü ü         

-7.18 855.94 0.72   ü   ü ü    

27.72 1123.71 0.69 ü ü   ü      

-11.59 652.40 0.63   ü ü ü        

-11.59 578.60 0.63   ü ü ü        

-6.26 925.47 0.63 ü      ü ü     

-11.59 767.75 0.55   ü ü ü      

-10.12 807.58 0.51   ü    ü ü     

-11.63 509.94 0.50  ü ü ü       

-11.59 449.49 0.49   ü ü ü         

-10.84 796.63 0.45   ü ü ü        

-10.29 904.28 0.41   ü     ü ü    

-11.59 658.77 0.40   ü ü ü         

 

Table 7. MOGA solutions for the dopamine dataset. The solutions are ordered on decreasing 

feature score. The shaded rows represent dominated solutions. The final two columns indicate 

the orientation of 9 relative to 8 and 10. 
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Figure 7b. 
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Figure 9.  
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(a) Ring 1 

 

 (b) Ring 2 

 
(c) Ring 3 

 
 

 (d) Ring 4 

 
 

 

 

Figure 10.  
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Figure 11. 
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Figure 12. 
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Figure 13.  
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Figure 14. Alignments of dopamine D2 antagonists. 
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