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Abstract 1 

Dissolved organic matter (DOM) is the most bioavailable soil organic pool. Understanding 2 

how DOM responds to elevated temperature is important for forecasting soil carbon (C) 3 

dynamics under climate warming. Here a 4.5-year field microcosm experiment was carried 4 

out to examine temporal DOM concentration dynamics in soil pore-water from six different 5 

subtropical wetlands. Results are compared between control (ambient temperature) and 6 

warmed (+5
o
C) treatments. UV-visible and fluorescence spectroscopy was performed to 7 

reveal DOM structural complexity at the end of the warming incubation. Elevated temperature 8 

resulted in initially (1 to 2.5 years) high pore-water DOM concentrations in warmed samples. 9 

These effects diminished over longer time periods, which alleviated C loss in dissolved forms 10 

under sustained warming. Of the spectral indices, the specific UV absorbance at 280 nm and 11 

the humification index were significantly higher, while the signal intensity ratio of the 12 

fulvic-like to humic-like fluorescence peak was lower in warmed samples at the end of the 13 

study period, compared to the control. Fluorescence regional integration analysis suggested 14 

that warming consistently enhanced the contribution of humic-like substances to DOM 15 

composition for all tested wetlands. In more mineral-rich wetland soils characterized by low 16 

organic contents, the protein-like and soluble microbial byproduct-like substances in DOM 17 

were selectively lost in warmed samples. The shrinking of the fulvic-like fluorescence peak 18 

under warming compared to the control was mainly observed for organic-enriched soils with a 19 

shift in the center position of humic-like peak towards a longer emission wavelength. These 20 

spectral fingerprints implied a declined fraction of readily available substrates in DOM 21 

allocated to microbial utilization in response to 4.5 years of warming. As a negative feedback, 22 

decreased DOM biodegradability may have the potential to counteract initial DOM increases 23 

and alleviate C loss in water-saturated wetland soils. 24 

Keywords: dissolved organic matter, wetland, fluorescence, soil carbon, microbial utilization, 25 

soil warming 26 

Highlights 27 

1. Stimulatory effect of elevated temperature on DOM release was short-lived. 28 

2. Experimental warming increased DOM humicity and thus decreased its degradability. 29 

3. Different soil types with organic contents had distinct fluorescence fingerprints. 30 

4. Integrated and cumulative fluorescence indices were suitable for determining DOM 31 

character. 32 

 33 
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1. Introduction 1 

Dissolved organic matter (DOM) is a heterogeneous mixture of organic compounds ranging 2 

from simple, short-chain molecules to complex fulvic and humic substances leached from 3 

soils (Stutter et al., 2007). Though it only represents a small proportion of total soil organic 4 

matter in both terrestrial and aquatic ecosystems, DOM links various ecological compartments 5 

including soils to water bodies, serves as a crucial indicator of biogeochemical responses to 6 

disturbance, and provides carbon (C) and energy for microbial metabolism (Bolan et al., 2011; 7 

Kalbitz et al., 2000; Wilson and Xenopoulos, 2009). The average global surface temperature 8 

has increased by 0.74
o
C since 1850 and is likely to increase by another 1.1-6.4

o
C by the end of 9 

this century (Solomon et al., 2007). Wetlands are globally important carbon stores, and many 10 

are thought to be highly sensitive to climate change (Erwin, 2009) but we know little about 11 

DOM concentration dynamics and the nature of change in DOM properties under warming for 12 

a range of wetland types including subtropical wetlands. 13 

Rising temperatures accelerate the microbial decomposition rates of soil organic matter. A 14 

key issue is whether the balance of the net soil organic matter store shifts as warmer 15 

temperatures may also mean more production of soil organic matter from biotic residues. It is 16 

unclear for many wetland systems whether accelerated C loss associated with warming is a 17 

transitory phenomenon with almost unchanged soil organic matter contents or whether it is 18 

persistent with a net of loss of C from the soil store which is released as CO2 to the atmosphere 19 

(Bengtson and Bengtsson, 2007; Kirschbaum, 2004) and in aquatic forms (Kalbitz et al., 2000; 20 

Mulholland, 1997). Data from long-term field warming incubations for mid-latitude hardwood 21 

forest soils has demonstrated that the stimulatory effect of rising temperature on increased CO2 22 
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emission rates evident in first few years of warming was reduced so that CO2 dropped back to 1 

similar rates to those before the elevated temperature (Kirschbaum, 2004; Melillo et al., 2002). 2 

The reason for long-term reductions in CO2 emission from wetland soils (after an initial 3 

emission increase) was thought to be due to the depletion of available substrate indicating that 4 

substrate utilization by microbes is a key mechanism. Better understanding of such processes 5 

will aid predictions of soil C cycling dynamics under climate change. 6 

Comparing the soil solid phase and pore-water, DOM in pore-water is probably the most 7 

bioavailable pool of soil organic matter (Bolan et al., 2011). The microbial utilization of DOM 8 

is controlled by its bioavailability and biodegradability, both of which strongly influence the 9 

fate of soil C stocks through influencing microbial feeding and functional physiology 10 

(Marschner and Kalbitz, 2003). Increased temperature favors desorption of high-affinity 11 

compounds binding to minerals and release of occluded organic matter from soil aggregates 12 

(Conant et al., 2011) which enhance pore-water DOM concentrations and thus the substrate 13 

bioavailability. Kalbitz et al. (2000) showed, in a review focused on DOM dynamics in soils, 14 

that nearly all the results of short-term laboratory studies suggested that a rising temperature 15 

may result in increased pore-water DOM concentrations. In field studies, however, multiple 16 

factors simultaneously affect DOM concentrations (Stutter et al., 2007), leading to the DOM 17 

pool varying with season (Stutter et al., 2007) and soil type (Kalbitz et al., 2000). It is still 18 

unclear whether increased pore-water DOM concentrations will persist under more sustained 19 

field warming (rather than in short-term studies), given the microbially-mediated 20 

decomposition of soil organic matter and the variable levels of stability between different soil 21 

organic fractions (von Lutzow and Kogel-Knabner, 2009).  22 
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Understanding DOM utilization is limited if we ignore its chemical character related to 1 

substrate biodegradability (Kujawinski, 2011). The biodegradability of DOM is strongly 2 

affected by its structural complexity (Fellman et al., 2008). The fractions such as low 3 

molecular weight monomers with lower aromaticity and less condensed structure can be 4 

directly assimilated by microbes, while high molecular weight compounds need to be first 5 

broken down, or depolymerized to obtain energy contained within (Marschner and Kalbitz, 6 

2003). DOM with intrinsically low quality usually contains a large proportion of stable 7 

aromatic structures, such as lignin compounds, which is more resistant to degradation (Stutter 8 

et al., 2007). As a result, decreased DOM biodegradability constrains substrate utilization and 9 

further influences C uptake, retention and export (Battin et al., 2008) even without changed 10 

DOM concentrations. There has been some DOM characterization work in peatlands 11 

subjected to degradation and restoration (Glatzel et al., 2003) which has shown that DOM 12 

composition affects CO2 efflux from peatlands and that DOM composition is also driven by respiration 13 

and CO2 efflux. Work on afforested peatlands showed that peat drying alters the DOM composition 14 

with less aromatic and lower molecular weight material (Baker et al., 2008). Seasonal 15 

dynamics in DOM investigated by Huang and Chen (2009) for wetlands in the Neponset 16 

River Watershed of eastern Massachusets suggested that higher temperature in summer and 17 

fall could lead to higher values in fluorescence spectrum intensities of chromophoric DOM 18 

compared to those in winter and early spring. So far, information about DOM chemical 19 

character in the pore-water of wetland soils under sustained warming is extremely limited, 20 

which impairs our understanding of likely wetland soil C cycling in the future.  21 

Spectroscopy can be used to describe the quality of DOM since the optical properties of a 22 
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chromophoric group are closely related with the chemical and structural character of organic 1 

matter (Kothawala et al., 2012). As a highly-sensitive tool, fluorescence spectroscopy allows 2 

identification of different compounds belonging to specific regions, and helps evaluate the 3 

humicity of water samples (Chen et al., 2003; Fellman et al., 2010). Strong signal intensities of 4 

protein-like and soluble microbial byproduct-like fluorescence would suggest that the DOM 5 

contains a large hydrophilic fraction, such as carbohydrates, organic acids and proteins of 6 

relatively high biodegradability. Enriched aromatic and hydrophobic structures in DOM 7 

related to terrestrial-derived humic-like fluorescence indicate an increase in water humicity. 8 

These signatures combined with informative spectral indices from integrated UV-visible 9 

absorbance and fluorescence measurements provide a basis for estimating DOM 10 

biodegradability (Wilson and Xenopoulos, 2009). 11 

In this study, a real-time temperature controlled incubation system (Zhang et al., 2012) was 12 

developed outdoors in May 2008 simulating warming scenarios to investigate the dynamics of 13 

soil pore-water DOM concentration and its chemical character over 4.5-years of incubation. 14 

UV-visible and fluorescence spectroscopy were used to distinguish different classes of DOM 15 

character. Six subtropical wetlands covering a broad gradient of soil organic matter contents 16 

(14.6 to 114 g kg
-1
 dry soil, Table 1) were selected, given the potentially high variability of 17 

pore-water DOM concentrations in wetlands. The objectives of this study were to: (i) test 18 

whether DOM concentrations were persistently higher in warmed samples compared to the 19 

control during 4.5-years of experimental warming; (ii) test whether warming induced changes 20 

in DOM chemical character after 4.5-years of incubations; (iii) test whether there were distinct 21 

differences in DOM response to warming between wetland soil types and (iv) to investigate 22 
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why any changes in DOM occurred. 1 

2. Material and methods 2 

2.1. Microcosm configuration and sample description 3 

A custom-built novel microcosm was used to simulate climate warming (Zhang et al., 2012). 4 

The microcosm involved samples being kept at current ambient temperature conditions 5 

(control) and simulated warming conditions which were continuously 5
o
C above ambient 6 

temperature (warmed). Specifics regarding the configuration and corresponding operation of 7 

this microcosm system have been reported previously (Zhang et al., 2012). The microcosm 8 

maintained hydrological characteristics and a humid habitat for microbial growth, offering a 9 

high resolution temperature comparison, good repeatability, and the capability to simulate 10 

warming conditions with temperature of both the control and warmed treatments ‘naturally’ 11 

varying on a daily and seasonal basis. Transparent PVC wetland columns filled with selected 12 

wetland soils (20 cm in depth) and corresponding overlying water (20 cm in depth) were put 13 

into the microcosm system in May 2008 and have been in continuous operation since then. 14 

The details for preparing the wetland columns (with 6 replicates for each wetland site) were 15 

described previously (Zhang et al., 2012). 16 

Samples were taken from study sites located in the southern region of the Taihu Lake 17 

Basin within the delta of the Yangtze River, in China. Six wetlands, with shallow water bodies 18 

of 0.8-1.5 m in depth, differing in land use and nutrient status were selected (Table 1). In brief, 19 

YaTang riverine (YT) wetland is a polluted duck farm, while XiaZhuhu (XZ) wetland is 20 

threatened by aquaculture and anthropogenic nutrient inputs. The soils in YT and XZ have 21 
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significantly higher organic matter, nutrient (i.e., phosphorus and nitrogen) and water contents 1 

compared to others (Table 1). The wetlands named as BaoYang (BY), XiXi (XX), JinHu (JH), 2 

and ShiJiu (SJ) are generally preserved for tourism and used as water reservoirs, typical of 3 

recovered wetlands. SJ was formerly a paddy field with the lowest organic matter among the 4 

six studied wetlands.  5 

2.2. Non-destructive sampling for water chemical analysis 6 

For soil pore-water sampling, a soil solution sampler (0.5 µm porous polyacrylonitrile hollow 7 

fiber, Chinese Academy of Sciences, Nanjing) described by Song (2003) was horizontally 8 

embedded into the soil in each column at a fixed depth of 5 cm. About 30 mL of pore-water 9 

was sampled from each wetland column on seven occassions (both winter and summer) of 10 

between July 2009 and December 2012 inclusive) during 55 months of incubations for DOM 11 

concentration analysis. At the end of the incubation (December, 2012), the sampled pore-water 12 

was also used for UV-visible and fluorescence spectral analysis. All of the following 13 

measurements were conducted after filtration of pore-water through a 0.45 µm filter.  14 

DOM concentration. Dissolved organic C was analyzed using a Shimadzu TOC 5000 15 

analyzer (Shimadzu Scientific Instruments, Columbia, USA) after acidifying (10% HCl) and 16 

purging with inert gas to remove any inorganic C. The quantification of organic matter 17 

concentration is usually based on the C content. Therefore, we converted the dissolved organic 18 

C into DOM throughout the manuscript by multiplying by a factor of 1.72, in order to be 19 

consistent with spectroscopic analysis, which includes the whole DOM fraction (Kothawala et 20 

al., 2012). 21 
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UV-visible spectra. UV-visible absorbance spectra were measured spanning 200 to 400 nm at 1 

0.2 nm intervals using a UV-2550 spectrophotometer (SHIMADZU Corporation, Japan). 2 

Samples were put into a 1 cm quartz cuvette and distilled water was used as the blank. Specific 3 

UV absorbance (SUVA), including SUVA254 and SUVA280 were calculated as the absorbance 4 

at the wavelength of 254 nm and 280 nm normalized for dissolved organic C concentration, 5 

respectively (Weishaar et al., 2003). The slope (S280-400) of the absorbance spectrum curve was 6 

calculated for the spectrum region between 280 and 400 nm (Stedmon et al., 2000). The 7 

A253/A203 value is the ratio of absorbance at 253 and 203 nm (He et al., 2013). Of four 8 

UV-visible spectral indices (SUVA280, SUVA254, S280-400, and A253/A203), SUVA280 and 9 

SUVA254 are strongly correlated with aromaticity and molecular weight (Chin et al., 1994; 10 

Weishaar et al., 2003). For UV-visible spectrum curves, the absorption is generally the highest 11 

in the ultraviolet region and decreases to near zero in the red region. Therefore, S280-400 is used 12 

to evaluate how steep the absorption decreases with increasing wavelength (Stedmon et al., 13 

2000). A high A253/A203 ratio indicates the presence of polar functional groups, such as 14 

hydroxyl, carbonyl, and carboxyl on the aromatic ring, while a low ratio is related with the 15 

substitution with aliphatic and methylene groups on the aromatic ring, and thus an increase in 16 

DOM humicity (Minero et al., 2007).  17 

Fluorescence spectra. For fluorescence intensity measurement, three dimensional 18 

excitation-emission matrices (3D EEM) were studied using a Hitachi F-4500 fluorescence 19 

spectrophotometer (Hitachi High-Technologies Corporation, Japan), and the corresponding 20 

contour map was visualized by Sigmaplot 12.0. The excitation wavelengths spanned from 200 21 

to 450 nm, and 300 to 600 nm for emission wavelengths with both at 5 nm increments. 22 
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Excitation and emission slit widths were set to 2.5 nm with default values for integration time. 1 

Before measurement, manufacturer supplied correction factors were used to correct excitation 2 

and emission intensities for instrument-specific biases. The raw data were corrected for 3 

inner-filter effects due to the absorption of incident and emitted light by colored organic matter 4 

suspended within the sample cuvette using absorbance measurements (Ohno, 2002) after 5 

normalizing for dissolved organic C concentration. Raman scatter effects of fluorescence were 6 

removed by dividing by the Raman area of a Milli-Q water integrated at an excitation of 350 7 

nm, and over an emission range of 380 to 420 nm (Lawaetz and Stedmon, 2009). The 8 

fluorescence index (FI) was calculated as the ratio of emission intensity at 470 and 520 nm at 9 

fixed excitation wavelength of 370 nm. The freshness index (β: α) was calculated as the ratio 10 

of emission intensity at 380 nm divided by the intensity maximum between 420 and 435 nm at 11 

fixed excitation wavelength of 310 nm. The humification index (HIX) is the integrated area 12 

under spectra at emission wavelengths from 435 to 480 nm divided by the sum of the area at 13 

emission wavelengths from 435 to 480 nm and 300 to 345 nm at a fixed excitation wavelength 14 

of 254 nm (Ohno, 2002). Fluorescence peak A, which is associated with fulvic-like 15 

components, and peak C, which is attributed to humic-like substances falling within the certain 16 

EEM regions (Chen et al., 2003) were acquired by instrument automated “peak-picking” by 17 

scrolling to peak locations on the 3D EEM and finding the fluorescence peak intensity. The 18 

ratio of fluorescence signal intensity of peak A to peak C (IA/IC) was calculated. The above 19 

fluorescence spectral indices describe the different aspects of the DOM chemical character as 20 

shown by Wilson et al. (2009). Briefly, FI is strongly correlated with degree of structural 21 

conjugation, and β: α is an indicator of autochthonous C inputs associated with 22 
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microbial-originated sources of DOM. HIX increases with increasing aromaticity, while IA/IC 1 

is negatively related to the degree of DOM humicity. 2 

The fluorescence regional integration (FRI) technique was adopted to further analyze the 3 

EEM spectra. According to the approach described by Chen et al. (2003), each EEM spectrum 4 

was divided into five regions (Region I-V). The integrated volume beneath each region was 5 

quantitatively calculated in a unit of AU-nm
2
-[mg/L C]

-1 
after being normalized to dissolved 6 

organic C concentration using MATLAB R2010b. We divided the calculated volume by the 7 

relative region area (nm
2
) in order to reduce the effects of secondary or tertiary 8 

excitation-emissions responses on the extension of fluorescence peak shoulders at longer 9 

wavelengths. The percent fluorescence response (Pi,n which refers to the proportion of above 10 

area-normalized values in Region i to the entire Region in EEM) was represented in this study. 11 

The operationally defined five regions are as follows (Chen et al., 2003): the regions under 12 

excitation (Ex) and emission (Em) coordinates (~250/~380, Ex/Em) at both shorter excitation 13 

and emission wavelengths represent aromatic proteins (i.e., tyrosine and tryptophan, Region I 14 

and II respectively); the regions under coordinates (~250/380~, Ex/Em) at shorter excitation 15 

wavelengths and longer emission wavelengths are associated to fulvic acid-like materials 16 

(Region III); the regions at the intermediate excitation wavelengths and shorter emission 17 

wavelengths (250-280/~380 nm, Ex/Em) are related to soluble microbial byproducts (Region 18 

IV); the regions at both longer excitation and emission wavelengths (280~/380~, Ex/Em) 19 

correspond to humic-like substances (Region V).  20 

2.3. Statistical analyses 21 
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A preliminary three-way ANOVA was used to examine the total differences in DOM 1 

concentrations varied with site (wetlands), treatment (control vs. warmed), and sampling time 2 

as three factors. In a specific sampling time, differences in DOM concentrations, spectral 3 

indices and integrated volume beneath specific regions were examined by a two-way ANOVA 4 

with site and treatment as two factors. If the ANOVA result was significant (p < 0.05), 5 

Student-Newman-Keuls (S-N-K) was further used for multiple comparisons between groups. 6 

Student’s t-tests were used to test for differences in DOM concentrations and chemical 7 

character for each specific wetland between treatments.  8 

3. Results 9 

3.1. DOM concentration dynamics 10 

DOM concentrations during 2009 to 2012 varied significantly with site (p < 0.001), treatment 11 

(p < 0.001), and sampling time (p < 0.002). Multiple comparisons showed that the mean DOM 12 

concentrations were the highest in YT, and the lowest in SJ (p < 0.001) among the six wetlands. 13 

Warming impacts on DOM concentrations depended on sampling time as revealed by 14 

significant (p < 0.001) interaction effects between treatment and sampling time. On average 15 

the treatment samples had DOM which was 14.5% greater than the controls in July 2009 (p = 16 

0.001, Fig. 1A). The maximum differences between treatments as a whole were observed in 17 

samples taken in November 2010 (26.8% higher in warmed relative to the control, Fig. 1H). 18 

The two winter sampling occassions after November 2010 (February 2011, December 2012) 19 

both indicate declining winter DOM concentration differences between treatments (Fig, 1H) 20 

with the 7.92% difference in December 2012 between controls and treatments being 21 
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insiginificant (p = 0.579, Fig. 1G) when the DOM dataset is considered as a whole. Similarly, 1 

after August 2010 the differences in summer samples between treatments were successively 2 

smaller in 2011 and 2012 (July 2012 only 4.4% and not significant (p = 0.611)). Warming 3 

effects on DOM concentrations were site-specific (p = 0.067). For all sampling occassions 4 

from July 2011 onwards differences in DOM concentrations between treatments for each 5 

wetland were insignificant except for BY (Fig. 1E-G). YT and XZ, characterized as 6 

organic-enriched wetlands, showed the strongest responses of DOM release to warming in the 7 

initial years of the experiment (2009-2010, Fig. 1A-E), and then the warming effects on DOM 8 

concentration gradually became smaller in the proceeding years (2011-2012, Fig. 1F, G). For 9 

SJ and JH, characterized as organic-poor wetlands, there were no significant differences in 10 

DOM concentration between treatments throughout all observed years (Fig. 1A-G).  11 

3.2. UV-visible absorbance and spectral indices 12 

UV-visible absorbance of DOM at 254 nm (A254) was consistently higher (p < 0.001) in 13 

warmed samples relative to the control at the end of the experiment, especially for XZ and YT 14 

(Table 2). The patterns of differences were similar for SUVA280 (p = 0.010) and SUVA254 (p = 15 

0.008). The ratio of A253/A203 was lower (p = 0.026) by 52.3% under warming when 16 

comparing the mean values from six wetlands between treatments (Table 2). Decreased (p < 17 

0.05) S280-400 values between treatments were only observed in XZ . 18 

3.3. Fluorescence specific components and spectral indices 19 

Of the fluorescence spectral indices (FI, β: α, HIX, and IA/IC), FI and β: α remained unchanged 20 

between treatments for all samples (Table 3). HIX in warmed samples was higher (by 22.6%, 21 
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p < 0. 001) than those in the control by comparing the mean values from six wetlands between 1 

treatments, while IA/IC was lower (p < 0. 001) under warming, especially for XZ and YT 2 

(Table 3). Compared to UV-visible spectral indices in Table 2 as well as FI and β: α in Table 3, 3 

HIX had a relatively low coefficient of variation both within-samples (0.38% to 8.86%, 4 

replicates for each wetland) and between-samples (4.68%, among six tested wetlands). In 5 

contrast, IA/IC varied greatly among these wetlands (p < 0. 001, S-N-K test) from 1.76 (JH) to 6 

0.67 (YT) (Table 3). 7 

For FRI analysis, the PV,n values in region V were consistently higher (p < 0.05 or 0.01) in 8 

all warmed samples, ranging from 6.81 (JH) to 14.2 (YT), compared to the control, which 9 

varied from 5.42 (SJ) to 11.1 (YT) (Table 4). For other regions, PI,n and PII,n in region I and II 10 

were marginally (p = 0.098 and 0.072, respectively) decreased under warming in all tested 11 

wetlands as a total, and were especially lower for warmed SJ and JH samples relative to the 12 

control (Table 4). Meanwhile, PIII,n in region III were exclusively lower (p < 0.05) in warmed 13 

XZ and YT samples, and PIV,n in region IV were lower (p < 0.05) only in warmed SJ samples 14 

when compared to the control. Similar to HIX, Pi,n values had a relatively low coefficient of 15 

variation within-samples (0.25% to 30.4%). For between-samples, PV,n in YT and XZ were 16 

much higher than those in SJ and JH, while in contrast PI,n were the lowest in YT among tested 17 

wetlands (Table 4). To confirm these differences, we compared the EEM of SJ samples (as an 18 

example) with YT samples (Fig. 2). For SJ samples, the soluble microbial byproduct-like 19 

fluorescent components (with center peak located in 275/305, EX/EM, in Region IV), and the 20 

protein-like fluorescent components (with center peak located in 230/335, EX/EM, in Region II) 21 

in the control (Fig. 2A) were not present or overlapped in the warmed samples (Fig. 2B). For 22 
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YT samples, the center position of the humic-like peak (i.e., peak C) shifted from EX/EM, 1 

325/410 (control, Fig. 2C) to EX/EM, 330/425 (warmed, Fig. 2D), a shift of the emission 2 

spectra toward longer wavelengths, which is also defined as a red shift in fluorescence 3 

spectrum. Such shifts in the position of humic-like peak were also observed in XZ (Table 3). 4 

Meanwhile, the fulvic-like peak (i.e., peak A) area in Region III was more contracted in the 5 

warmed (Fig. 2D), compared to the control (Fig. 2C). 6 

4. Discussion 7 

4.1. Effects of experimental warming on DOM concentration dynamics 8 

YT and XZ samples had relatively high organic contents and it is likely that their substrates 9 

were capable of more leaching at elevated temperature from the soil solid-phase to pore-water, 10 

and had stronger susceptibility to experimental warming compared to other wetland soils over 11 

the first 2.5-years of the experiment. In contrast, no significant differences in DOM 12 

concentrations between treatments throughout the incubation occurred for organic-poor 13 

wetland soils (SJ and JH). When organic matter in soils is relatively low, physical 14 

disconnection and spatial inaccessibility is enhanced between soil microbes and substrates 15 

(Schmidt et al., 2011). Elevated temperature may, therefore, not be able to promote desorption 16 

of soluble compounds bound to minerals and release occluded organic matter from soil 17 

aggregates in these soils. Moreover, the more unevenly distributed organics in soil particles 18 

and water-saturated pore spaces (Schmidt et al., 2011) may have also enhanced the variability 19 

within replicate samples of SJ and JH, leading to statistical insignificance. As a result, 20 

organic-poor wetland soils were less responsive to warming in the short-term (1-2.5 years). 21 
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However, under sustained warming (4.5-years), there were no significant differences in DOM 1 

concentrations between treatments for all but one (BY) of the wetlands.  2 

The impacts of a given elevated temperature will also depend on the ambient temperature, 3 

therefore, our +5
o
C soil warming on the winter samples (such as samples taken in November 4 

2010, February 2011, and December 2012) when ambient water temperatures are around 10
o
C 5 

did not have the same impacts as the warming on the summer samples (taken in July or August 6 

of 2009-2012) when ambient water temperatures are around 26
o
C. Warming effects on DOM 7 

release may be greater (when comparing the difference between ambient and warmed 8 

treatments) during winter months as indicated by our November 2010 results, suggesting 9 

treatment conditions (+5
o
C warming) could sometimes be a larger factor when ambient 10 

temperatures are initially lower and such seasonal factors need to be incorporated into 11 

long-term warming experiments on subtropical wetlands. Despite this, our summer patterns of 12 

DOM production in different years showed that differences in DOM concentrations between 13 

treatments diminished over time after an initial phase of increase in the summers one year and 14 

two years after the start of the incubation. For winter DOM concentration differences we only 15 

have the November 2010 sampling date as our starting point so we cannot tell if there had been 16 

a gradual rise in differences between treatments for successive winters after the start of the 17 

incubation in 2008. However, the February 2011 winter sample had a smaller difference 18 

between treatments and contols (all site samples combined) than that three months earlier and 19 

the December 2012 sample had no significant differences between treatments and contols for 20 

DOM concentration. 21 

When DOM was released, the accumulated DOM in pore-water may be transported from 22 
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soils into water bodies through vertical diffusion processes under the steep concentration 1 

gradient along a soil profile, leading to large aquatic C loss from wetlands downstream to 2 

aquatic ecosystems (Mulholland, 1997). The acclimation of DOM concentrations under 3 

sustained experimental warming in this study suggests that C loss in dissolved forms could be 4 

tempered over time in subtropical wetlands, which may have implications for our predictions 5 

of C cycling and C loss under climate change scenarios. Of course, in reality a soil will not be 6 

subject to an immediate and sustained 5
o
C warming under climate change and so more 7 

gradual warming effects on some wetland soils over time may result in no observed 8 

differences in soil DOM concentration and release compared to baseline conditions due to the 9 

feedback effects we have identified. 10 

4.2. Effects of experimental warming on DOM biodegradability 11 

Many wetlands have longer hydrological and biogeochemical residence times than 12 

downstream rivers or lakes (Bullock and Acreman, 2003). Before transport into overlying 13 

water, DOM in pore-water would go through a high degree of microbial consumption and 14 

transformation with a progressed level of biological processing, including microbial uptake of 15 

available substrate and the release of microbial metabolites (Fellman et al., 2008). As a result, 16 

DOM composition and chemistry may be highly variable, depending on the autochthonous C 17 

production, which has a microbial origin, and allochthonous organic matter leaching from 18 

solid-phase soil organic matter pools. The allochthonous DOM fraction, largely of terrestrial 19 

origin, is resistant to biodegradation due to its high content of complex aromatic structures, 20 

including chitin and lignin compounds (Fellman et al., 2010). Not all soluble substrates can be 21 
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easily assimilated and metabolized by microbial cells. A large proportion of humic-like 1 

substances in DOM increase the difficulty of microbial feeding. Meanwhile, the protein-like 2 

fluorescence, which is most closely related to DOM biodegradability (Fellman et al., 2008; 3 

Kothawala et al., 2012), was selectively lost in some warmed samples. The red shift reflects 4 

higher molecular-weight fractions with an increased degree of water humicity. The water 5 

absorption of visible-UV light is due to the ubiquitous aromatic chromophores (primarily 6 

humics) in DOM. Weishaar et al. (2003) have shown that percent aromaticity determined by 7 

13
C NMR was strongly correlated with SUVA values indicating that SUVA values can be used 8 

to reflect the amount of aromatic compounds. These fluorescence fingerprints combined with 9 

decreased A253/A203 and IA/IC ratio provides evidence for a relative shortage of readily 10 

available substrates for DOM composition under warming. 11 

Terrestrially-derived soluble humic-like substances can be traced back to the dynamics of 12 

solid-phase soil organic C pools. According to different soil intrinsic turnover times (Davidson 13 

et al., 2000), soil organic C pools can be divided into labile and recalcitrant C fractions. 14 

Recently, studies have suggested that recalcitrant soil organic C pools with complex molecular 15 

attributes, characterized by low decomposition rates and requiring high activation energies to 16 

react, are intrinsically more sensitive to temperature than the labile pool (von Lutzow and 17 

Kogel-Knabner, 2009). It is well known that the newly incorporated fresh litter can be 18 

gradually utilized and converted into more stable forms through soil-forming processes. 19 

However, these processes may be impaired by global warming with more stable soil organic 20 

matter converted into active soil organic matter in dissolved forms through soil organic matter 21 

destabilization, such as depolymerization, dissolution and desorption processes (Sollins et al., 22 
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1996). The relatively higher humicity of DOM in the wetland soils we studied suggested the 1 

recalcitrant soil fractions may be preferentially leached in response to warming, compared to 2 

the labile pools. Consistent with this, laboratory incubation of boreal forest soils has shown 3 

that warming led to the leaching of humified soil organic matter incorporated into DOM (Li et 4 

al., 2012), which increased the contribution of aromatic contents in the composition of DOM. 5 

Moreover, some soluble proteins and simple fatty acids could be rapidly consumed when 6 

microbial metabolic rates increase significantly with rising temperature (Gudasz et al., 2010). 7 

The shortage of readily available substrate may be a negative feedback which counteracts the 8 

early effects of warming on DOM and CO2 effluxes through diminished microbial activities 9 

(Frey et al., 2008; Melillo et al., 2002). In this process, thermal acclimation of microbial 10 

physiology may also be one of the key mechanisms leading to gradually diminished C loss 11 

under experimental warming (Bradford et al., 2008).  12 

Alternatively to the above, however, there are some papers where substantial C loss has 13 

been reported under sustained soil warming (e.g. from boreal permafrost (Schuur et al., 2009), 14 

as well as some fertilized soils (Mack et al., 2004)). Most of these studies showed that C 15 

transferred into atmosphere came from recalcitrant, old C fractions. Allison et al. (2010) 16 

theoretically suggested that waming may lead to omnipotent microbes changing their 17 

strategies to utilize more recalcitrant C pools through a changed microbial community or 18 

adjustment of C use efficiency when readily available substrate is limited, leading to greater C 19 

loss. These findings increase uncertainty in our ability to predict C cycle changes under future 20 

climate. Therefore, further research about the dynamics of different soil organic C fractions 21 

and associated enzymatic activities as well as microbial community shifts are needed in our 22 
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tested wetlands under sustained warming. 1 

4.3. Effect of soil types on DOM concentration and structural complexity 2 

There were only small differences in pore-water DOM concentrations between the six studied 3 

wetlands yet the soil organic matter stored in YT was 6.83 times higher than those in SJ. 4 

Although most of DOM originates from leaching of solid-phase soil organic pools, the 5 

relationship between total organic matter stored in the soils and DOM concentrations in 6 

pore-water for the six wetlands was not significant (p > 0.05). In contrast, a previous study  7 

(Wang et al., 2012) reported that phosphorus concentrations in the pore-water were closely (p 8 

= 0.045) related with soil total phosphorus contents from these microcosm samples. Our 9 

results imply that besides allochthonous precursor organic matter in bulk soils responsible for 10 

DOM concentration dynamics, microbial consumption and production of microbial-originated 11 

DOM may also greatly influence DOM concentrations, increasing its variability and 12 

uncertainty in field study. Rapid turnover of DOM and the resultant large fluctuations in DOM 13 

concentrations by microbial activities have been well documented in temperate forest soils 14 

(Bengtson and Bengtsson, 2007). SJ had the lowest soil organic contents (14.6 g kg
-1
) among 15 

the six wetlands, while the DOM concentrations in SJ were comparable to those in other 16 

wetlands. These findings suggest that even some organic-poor soils may retain relatively high 17 

soluble C as available substrates through microbial metabolism. Soluble phosphorus contents 18 

in the pore-water of SJ were very low and almost approached detection limits (Wang et al., 19 

2012). 20 

The six wetlands contained DOM with distinct fluorescent fingerprints, including the 21 
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identified fluorescent components, and the associated intensities and positioning of specific 1 

fluorescence peaks. The DOM in YT had the highest humic-like fluorescence intensities 2 

among the six wetlands studied as indicated by the lowest IA/IC and the highest PV,n values in 3 

Region V. Most humic acids resistant to biodegradation have been found to accumulate in 4 

upper organic horizons, and decrease in a soil profile with increasing mineral contents in lower 5 

soil horizons, where fulvic acids gradually become the dominant fraction (Ussiri and Johnson, 6 

2003). This partially explains why organic-enriched wetlands (i.e., YT and XZ) have relatively 7 

higher humic-like contents than others. We observed the soluble microbial byproduct-like and 8 

protein-like fluorophore in SJ and JH wetlands under ambient temperature conditions, while 9 

for other wetlands the protein-like fluorescence peaks were almost overlapped by the 10 

fulvic-like fluorescence. Consistent with this, PI,n values in Region I associated with 11 

protein-like substances were higher for SJ and JH compared to YT. This suggests that the 12 

paddy soils of organic-poor wetlands (such as SJ) contain DOM with relatively large fractions 13 

of easily-degradable substances among the studied soil types. Minerotrophic wetland soils 14 

such as fens and paddy soils, have been shown to possess high primary production and fast 15 

turnover rates of nutrients (Aerts et al., 1999). Consistent with this, we also observed that the 16 

highly productive emergent macrophytes (including Acorus calamus and Typha angustifolia) 17 

grew in the SJ and JH wetland sites, while most floating-leaf aquatic plants, like Trapa incisa, 18 

Lemna minor, and Azolla imbricata dominated in YT, XZ and XX wetland sites. Some 19 

easily-degradable carbohydrates and amino acids through root exudation and litter decay 20 

(Eviner and Chapin, 1997) may explain the detected protein-like fluorescent components in 21 

DOM from SJ and JH. For YT and XZ, though possessing enriched soil organic matter 22 
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contents, the large soil water contents (more than 60%) seems to inhibit the growth of 1 

rooted-plants, leading to unexpectedly low protein-like compounds in DOM. A large 2 

proportion of easily-degradable DOM is generally “young” and recently fixed (Yano et al., 3 

2000), which implies that the substrates in SJ and JH could be efficiently utilized by plants or 4 

microbes, leading to fast DOM turnover rates. As a result, microbial demand for substrates in 5 

organic-poor wetlands seems to be more severe than that in organic-enriched wetlands (i.e., 6 

YT and XZ).  7 

4.4. Evaluation of different spectrum values 8 

We found that the routinely used spectral indices, including S280-400, FI and β: α failed to 9 

capture observed changes in DOM character in response to warming. Microbial utilization and 10 

photo-degradation of DOM may both cause S280-400  to decrease through a flattening effect on 11 

the slope of spectrum curves, while the removal of some complex compounds is responsible 12 

for the increase in S280-400 (Stedmon et al., 2000). Warming did not significantly change the 13 

S280-400, except for the XZ wetland soil. FI are derived from three single data points with 14 

fluorescence intensities, including two emission wavelengths (470 and 520 nm) and one 15 

excitation wavelength (379 nm) falling into the humic-like acid regions (Region V in EEM) 16 

(Chen et al., 2003). We observed an increased percentage of humic-like fluorescence 17 

intensities and shifted positioning of the humic-like peak cenrter towards longer emission 18 

wavelengths (red shift) for warmed samples compared to the control. FI seemed to be 19 

insufficient to describe the shape or positioning of these fluorescence peaks and the resultant 20 

differences in FI between treatments were negligible. The freshness index (β: α) is calculated 21 



                                                                         

23             

based on the fluorescence peak C and peak M, in which peak C falls into the humic-like acid 1 

region (Region V), while the peak M is blue-shifted towards protein-like regions along the 2 

emission axis relative to peak C and is largely located at the transitional zone between soluble 3 

microbial byproduct-like (Region IV) and humic-like acid regions (Chen et al., 2003; Wilson 4 

and Xenopoulos, 2009). Therefore, peak M is fresher than peak C. One of the fluorescence 5 

intensity variables used in the freshness index was at the excitation wavelength of 310 nm. 6 

However, in this study, some of fluorescence peaks were found at excitation wavelengths less 7 

than 300 nm. Therefore, the freshness index may fail to describe warming-induced changes in 8 

DOM character. Overall, the common feature in most of the above spectral indices was that 9 

only one to three data points from an EEM spectrum were used to quantify fluorescence 10 

spectra, which led to large variability in values within-samples and between samples when, 11 

effectively, only a small part of the dataset was used. Therefore, the interpretation of these 12 

indices to understand the extent of decompostion and production of different DOM structures 13 

should be undertaken with caution. We further used FRI technology combined with the HIX 14 

value to quantify fluorescence EEM spectra. Both HIX and integrated percent fluorescence 15 

distribution had a relatively low coefficient of variation within-samples. We suggest that HIX, 16 

calculated from the integrated area of specific region, is more robust for detecting 17 

inconspicuous changes in the chemical character of DOM, compared to FI or β: α, calculated 18 

from one to three data points. Across a wide range of DOM concentrations from tested 19 

wetlands (SJ-YT), percent fluorescence distributions were well verified by the changing 20 

patterned viewed within EEM spectra (Fig. 2), indicating the method of quantifying 21 

cumulative fluorescence intensities under certain fluorescence peaks can be applied to various 22 
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water samples (Chen et al., 2003). Through inner filter correction, the influence of high DOM 1 

concentrations on HIX values and Pi,n values could be more effectively corrected to produce 2 

reliable results to describe DOM character shifts under warming. 3 

Conclusions 4 

To our best knowledge, this study is the first to explore the impacts of experimental warming 5 

on DOM character for soil pore-water in wetlands. Elevated temperature was associated with 6 

an increase in the release of DOM from the solid-phase into pore-water with increasing 7 

differences up to 2.5 years into the experiment. After this point the greater DOM in the 8 

warmed treatments declined and there was no overall significant difference by the end of the 9 

experiment between treatments except for one of the six wetland soils. However, at the end of 10 

the experimental period, 55 months after the commencement of a 5
o
C incubation above 11 

ambient conditions, spectral information for spectral indices (i.e., SUVA280, SUVA254, 12 

A253/A203, HIX and IA/IC) and regional EEM spectra analysis indicated that the experimental 13 

warming increased the DOM humicity with enriched humic-like substances found in warmed 14 

samples, where relatively easy degradable substrates, such as protein-like, microbial 15 

byproduct-like, and/or fulvic-like compounds were selectively lost or reduced, leading to 16 

decreased DOM biodegradability in response to experimental warming. Thus a negative 17 

feedback effect has been identified, the magnitiude of which depended to some extent on the 18 

nature of the wetland substrate. A preferential loss of easily degradable substances in DOM 19 

composition with concomitant decreases in soil DOM degradability under warming could be 20 

very important as a process which ought to be included when predicting how wetland C 21 
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cycling will operate under future climate change.  1 
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Table 1. Descriptions of the study sites for sampling in May 2008 and the basic soil chemical properties
a
. 

a
Different letters labeled in the column of soil chemical properties, i.e., “pH”, “organic matter”, “total nitrogen”, “total phosphorus” and “water contents” 

indicate significant differences in the means between study sites by one-way analysis of variance (ANOVA) with study site as a factor and 

Student-Newman-Keuls (SNK) method was conducted for multiple comparisons. The organic matter, total nitrogen, total phosphorus in wetland soils were 

calculated based on dry soils, while water contents were calculated based on fresh soils. 

 

 

Wetland ID County 
Latitude and 

longitude 

Main wetland 

use 

Annual mean water 

depth (m) 

Annual mean flow 

velocity, (m min
-1
) 

pH 

Organic 

matter 

(g kg
-1
) 

Total nitrogen 

(g kg
-1
) 

Total 

phosphorus 

(mg kg
-1
) 

Water contents 

(%) 

ShiJiu multipond 

wetland (SJ)  
JiaXing 

120°41'31"E, 

30°53'55"N 

Water 

reservoir 
1.20 1.68 7.3a 14.6a 1.45a 346a 32.6a 

JinHu (JH) ShaoXing 
120°33'32"E, 

30°01'58"N 

Water 

reservoir 
2.50 0.05 7.2a 25.5a  1.89a 579b 35.1a 

XiXi national 

wetland park (XX) 
HangZhou 

120°03'59"E, 

30°16'23"N 
Tourism 0.85 0.10 7.4a 32.6b 3.87c 521b 55.0b 

BaoYang riverine 

wetland (BY) 
ChangXing 

119°54'24"E, 

31°04'31"N 

Water 

reservoir 
0.68 1.32 7.1a 39.3b 2.40b 833c 54.5b 

XiaZhuhu (XZ) DeQing 
120°02'54"E, 

30°31'28"N 

Tourism and 

aquaculture 
1.50 0.12 7.3a 64.7c 4.32c 906c 64.5c 

YaTang riverine 

wetland (YT) 
TongXiang 

120°29'13"E, 

30°43'15"N 
Mixed use 0.80 1.02 7.4a 114d 6.81d 2530d 68.7c 
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Table 2. Mean ± standard error of UV-visible absorbance at 254 nm wavelength in a 1cm quartz cuvette (A254, cm
-1
), as well as dissolved organic carbon 

concentration-normalized UV-visible spectral indices, including the specific UV-visible absorbance at 280 nm (SUVA280, L mg
-1 

m
-1
) and at 254 nm 

wavelength (SUVA254, L mg
-1 

m
-1
), UV-visible spectral slope between 280 and 400 nm wavelengths (S280-400) and the ratio of absorbance at 253 and 203 nm 

wavelength (A253/A203) measured in soil pore-water of the six studied wetlands (i.e., SJ, JH, XX, BY, XZ, and YT) between treatments (control vs. warmed). 

Water samples were collected on Dec-08-2012, 4.5-years from the onset of experimental warming incubation. For each wetland, bold indicates a significant 

difference in the warming treatment compared to the control with asterisks indicating * p < 0.05, or ** p < 0.01 by Student’s t-test. The bottom row indicates 

p-values from ANOVA conducted to test for differences between treatments across all wetlands as a whole.  

A254 SUVA280 SUVA254 S280-400 A253/A203 
Wetlands 

Control Warmed Control Warmed Control Warmed Control Warmed Control Warmed 

SJ 0.17 ± 0.05 0.23 ± 0.06 0.32 ± 0.06 0.57 ± 0.14 0.37 ± 0.08 0.70* ± 0.17 9.70 ± 3.80 6.70 ± 1.81 0.95 ± 0.12 0.50* ± 0.12 

JH 0.13 ± 0.01 0.17 ± 0.04 0.30 ± 0.04 0.30 ± 0.07 0.35 ± 0.03 0.40 ± 0.10 20.1 ± 2.2 16.3 ± 2.6 0.93 ± 0.04 0.68* ± 0.09 

XX 0.14 ± 0.01 0.28** ± 0.03 0.33 ± 0.04 0.53* ± 0.05 0.44 ± 0.05 0.69* ± 0.04 11.8 ± 1.5 9.83 ± 3.35 2.93 ± 1.13 0.63* ± 0.14 

BY 0.12 ± 0.01 0.21** ± 0.01 0.27 ± 0.02 0.35* ± 0.02 0.38 ± 0.03 0.47* ± 0.03 10.3 ± 1.5 13.5 ± 3.8 0.87 ± 0.31 0.49 ± 0.08 

XZ 0.36 ± 0.06 0.54* ± 0.00 0.84 ± 0.28 1.01 ± 0.14 0.96 ± 0.33 1.21 ± 0.19 12.6 ± 2.6 7.40* ± 1.41 0.89 ± 0.09 0.63* ± 0.03 

YT 0.50 ± 0.06 0.81* ± 0.03 0.74 ± 0.11 1.24* ± 0.21 0.93 ± 0.14 1.56* ± 0.27 16.4 ± 2.7 15.8 ± 0.7 0.44 ± 0.02 0.41 ± 0.01 

p-value < 0.001 (Increase) 0.010 (Increase) 0.008 (Increase) 0.839 (No change) 0.026 (Decrease) 
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Table 3. Mean ± standard error of dissolved organic carbon concentration-normalized fluorescence spectral indices, including fluorescence index (FI), 

freshness index (β: α), and humification index (HIX), as well as the fluorescence intensity ratio of peak A to peak C (IA/IC). The position of peak A and peak C 

falling within the specific 3D EEM regions are expressed as excitation and emission coordinates (Ex/Em) represented in the columns on the right. Water 

samples were collected on Dec-08-2012. For each wetland, bold indicates a significant difference in the warming treatment compared to the control with 

asterisks indicating * p < 0.05, or ** p < 0.01. The bottom row indicates p-values from ANOVA conducted to test for differences between treatments across all 

wetlands as a whole.  

FI β: α HIX IA/IC Peak A Peak C 
Wetlands 

Control Warmed Control Warmed Control Warmed Control Warmed Control Warmed Control Warmed 

SJ 2.12 ± 0.06 2.11 ± 0.09 0.64 ± 0.04 0.52 ± 0.10 0.91 ± 0.01 0.90 ± 0.01 n.d. 1.42 ± 0.10 240/415 240/415 n.d. 315/400 

JH 2.24 ± 0.01 2.09 ± 0.10 0.98 ± 0.23 1.48 ± 1.36 0.82 ± 0.03 0.89* ± 0.02 n.d. 1.76 ± 0.12 235/400 230/410 n.d. 295/395 

XX 1.97 ± 0.37 2.16 ± 0.07 0.67 ± 0.14 0.51 ± 0.08 0.78 ± 0.04 0.87* ± 0.03 1.74 ± 0.06 n.d. 240/420 235/400 315/400 n.d. 

BY 2.22 ± 0.04 2.14 ± 0.02 0.47 ± 0.04 0.71 ± 0.46 0.84 ± 0.02 0.85 ± 0.06 1.68 ± 0.22  1.42 ± 0.06 245/435 240/400 300/400 300/410 

XZ 2.27 ± 0.03 2.25 ± 0.02 0.72 ± 0.01 0.70 ± 0.02 0.88 ± 0.01 0.89* ± 0.00 1.43 ± 0.08 1.12** ± 0.06 230/400 250/430 305/415 330/440 

YT 2.08 ± 0.16 2.15 ± 0.07 0.65 ± 0.06 0.62 ± 0.01 0.89 ± 0.02 0.92* ± 0.00 0.87 ± 0.08 0.67* ± 0.03 245/410 250/415 325/410 330/425 

p-value 0.979 (No change) 0.645 (No change) < 0.001 (Increase) < 0.001 (Decrease) Not Available 
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Table 4. Mean ± standard error of percent fluorescence distribution (Pi,n, %) in the specific 3D EEM regions (i.e., Region I-V) of the entire EEM spectra. 

Water samples were collected on Dec-08-2012. For each wetland, bold indicates a significant difference in the warming treatment compared to the control with 

asterisks indicating * p < 0.05, or ** p < 0.01. The bottom row indicates p-values from ANOVA conducted to test for differences between treatments across all 

wetlands as a whole.  

Region I Region II Region III Region IV Region V 

Wetlands 

Control Warmed Control Warmed Control Warmed Control Warmed Control Warmed 

SJ 24.9 ± 0.7 23.0* ± 0.4  26.8 ± 0.4 25.7* ± 0.3 25.8 ± 0.2 26.5 ± 0.1 17.0 ± 0.3 16.5* ± 0.1 5.42 ± 0.97 8.27** ± 1.04 

JH 23.9 ± 1.2 23.7 ± 0.2 26.5 ± 0.3 25.9* ± 0.3 27.7 ± 0.1 27.5 ± 0.0 15.6 ± 0.6 16.0 ± 0.5 6.37 ± 0.89 6.81 ± 0.03 

XX 25.2 ± 0.5   24.1 ± 0.1 26.9 ± 0.3 26.7 ± 0.2 24.4 ± 1.0 26.4 ± 0.0 17.9 ± 1.6 15.5 ± 0.1 5.56 ± 0.28 7.36** ± 0.25 

BY 22.5 ± 1.8 22.5 ± 1.0 28.6 ± 0.6 27.5 ± 0.1 24.3 ± 1.2 24.9 ± 0.6 17.9 ± 1.5 17.5 ± 0.7 6.66 ± 0.32 7.62* ± 0.79 

XZ 24.3 ± 0.7 22.3* ± 0.5 26.4 ± 0.4 25.9 ± 0.7 26.5 ± 0.2 25.8* ± 0.0 15.4 ± 0.3 15.9 ± 0.2 7.43 ± 1.02 10.1** ± 1.1 

YT 20.9 ± 1.3 19.7 ± 1.1 26.6 ± 0.5 25.4 ± 1.0 24.0 ± 0.8 22.4* ± 1.4 17.3 ± 0.8 18.4 ± 1.0 11.1 ± 1.8 14.2** ± 2.5 

p-value 0.098 (Marginal decrease) 0.072 (Marginal decrease) 0.722 (No change) 0.696 (No change) 0.014 (Increase) 
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Fig. 1 DOM concentration dynamics during 4.5-years of warming incubations, 

including July 2009 (A), August 2010 (B), November 2010 (C), February 2011 (D), 

July 2011 (E), July 2012 (F) and December 2012 (G). For each panel of A-G, 

two-way ANOVA was conducted with F and p values shown of differences in mean 

values of DOM concentrations from six wetlands between control and warmed 

treatments. Asterisks represent significant (*p < 0.05, **p < 0.01) Student’s t-test 

differences in means for each wetland between treatments. The percent changes in 

mean values of DOM concentrations from six wetlands between treatments at each 

sampling month through time are shown in panel H. Vertical bars in each panel show 

the 95% confidence interval. 
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Fig. 2 Excitation-emission matrix fluorescence spectra for soil pore-water in SJ 

(control: A and warmed: B) and YT (control: C and warmed: D), two typical wetlands 

in this study. Spectra are examples from each of the replicates. The fluorescence 

intensities of each EEM panel are corrected for inner-filter effects using absorbance 

measurements, and the raw data are transformed between 0 and 1, and thus intensities 

here are unitless. 
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