promoting access to White Rose research papers

Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/

This is the Author's Accepted version of an article published in **Science of the Total Environment**

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/id/eprint/78582

Published article:

Wang, H, Zhang, Z, Li, M, Li, X and Holden, J (2014) *Concentration dynamics and biodegradability of dissolved organic matter in wetland soils subjected to experimental warming.* Science of the Total Environment, 470-47. 907 - 916. ISSN 0048-9697

http://dx.doi.org/10.1016/j.scitotenv.2013.10.049

White Rose Research Online eprints@whiterose.ac.uk

1	Concentration Dynamics and Biodegradability of Dissolved Organic Matter in Wetland
2	Soils Subjected to Experimental Warming
3	
4	Hang Wang ¹ , Joseph Holden ² , ZhiJian Zhang ¹ *, Meng Li ¹ , and Xia Li ¹
5	
6	1. College of Natural Resource and Environmental Sciences, China Academy of West
7	Region Development, ZheJiang University, Yuhangtang Avenue 688, HangZhou,
8	ZheJiang Province, 310058, China.
9	2. water@leeds, School of Geography, University of Leeds, Leeds, LS2 9JT, UK. Tel: +44
10	113 343 3317; j.holden@leeds.ac.uk.
11	
12	*: Corresponding author: ZhiJian Zhang
13	College of Natural Resource and Environmental Sciences, China Academy of West
14	Region Development, ZheJiang University, Yuhangtang Avenue 688, HangZhou,
15	ZheJiang Province, 310058, China
16	Tel: +86 571 8697 1854; Fax: +86 571 8697 1719
17	Email: zhangzhijian@zju.edu.cn

1 Abstract

2 Dissolved organic matter (DOM) is the most bioavailable soil organic pool. Understanding how DOM responds to elevated temperature is important for forecasting soil carbon (C) 3 dynamics under climate warming. Here a 4.5-year field microcosm experiment was carried 4 5 out to examine temporal DOM concentration dynamics in soil pore-water from six different subtropical wetlands. Results are compared between control (ambient temperature) and 6 7 warmed (+5°C) treatments. UV-visible and fluorescence spectroscopy was performed to reveal DOM structural complexity at the end of the warming incubation. Elevated temperature 8 resulted in initially (1 to 2.5 years) high pore-water DOM concentrations in warmed samples. 9 These effects diminished over longer time periods, which alleviated C loss in dissolved forms 10 under sustained warming. Of the spectral indices, the specific UV absorbance at 280 nm and 11 the humification index were significantly higher, while the signal intensity ratio of the 12 fulvic-like to humic-like fluorescence peak was lower in warmed samples at the end of the 13 study period, compared to the control. Fluorescence regional integration analysis suggested 14 that warming consistently enhanced the contribution of humic-like substances to DOM 15 composition for all tested wetlands. In more mineral-rich wetland soils characterized by low 16 organic contents, the protein-like and soluble microbial byproduct-like substances in DOM 17 were selectively lost in warmed samples. The shrinking of the fulvic-like fluorescence peak 18 under warming compared to the control was mainly observed for organic-enriched soils with a 19 20 shift in the center position of humic-like peak towards a longer emission wavelength. These spectral fingerprints implied a declined fraction of readily available substrates in DOM 21 allocated to microbial utilization in response to 4.5 years of warming. As a negative feedback, 22 23 decreased DOM biodegradability may have the potential to counteract initial DOM increases and alleviate C loss in water-saturated wetland soils. 24

Keywords: dissolved organic matter, wetland, fluorescence, soil carbon, microbial utilization,
 soil warming

27 Highlights

1. Stimulatory effect of elevated temperature on DOM release was short-lived.

29 2. Experimental warming increased DOM humicity and thus decreased its degradability.

30 3. Different soil types with organic contents had distinct fluorescence fingerprints.

4. Integrated and cumulative fluorescence indices were suitable for determining DOMcharacter.

- 33
- 34
- 35
- 36
- 37

1 **1. Introduction**

2 Dissolved organic matter (DOM) is a heterogeneous mixture of organic compounds ranging 3 from simple, short-chain molecules to complex fulvic and humic substances leached from soils (Stutter et al., 2007). Though it only represents a small proportion of total soil organic 4 matter in both terrestrial and aquatic ecosystems, DOM links various ecological compartments 5 including soils to water bodies, serves as a crucial indicator of biogeochemical responses to 6 disturbance, and provides carbon (C) and energy for microbial metabolism (Bolan et al., 2011; 7 Kalbitz et al., 2000; Wilson and Xenopoulos, 2009). The average global surface temperature 8 has increased by 0.74°C since 1850 and is likely to increase by another 1.1-6.4°C by the end of 9 this century (Solomon et al., 2007). Wetlands are globally important carbon stores, and many 10 11 are thought to be highly sensitive to climate change (Erwin, 2009) but we know little about 12 DOM concentration dynamics and the nature of change in DOM properties under warming for 13 a range of wetland types including subtropical wetlands. 14 Rising temperatures accelerate the microbial decomposition rates of soil organic matter. A 15 key issue is whether the balance of the net soil organic matter store shifts as warmer temperatures may also mean more production of soil organic matter from biotic residues. It is 16 17 unclear for many wetland systems whether accelerated C loss associated with warming is a transitory phenomenon with almost unchanged soil organic matter contents or whether it is 18 persistent with a net of loss of C from the soil store which is released as CO₂ to the atmosphere 19 (Bengtson and Bengtsson, 2007; Kirschbaum, 2004) and in aquatic forms (Kalbitz et al., 2000; 20 Mulholland, 1997). Data from long-term field warming incubations for mid-latitude hardwood 21 22 forest soils has demonstrated that the stimulatory effect of rising temperature on increased CO₂

emission rates evident in first few years of warming was reduced so that CO₂ dropped back to
similar rates to those before the elevated temperature (Kirschbaum, 2004; Melillo et al., 2002).
The reason for long-term reductions in CO₂ emission from wetland soils (after an initial
emission increase) was thought to be due to the depletion of available substrate indicating that
substrate utilization by microbes is a key mechanism. Better understanding of such processes
will aid predictions of soil C cycling dynamics under climate change.

7 Comparing the soil solid phase and pore-water, DOM in pore-water is probably the most bioavailable pool of soil organic matter (Bolan et al., 2011). The microbial utilization of DOM 8 is controlled by its bioavailability and biodegradability, both of which strongly influence the 9 fate of soil C stocks through influencing microbial feeding and functional physiology 10 11 (Marschner and Kalbitz, 2003). Increased temperature favors desorption of high-affinity compounds binding to minerals and release of occluded organic matter from soil aggregates 12 13 (Conant et al., 2011) which enhance pore-water DOM concentrations and thus the substrate bioavailability. Kalbitz et al. (2000) showed, in a review focused on DOM dynamics in soils, 14 that nearly all the results of short-term laboratory studies suggested that a rising temperature 15 may result in increased pore-water DOM concentrations. In field studies, however, multiple 16 factors simultaneously affect DOM concentrations (Stutter et al., 2007), leading to the DOM 17 pool varying with season (Stutter et al., 2007) and soil type (Kalbitz et al., 2000). It is still 18 unclear whether increased pore-water DOM concentrations will persist under more sustained 19 field warming (rather than in short-term studies), given the microbially-mediated 20 decomposition of soil organic matter and the variable levels of stability between different soil 21 22 organic fractions (von Lutzow and Kogel-Knabner, 2009).

1	Understanding DOM utilization is limited if we ignore its chemical character related to
2	substrate biodegradability (Kujawinski, 2011). The biodegradability of DOM is strongly
3	affected by its structural complexity (Fellman et al., 2008). The fractions such as low
4	molecular weight monomers with lower aromaticity and less condensed structure can be
5	directly assimilated by microbes, while high molecular weight compounds need to be first
6	broken down, or depolymerized to obtain energy contained within (Marschner and Kalbitz,
7	2003). DOM with intrinsically low quality usually contains a large proportion of stable
8	aromatic structures, such as lignin compounds, which is more resistant to degradation (Stutter
9	et al., 2007). As a result, decreased DOM biodegradability constrains substrate utilization and
10	further influences C uptake, retention and export (Battin et al., 2008) even without changed
11	DOM concentrations. There has been some DOM characterization work in peatlands
12	subjected to degradation and restoration (Glatzel et al., 2003) which has shown that DOM
13	composition affects CO ₂ efflux from peatlands and that DOM composition is also driven by respiration
14	and CO2 efflux. Work on afforested peatlands showed that peat drying alters the DOM composition
15	with less aromatic and lower molecular weight material (Baker et al., 2008). Seasonal
16	dynamics in DOM investigated by Huang and Chen (2009) for wetlands in the Neponset
17	River Watershed of eastern Massachusets suggested that higher temperature in summer and
18	fall could lead to higher values in fluorescence spectrum intensities of chromophoric DOM
19	compared to those in winter and early spring. So far, information about DOM chemical
20	character in the pore-water of wetland soils under sustained warming is extremely limited,
21	which impairs our understanding of likely wetland soil C cycling in the future.

22 Spectroscopy can be used to describe the quality of DOM since the optical properties of a

chromophoric group are closely related with the chemical and structural character of organic 1 2 matter (Kothawala et al., 2012). As a highly-sensitive tool, fluorescence spectroscopy allows identification of different compounds belonging to specific regions, and helps evaluate the 3 humicity of water samples (Chen et al., 2003; Fellman et al., 2010). Strong signal intensities of 4 protein-like and soluble microbial byproduct-like fluorescence would suggest that the DOM 5 contains a large hydrophilic fraction, such as carbohydrates, organic acids and proteins of 6 7 relatively high biodegradability. Enriched aromatic and hydrophobic structures in DOM related to terrestrial-derived humic-like fluorescence indicate an increase in water humicity. 8 9 These signatures combined with informative spectral indices from integrated UV-visible absorbance and fluorescence measurements provide a basis for estimating DOM 10 11 biodegradability (Wilson and Xenopoulos, 2009).

12 In this study, a real-time temperature controlled incubation system (Zhang et al., 2012) was 13 developed outdoors in May 2008 simulating warming scenarios to investigate the dynamics of soil pore-water DOM concentration and its chemical character over 4.5-years of incubation. 14 15 UV-visible and fluorescence spectroscopy were used to distinguish different classes of DOM 16 character. Six subtropical wetlands covering a broad gradient of soil organic matter contents (14.6 to 114 g kg⁻¹ dry soil, **Table 1**) were selected, given the potentially high variability of 17 pore-water DOM concentrations in wetlands. The objectives of this study were to: (i) test 18 whether DOM concentrations were persistently higher in warmed samples compared to the 19 control during 4.5-years of experimental warming; (ii) test whether warming induced changes 20 in DOM chemical character after 4.5-years of incubations; (iii) test whether there were distinct 21 22 differences in DOM response to warming between wetland soil types and (iv) to investigate

1 why any changes in DOM occurred.

2 2. Material and methods

3 2.1. Microcosm configuration and sample description

A custom-built novel microcosm was used to simulate climate warming (Zhang et al., 2012). 4 The microcosm involved samples being kept at current ambient temperature conditions 5 6 (control) and simulated warming conditions which were continuously 5°C above ambient 7 temperature (warmed). Specifics regarding the configuration and corresponding operation of 8 this microcosm system have been reported previously (Zhang et al., 2012). The microcosm 9 maintained hydrological characteristics and a humid habitat for microbial growth, offering a 10 high resolution temperature comparison, good repeatability, and the capability to simulate warming conditions with temperature of both the control and warmed treatments 'naturally' 11 varying on a daily and seasonal basis. Transparent PVC wetland columns filled with selected 12 wetland soils (20 cm in depth) and corresponding overlying water (20 cm in depth) were put 13 into the microcosm system in May 2008 and have been in continuous operation since then. 14 The details for preparing the wetland columns (with 6 replicates for each wetland site) were 15 described previously (Zhang et al., 2012). 16

Samples were taken from study sites located in the southern region of the Taihu Lake Basin within the delta of the Yangtze River, in China. Six wetlands, with shallow water bodies of 0.8-1.5 m in depth, differing in land use and nutrient status were selected (**Table 1**). In brief, YaTang riverine (YT) wetland is a polluted duck farm, while XiaZhuhu (XZ) wetland is threatened by aquaculture and anthropogenic nutrient inputs. The soils in YT and XZ have significantly higher organic matter, nutrient (i.e., phosphorus and nitrogen) and water contents
compared to others (Table 1). The wetlands named as BaoYang (BY), XiXi (XX), JinHu (JH),
and ShiJiu (SJ) are generally preserved for tourism and used as water reservoirs, typical of
recovered wetlands. SJ was formerly a paddy field with the lowest organic matter among the
six studied wetlands.

6 2.2. Non-destructive sampling for water chemical analysis

For soil pore-water sampling, a soil solution sampler (0.5 µm porous polyacrylonitrile hollow 7 8 fiber, Chinese Academy of Sciences, Nanjing) described by Song (2003) was horizontally embedded into the soil in each column at a fixed depth of 5 cm. About 30 mL of pore-water 9 was sampled from each wetland column on seven occassions (both winter and summer) of 10 between July 2009 and December 2012 inclusive) during 55 months of incubations for DOM 11 12 concentration analysis. At the end of the incubation (December, 2012), the sampled pore-water was also used for UV-visible and fluorescence spectral analysis. All of the following 13 measurements were conducted after filtration of pore-water through a 0.45 µm filter. 14

DOM concentration. Dissolved organic C was analyzed using a Shimadzu TOC 5000 analyzer (Shimadzu Scientific Instruments, Columbia, USA) after acidifying (10% HCl) and purging with inert gas to remove any inorganic C. The quantification of organic matter concentration is usually based on the C content. Therefore, we converted the dissolved organic C into DOM throughout the manuscript by multiplying by a factor of 1.72, in order to be consistent with spectroscopic analysis, which includes the whole DOM fraction (Kothawala et al., 2012).

1	UV-visible spectra. UV-visible absorbance spectra were measured spanning 200 to 400 nm at
2	0.2 nm intervals using a UV-2550 spectrophotometer (SHIMADZU Corporation, Japan).
3	Samples were put into a 1 cm quartz cuvette and distilled water was used as the blank. Specific
4	UV absorbance (SUVA), including SUVA ₂₅₄ and SUVA ₂₈₀ were calculated as the absorbance
5	at the wavelength of 254 nm and 280 nm normalized for dissolved organic C concentration,
6	respectively (Weishaar et al., 2003). The slope ($S_{280-400}$) of the absorbance spectrum curve was
7	calculated for the spectrum region between 280 and 400 nm (Stedmon et al., 2000). The
8	A_{253}/A_{203} value is the ratio of absorbance at 253 and 203 nm (He et al., 2013). Of four
9	UV-visible spectral indices (SUVA280, SUVA254, S280400, and A253/A203), SUVA280 and
10	SUVA ₂₅₄ are strongly correlated with aromaticity and molecular weight (Chin et al., 1994;
11	Weishaar et al., 2003). For UV-visible spectrum curves, the absorption is generally the highest
12	in the ultraviolet region and decreases to near zero in the red region. Therefore, $S_{280-400}$ is used
13	to evaluate how steep the absorption decreases with increasing wavelength (Stedmon et al.,
14	2000). A high A_{253}/A_{203} ratio indicates the presence of polar functional groups, such as
15	hydroxyl, carbonyl, and carboxyl on the aromatic ring, while a low ratio is related with the
16	substitution with aliphatic and methylene groups on the aromatic ring, and thus an increase in
17	DOM humicity (Minero et al., 2007).
18	Fluorescence spectra. For fluorescence intensity measurement, three dimensional

Fluorescence spectra. For fluorescence intensity measurement, three dimensional excitation-emission matrices (3D EEM) were studied using a Hitachi F-4500 fluorescence spectrophotometer (Hitachi High-Technologies Corporation, Japan), and the corresponding contour map was visualized by Sigmaplot 12.0. The excitation wavelengths spanned from 200 to 450 nm, and 300 to 600 nm for emission wavelengths with both at 5 nm increments.

1	Excitation and emission slit widths were set to 2.5 nm with default values for integration time.
2	Before measurement, manufacturer supplied correction factors were used to correct excitation
3	and emission intensities for instrument-specific biases. The raw data were corrected for
4	inner-filter effects due to the absorption of incident and emitted light by colored organic matter
5	suspended within the sample cuvette using absorbance measurements (Ohno, 2002) after
6	normalizing for dissolved organic C concentration. Raman scatter effects of fluorescence were
7	removed by dividing by the Raman area of a Milli-Q water integrated at an excitation of 350
8	nm, and over an emission range of 380 to 420 nm (Lawaetz and Stedmon, 2009). The
9	fluorescence index (FI) was calculated as the ratio of emission intensity at 470 and 520 nm at
10	fixed excitation wavelength of 370 nm. The freshness index (β : α) was calculated as the ratio
11	of emission intensity at 380 nm divided by the intensity maximum between 420 and 435 nm at
12	fixed excitation wavelength of 310 nm. The humification index (HIX) is the integrated area
13	under spectra at emission wavelengths from 435 to 480 nm divided by the sum of the area at
14	emission wavelengths from 435 to 480 nm and 300 to 345 nm at a fixed excitation wavelength
15	of 254 nm (Ohno, 2002). Fluorescence peak A, which is associated with fulvic-like
16	components, and peak C, which is attributed to humic-like substances falling within the certain
17	EEM regions (Chen et al., 2003) were acquired by instrument automated "peak-picking" by
18	scrolling to peak locations on the 3D EEM and finding the fluorescence peak intensity. The
19	ratio of fluorescence signal intensity of peak A to peak C (I_A/I_C) was calculated. The above
20	fluorescence spectral indices describe the different aspects of the DOM chemical character as
21	shown by Wilson et al. (2009). Briefly, FI is strongly correlated with degree of structural
22	conjugation, and β : α is an indicator of autochthonous C inputs associated with

1

2

microbial-originated sources of DOM. HIX increases with increasing aromaticity, while IA/IC is negatively related to the degree of DOM humicity.

The fluorescence regional integration (FRI) technique was adopted to further analyze the 3 EEM spectra. According to the approach described by Chen et al. (2003), each EEM spectrum 4 was divided into five regions (Region I-V). The integrated volume beneath each region was 5 quantitatively calculated in a unit of AU-nm²-[mg/L C]⁻¹ after being normalized to dissolved 6 organic C concentration using MATLAB R2010b. We divided the calculated volume by the 7 relative region area (nm²) in order to reduce the effects of secondary or tertiary 8 excitation-emissions responses on the extension of fluorescence peak shoulders at longer 9 wavelengths. The percent fluorescence response (P_{in} which refers to the proportion of above 10 11 area-normalized values in Region i to the entire Region in EEM) was represented in this study. 12 The operationally defined five regions are as follows (Chen et al., 2003): the regions under 13 excitation (Ex) and emission (Em) coordinates (~250/~380, Ex/Em) at both shorter excitation and emission wavelengths represent aromatic proteins (i.e., tyrosine and tryptophan, Region I 14 15 and II respectively); the regions under coordinates (~250/380~, Ex/Em) at shorter excitation wavelengths and longer emission wavelengths are associated to fulvic acid-like materials 16 17 (Region III); the regions at the intermediate excitation wavelengths and shorter emission wavelengths (250-280/~380 nm, Ex/Em) are related to soluble microbial byproducts (Region 18 IV); the regions at both longer excitation and emission wavelengths (280~/380~, Ex/Em) 19 20 correspond to humic-like substances (Region V).

2.3. Statistical analyses 21

1	A preliminary three-way ANOVA was used to examine the total differences in DOM
2	concentrations varied with site (wetlands), treatment (control vs. warmed), and sampling time
3	as three factors. In a specific sampling time, differences in DOM concentrations, spectral
4	indices and integrated volume beneath specific regions were examined by a two-way ANOVA
5	with site and treatment as two factors. If the ANOVA result was significant ($p < 0.05$),
6	Student-Newman-Keuls (S-N-K) was further used for multiple comparisons between groups.
7	Student's t-tests were used to test for differences in DOM concentrations and chemical
8	character for each specific wetland between treatments.
9	3. Results
10	3.1. DOM concentration dynamics
11	DOM concentrations during 2009 to 2012 varied significantly with site ($p < 0.001$), treatment
12	(p < 0.001), and sampling time $(p < 0.002)$. Multiple comparisons showed that the mean DOM
13	concentrations were the highest in YT, and the lowest in SJ ($p < 0.001$) among the six wetlands.
14	Warming impacts on DOM concentrations depended on sampling time as revealed by
15	significant ($p < 0.001$) interaction effects between treatment and sampling time. On average
16	the treatment samples had DOM which was 14.5% greater than the controls in July 2009 ($p =$
17	0.001, Fig. 1A). The maximum differences between treatments as a whole were observed in
18	samples taken in November 2010 (26.8% higher in warmed relative to the control, Fig. 1H).
19	The two winter sampling occassions after November 2010 (February 2011, December 2012)
20	both indicate declining winter DOM concentration differences between treatments (Fig, 1H)
21	with the 7.92% difference in December 2012 between controls and treatments being

1	insignificant ($p = 0.579$, Fig. 1G) when the DOM dataset is considered as a whole. Similarly,
2	after August 2010 the differences in summer samples between treatments were successively
3	smaller in 2011 and 2012 (July 2012 only 4.4% and not significant ($p = 0.611$)). Warming
4	effects on DOM concentrations were site-specific ($p = 0.067$). For all sampling occassions
5	from July 2011 onwards differences in DOM concentrations between treatments for each
6	wetland were insignificant except for BY (Fig. 1E-G). YT and XZ, characterized as
7	organic-enriched wetlands, showed the strongest responses of DOM release to warming in the
8	initial years of the experiment (2009-2010, Fig. 1A-E), and then the warming effects on DOM
9	concentration gradually became smaller in the proceeding years (2011-2012, Fig. 1F, G). For
10	SJ and JH, characterized as organic-poor wetlands, there were no significant differences in
11	DOM concentration between treatments throughout all observed years (Fig. 1A-G).

12 3.2. UV-visible absorbance and spectral indices

13 UV-visible absorbance of DOM at 254 nm (A₂₅₄) was consistently higher (p < 0.001) in 14 warmed samples relative to the control at the end of the experiment, especially for XZ and YT 15 (**Table 2**). The patterns of differences were similar for SUVA₂₈₀ (p = 0.010) and SUVA₂₅₄ (p =16 0.008). The ratio of A₂₅₃/A₂₀₃ was lower (p = 0.026) by 52.3% under warming when 17 comparing the mean values from six wetlands between treatments (**Table 2**). Decreased (p <18 0.05) S₂₈₀₋₄₀₀ values between treatments were only observed in XZ.

19 *3.3. Fluorescence specific components and spectral indices*

Of the fluorescence spectral indices (FI, β: α, HIX, and I_A/I_C), FI and β: α remained unchanged
between treatments for all samples (**Table 3**). HIX in warmed samples was higher (by 22.6%,

1	p < 0.001) than those in the control by comparing the mean values from six wetlands between
2	treatments, while I_A/I_C was lower ($p < 0.001$) under warming, especially for XZ and YT
3	(Table 3). Compared to UV-visible spectral indices in Table 2 as well as FI and β : α in Table 3 ,
4	HIX had a relatively low coefficient of variation both within-samples (0.38% to 8.86%,
5	replicates for each wetland) and between-samples (4.68%, among six tested wetlands). In
6	contrast, I_A/I_C varied greatly among these wetlands ($p < 0.001$, S-N-K test) from 1.76 (JH) to
7	0.67 (YT) (Table 3).

8	For FRI analysis, the $P_{V,n}$ values in region V were consistently higher ($p < 0.05$ or 0.01) in
9	all warmed samples, ranging from 6.81 (JH) to 14.2 (YT), compared to the control, which
10	varied from 5.42 (SJ) to 11.1 (YT) (Table 4). For other regions, $P_{I,n}$ and $P_{II,n}$ in region I and II
11	were marginally ($p = 0.098$ and 0.072, respectively) decreased under warming in all tested
12	wetlands as a total, and were especially lower for warmed SJ and JH samples relative to the
13	control (Table 4). Meanwhile, $P_{III,n}$ in region III were exclusively lower ($p < 0.05$) in warmed
14	XZ and YT samples, and $P_{IV,n}$ in region IV were lower ($p < 0.05$) only in warmed SJ samples
15	when compared to the control. Similar to HIX, P _{i,n} values had a relatively low coefficient of
16	variation within-samples (0.25% to 30.4%). For between-samples, $P_{V\!,n}$ in YT and XZ were
17	much higher than those in SJ and JH, while in contrast $P_{I,n}$ were the lowest in YT among tested
18	wetlands (Table 4). To confirm these differences, we compared the EEM of SJ samples (as an
19	example) with YT samples (Fig. 2). For SJ samples, the soluble microbial byproduct-like
20	fluorescent components (with center peak located in 275/305, E_X/E_M , in Region IV), and the
21	protein-like fluorescent components (with center peak located in 230/335, E_X/E_M , in Region II)
22	in the control (Fig. 2A) were not present or overlapped in the warmed samples (Fig. 2B). For

1	YT samples, the center position of the humic-like peak (i.e., peak C) shifted from E_X/E_M ,
2	325/410 (control, Fig. 2C) to E_X/E_M , 330/425 (warmed, Fig. 2D), a shift of the emission
3	spectra toward longer wavelengths, which is also defined as a red shift in fluorescence
4	spectrum. Such shifts in the position of humic-like peak were also observed in XZ (Table 3).
5	Meanwhile, the fulvic-like peak (i.e., peak A) area in Region III was more contracted in the
6	warmed (Fig. 2D), compared to the control (Fig. 2C).

7 **4. Discussion**

8 4.1. Effects of experimental warming on DOM concentration dynamics

YT and XZ samples had relatively high organic contents and it is likely that their substrates 9 10 were capable of more leaching at elevated temperature from the soil solid-phase to pore-water, and had stronger susceptibility to experimental warming compared to other wetland soils over 11 the first 2.5-years of the experiment. In contrast, no significant differences in DOM 12 concentrations between treatments throughout the incubation occurred for organic-poor 13 wetland soils (SJ and JH). When organic matter in soils is relatively low, physical 14 disconnection and spatial inaccessibility is enhanced between soil microbes and substrates 15 16 (Schmidt et al., 2011). Elevated temperature may, therefore, not be able to promote desorption 17 of soluble compounds bound to minerals and release occluded organic matter from soil aggregates in these soils. Moreover, the more unevenly distributed organics in soil particles 18 19 and water-saturated pore spaces (Schmidt et al., 2011) may have also enhanced the variability within replicate samples of SJ and JH, leading to statistical insignificance. As a result, 20 21 organic-poor wetland soils were less responsive to warming in the short-term (1-2.5 years).

1

2

However, under sustained warming (4.5-years), there were no significant differences in DOM concentrations between treatments for all but one (BY) of the wetlands.

The impacts of a given elevated temperature will also depend on the ambient temperature, 3 therefore, our $+5^{\circ}$ C soil warming on the winter samples (such as samples taken in November 4 2010, February 2011, and December 2012) when ambient water temperatures are around 10° C 5 6 did not have the same impacts as the warming on the summer samples (taken in July or August of 2009-2012) when ambient water temperatures are around 26°C. Warming effects on DOM 7 8 release may be greater (when comparing the difference between ambient and warmed treatments) during winter months as indicated by our November 2010 results, suggesting 9 treatment conditions (+5°C warming) could sometimes be a larger factor when ambient 10 temperatures are initially lower and such seasonal factors need to be incorporated into 11 long-term warming experiments on subtropical wetlands. Despite this, our summer patterns of 12 13 DOM production in different years showed that differences in DOM concentrations between treatments diminished over time after an initial phase of increase in the summers one year and 14 two years after the start of the incubation. For winter DOM concentration differences we only 15 16 have the November 2010 sampling date as our starting point so we cannot tell if there had been a gradual rise in differences between treatments for successive winters after the start of the 17 incubation in 2008. However, the February 2011 winter sample had a smaller difference 18 between treatments and contols (all site samples combined) than that three months earlier and 19 the December 2012 sample had no significant differences between treatments and contols for 20 DOM concentration. 21

22

When DOM was released, the accumulated DOM in pore-water may be transported from

16

soils into water bodies through vertical diffusion processes under the steep concentration 1 2 gradient along a soil profile, leading to large aquatic C loss from wetlands downstream to aquatic ecosystems (Mulholland, 1997). The acclimation of DOM concentrations under 3 sustained experimental warming in this study suggests that C loss in dissolved forms could be 4 tempered over time in subtropical wetlands, which may have implications for our predictions 5 6 of C cycling and C loss under climate change scenarios. Of course, in reality a soil will not be subject to an immediate and sustained 5°C warming under climate change and so more 7 gradual warming effects on some wetland soils over time may result in no observed 8 differences in soil DOM concentration and release compared to baseline conditions due to the 9 feedback effects we have identified. 10

11 4.2. Effects of experimental warming on DOM biodegradability

12 Many wetlands have longer hydrological and biogeochemical residence times than downstream rivers or lakes (Bullock and Acreman, 2003). Before transport into overlying 13 water, DOM in pore-water would go through a high degree of microbial consumption and 14 15 transformation with a progressed level of biological processing, including microbial uptake of 16 available substrate and the release of microbial metabolites (Fellman et al., 2008). As a result, 17 DOM composition and chemistry may be highly variable, depending on the autochthonous C production, which has a microbial origin, and allochthonous organic matter leaching from 18 19 solid-phase soil organic matter pools. The allochthonous DOM fraction, largely of terrestrial origin, is resistant to biodegradation due to its high content of complex aromatic structures, 20 including chitin and lignin compounds (Fellman et al., 2010). Not all soluble substrates can be 21

1	easily assimilated and metabolized by microbial cells. A large proportion of humic-like
2	substances in DOM increase the difficulty of microbial feeding. Meanwhile, the protein-like
3	fluorescence, which is most closely related to DOM biodegradability (Fellman et al., 2008;
4	Kothawala et al., 2012), was selectively lost in some warmed samples. The red shift reflects
5	higher molecular-weight fractions with an increased degree of water humicity. The water
6	absorption of visible-UV light is due to the ubiquitous aromatic chromophores (primarily
7	humics) in DOM. Weishaar et al. (2003) have shown that percent aromaticity determined by
8	¹³ C NMR was strongly correlated with SUVA values indicating that SUVA values can be used
9	to reflect the amount of aromatic compounds. These fluorescence fingerprints combined with
10	decreased A_{253}/A_{203} and I_A/I_C ratio provides evidence for a relative shortage of readily
11	available substrates for DOM composition under warming.

Terrestrially-derived soluble humic-like substances can be traced back to the dynamics of 12 13 solid-phase soil organic C pools. According to different soil intrinsic turnover times (Davidson 14 et al., 2000), soil organic C pools can be divided into labile and recalcitrant C fractions. Recently, studies have suggested that recalcitrant soil organic C pools with complex molecular 15 attributes, characterized by low decomposition rates and requiring high activation energies to 16 17 react, are intrinsically more sensitive to temperature than the labile pool (von Lutzow and Kogel-Knabner, 2009). It is well known that the newly incorporated fresh litter can be 18 gradually utilized and converted into more stable forms through soil-forming processes. 19 However, these processes may be impaired by global warming with more stable soil organic 20 21 matter converted into active soil organic matter in dissolved forms through soil organic matter 22 destabilization, such as depolymerization, dissolution and desorption processes (Sollins et al.,

1996). The relatively higher humicity of DOM in the wetland soils we studied suggested the 1 2 recalcitrant soil fractions may be preferentially leached in response to warming, compared to the labile pools. Consistent with this, laboratory incubation of boreal forest soils has shown 3 that warming led to the leaching of humified soil organic matter incorporated into DOM (Li et 4 al., 2012), which increased the contribution of aromatic contents in the composition of DOM. 5 6 Moreover, some soluble proteins and simple fatty acids could be rapidly consumed when microbial metabolic rates increase significantly with rising temperature (Gudasz et al., 2010). 7 The shortage of readily available substrate may be a negative feedback which counteracts the 8 early effects of warming on DOM and CO2 effluxes through diminished microbial activities 9 (Frey et al., 2008; Melillo et al., 2002). In this process, thermal acclimation of microbial 10 11 physiology may also be one of the key mechanisms leading to gradually diminished C loss under experimental warming (Bradford et al., 2008). 12

13 Alternatively to the above, however, there are some papers where substantial C loss has been reported under sustained soil warming (e.g. from boreal permafrost (Schuur et al., 2009), 14 as well as some fertilized soils (Mack et al., 2004)). Most of these studies showed that C 15 16 transferred into atmosphere came from recalcitrant, old C fractions. Allison et al. (2010) theoretically suggested that warning may lead to omnipotent microbes changing their 17 strategies to utilize more recalcitrant C pools through a changed microbial community or 18 adjustment of C use efficiency when readily available substrate is limited, leading to greater C 19 loss. These findings increase uncertainty in our ability to predict C cycle changes under future 20 climate. Therefore, further research about the dynamics of different soil organic C fractions 21 22 and associated enzymatic activities as well as microbial community shifts are needed in our

1 tested wetlands under sustained warming.

2 4.3. Effect of soil types on DOM concentration and structural complexity

There were only small differences in pore-water DOM concentrations between the six studied 3 wetlands yet the soil organic matter stored in YT was 6.83 times higher than those in SJ. 4 Although most of DOM originates from leaching of solid-phase soil organic pools, the 5 relationship between total organic matter stored in the soils and DOM concentrations in 6 pore-water for the six wetlands was not significant (p > 0.05). In contrast, a previous study 7 8 (Wang et al., 2012) reported that phosphorus concentrations in the pore-water were closely (p = 0.045) related with soil total phosphorus contents from these microcosm samples. Our 9 results imply that besides allochthonous precursor organic matter in bulk soils responsible for 10 DOM concentration dynamics, microbial consumption and production of microbial-originated 11 12 DOM may also greatly influence DOM concentrations, increasing its variability and uncertainty in field study. Rapid turnover of DOM and the resultant large fluctuations in DOM 13 concentrations by microbial activities have been well documented in temperate forest soils 14 (Bengtson and Bengtsson, 2007). SJ had the lowest soil organic contents (14.6 g kg⁻¹) among 15 the six wetlands, while the DOM concentrations in SJ were comparable to those in other 16 17 wetlands. These findings suggest that even some organic-poor soils may retain relatively high soluble C as available substrates through microbial metabolism. Soluble phosphorus contents 18 in the pore-water of SJ were very low and almost approached detection limits (Wang et al., 19 2012). 20

21 The six wetlands contained DOM with distinct fluorescent fingerprints, including the

1	identified fluorescent components, and the associated intensities and positioning of specific
2	fluorescence peaks. The DOM in YT had the highest humic-like fluorescence intensities
3	among the six wetlands studied as indicated by the lowest I_A/I_C and the highest $P_{V,n}$ values in
4	Region V. Most humic acids resistant to biodegradation have been found to accumulate in
5	upper organic horizons, and decrease in a soil profile with increasing mineral contents in lower
6	soil horizons, where fulvic acids gradually become the dominant fraction (Ussiri and Johnson,
7	2003). This partially explains why organic-enriched wetlands (i.e., YT and XZ) have relatively
8	higher humic-like contents than others. We observed the soluble microbial byproduct-like and
9	protein-like fluorophore in SJ and JH wetlands under ambient temperature conditions, while
10	for other wetlands the protein-like fluorescence peaks were almost overlapped by the
11	fulvic-like fluorescence. Consistent with this, P _{Ln} values in Region I associated with
12	protein-like substances were higher for SJ and JH compared to YT. This suggests that the
13	paddy soils of organic-poor wetlands (such as SJ) contain DOM with relatively large fractions
14	of easily-degradable substances among the studied soil types. Minerotrophic wetland soils
15	such as fens and paddy soils, have been shown to possess high primary production and fast
16	turnover rates of nutrients (Aerts et al., 1999). Consistent with this, we also observed that the
17	highly productive emergent macrophytes (including Acorus calamus and Typha angustifolia)
18	grew in the SJ and JH wetland sites, while most floating-leaf aquatic plants, like Trapa incisa,
19	Lemna minor, and Azolla imbricata dominated in YT, XZ and XX wetland sites. Some
20	easily-degradable carbohydrates and amino acids through root exudation and litter decay
21	(Eviner and Chapin, 1997) may explain the detected protein-like fluorescent components in
22	DOM from SJ and JH. For YT and XZ, though possessing enriched soil organic matter

contents, the large soil water contents (more than 60%) seems to inhibit the growth of
rooted-plants, leading to unexpectedly low protein-like compounds in DOM. A large
proportion of easily-degradable DOM is generally "young" and recently fixed (Yano et al.,
2000), which implies that the substrates in SJ and JH could be efficiently utilized by plants or
microbes, leading to fast DOM turnover rates. As a result, microbial demand for substrates in
organic-poor wetlands seems to be more severe than that in organic-enriched wetlands (i.e.,
YT and XZ).

8 4.4. Evaluation of different spectrum values

9 We found that the routinely used spectral indices, including $S_{280,400}$, FI and β : α failed to 10 capture observed changes in DOM character in response to warming. Microbial utilization and photo-degradation of DOM may both cause $S_{280-400}$ to decrease through a flattening effect on 11 12 the slope of spectrum curves, while the removal of some complex compounds is responsible for the increase in $S_{280,400}$ (Stedmon et al., 2000). Warming did not significantly change the 13 $S_{280-400}$, except for the XZ wetland soil. FI are derived from three single data points with 14 15 fluorescence intensities, including two emission wavelengths (470 and 520 nm) and one 16 excitation wavelength (379 nm) falling into the humic-like acid regions (Region V in EEM) 17 (Chen et al., 2003). We observed an increased percentage of humic-like fluorescence intensities and shifted positioning of the humic-like peak center towards longer emission 18 wavelengths (red shift) for warmed samples compared to the control. FI seemed to be 19 insufficient to describe the shape or positioning of these fluorescence peaks and the resultant 20 differences in FI between treatments were negligible. The freshness index (β : α) is calculated 21

22

1	based on the fluorescence peak C and peak M, in which peak C falls into the humic-like acid
2	region (Region V), while the peak M is blue-shifted towards protein-like regions along the
3	emission axis relative to peak C and is largely located at the transitional zone between soluble
4	microbial byproduct-like (Region IV) and humic-like acid regions (Chen et al., 2003; Wilson
5	and Xenopoulos, 2009). Therefore, peak M is fresher than peak C. One of the fluorescence
6	intensity variables used in the freshness index was at the excitation wavelength of 310 nm.
7	However, in this study, some of fluorescence peaks were found at excitation wavelengths less
8	than 300 nm. Therefore, the freshness index may fail to describe warming-induced changes in
9	DOM character. Overall, the common feature in most of the above spectral indices was that
10	only one to three data points from an EEM spectrum were used to quantify fluorescence
11	spectra, which led to large variability in values within-samples and between samples when,
12	effectively, only a small part of the dataset was used. Therefore, the interpretation of these
13	indices to understand the extent of decompostion and production of different DOM structures
14	should be undertaken with caution. We further used FRI technology combined with the HIX
15	value to quantify fluorescence EEM spectra. Both HIX and integrated percent fluorescence
16	distribution had a relatively low coefficient of variation within-samples. We suggest that HIX,
17	calculated from the integrated area of specific region, is more robust for detecting
18	inconspicuous changes in the chemical character of DOM, compared to FI or β : α , calculated
19	from one to three data points. Across a wide range of DOM concentrations from tested
20	wetlands (SJ-YT), percent fluorescence distributions were well verified by the changing
21	patterned viewed within EEM spectra (Fig. 2), indicating the method of quantifying
22	cumulative fluorescence intensities under certain fluorescence peaks can be applied to various

water samples (<u>Chen et al., 2003</u>). Through inner filter correction, the influence of high DOM
concentrations on HIX values and P_{i,n} values could be more effectively corrected to produce
reliable results to describe DOM character shifts under warming.

4 Conclusions

To our best knowledge, this study is the first to explore the impacts of experimental warming 5 6 on DOM character for soil pore-water in wetlands. Elevated temperature was associated with an increase in the release of DOM from the solid-phase into pore-water with increasing 7 differences up to 2.5 years into the experiment. After this point the greater DOM in the 8 warmed treatments declined and there was no overall significant difference by the end of the 9 10 experiment between treatments except for one of the six wetland soils. However, at the end of the experimental period, 55 months after the commencement of a 5°C incubation above 11 12 ambient conditions, spectral information for spectral indices (i.e., SUVA₂₈₀, SUVA₂₅₄, A_{253}/A_{203} , HIX and I_A/I_C) and regional EEM spectra analysis indicated that the experimental 13 warming increased the DOM humicity with enriched humic-like substances found in warmed 14 15 samples, where relatively easy degradable substrates, such as protein-like, microbial byproduct-like, and/or fulvic-like compounds were selectively lost or reduced, leading to 16 decreased DOM biodegradability in response to experimental warming. Thus a negative 17 feedback effect has been identified, the magnitude of which depended to some extent on the 18 nature of the wetland substrate. A preferential loss of easily degradable substances in DOM 19 composition with concomitant decreases in soil DOM degradability under warming could be 20 very important as a process which ought to be included when predicting how wetland C 21

24

1 cycling will operate under future climate change.

2 ACKNOWLDGEMENTS

- 3 The authors wish to thank the National Natural Science Foundation of China (40701162),
- 4 Public Projects of National Ministry of Environmental Protection (2010467014) and National
- 5 Ministry of Water Resources (201301092), and the University of Leeds Worldwide University
- 6 Network Fund for International Collaboration for providing the financial support for this

7 project.

8

9 **References**

- Aerts R, Verhoeven JTA, Whigham DF. Plant-mediated controls on nutrient cycling in temperate fens
 and bogs. Ecology 1999; 80: 2170-2181.
- Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial
 physiology. Nature Geoscience 2010; 3: 336-340.
- Baker A, Bolton L, Newson M, Spencer RGM. Spectrophotometric properties of surface water
 dissolved organic matter in an afforested upland peat catchment. Hydrological Processes 2008;
 22: 2325-2336.
- Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, et al. Biophysical controls on
 organic carbon fluxes in fluvial networks. Nature Geoscience 2008; 1: 95-100.
- Bengtson P, Bengtsson G Rapid turnover of DOC in temperate forests accounts for increased CO₂
 production at elevated temperatures. Ecology Letters 2007; 10: 783-790.
- Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N. Dissolved organic matter:
 biogeochemistry, dynamics, and environmental significance in soils. Advances in Agronomy
 2011; 110: 1-75.
- Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, et al. Thermal adaptation of
 soil microbial respiration to elevated temperature. Ecology Letters 2008; 11: 1316-1327.
- Bullock A, Acreman M. The role of wetlands in the hydrological cycle. Hydrology and Earth System
 Sciences 2003; 7: 358-389.
- Chen W, Westerhoff P, Leenheer JA, Booksh K. Fluorescence excitation Emission matrix regional
 integration to quantify spectra for dissolved organic matter. Environmental Science &
 Technology 2003; 37: 5701-5710.
- 31 Chin YP, Aiken G, Oloughlin E. Molecular-weight, polydispersity, and spectroscopic properties of

1	aquatic humic substances. Environmental Science & Technology 1994; 28: 1853-1858.
2	Conant RT, Ryan MG, Agren GI, Birge HE, Davidson EA, Eliasson PE, et al. Temperature and soil
3	organic matter decomposition rates - synthesis of current knowledge and a way forward.
4	Global Change Biology 2011; 17: 3392-3404.
5	Davidson EA, Trumbore SE, Amundson R. Soil warming and organic carbon content. Nature 2000;
6	408: 789-90.
7	Erwin KL. Wetlands and global climate change: the role of wetland restoration in a changing world.
8	Wetlands Ecology and Management 2009; 17: 71-84.
9	Eviner VT, Chapin FS. Nitrogen cycle - Plant-microbial interactions. Nature 1997; 385: 26-27.
10	Fellman JB, D'Amore DV, Hood E, Boone RD. Fluorescence characteristics and biodegradability of
11	dissolved organic matter in forest and wetland soils from coastal temperate watersheds in
12	southeast Alaska. Biogeochemistry 2008; 88: 169-184.
13	Fellman JB, Hood E, Spencer RGM. Fluorescence spectroscopy opens new windows into dissolved
14	organic matter dynamics in freshwater ecosystems: A review. Limnology and Oceanography
15	2010; 55: 2452-2462.
16	Frey SD, Drijber R, Smith H, Melillo J. Microbial biomass, functional capacity, and community
17	structure after 12 years of soil warming. Soil Biology & Biochemistry 2008; 40: 2904-2907.
18	Glatzel S, Kalbitz K, Dalva M, Moore T. Dissolved organic matter properties and their relationship to
19	carbon dioxide efflux from restored peat bogs. Geoderma 2003; 113: 397-411.
20	Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ. Temperature-controlled organic
21	carbon mineralization in lake sediments. Nature 2010; 466: 478-U3.
22	He XS, Xi BD, Jiang YH, He LS, Li D, Pan HW, et al. Structural transformation study of
23	water-extractable organic matter during the industrial composting of cattle manure.
24	Microchemical Journal 2013; 106: 160-166.
25	Huang W, Chen RF. Sources and transformations of chromophoric dissolved organic matter in the
26	Neponset River Watershed. Journal of Geophysical Research-Biogeosciences 2009; 114.
27	Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E. Controls on the dynamics of dissolved organic
28	matter in soils: A review. Soil Science 2000; 165: 277-304.
29	Kirschbaum MUF. Soil respiration under prolonged soil warming: are rate reductions caused by
30	acclimation or substrate loss? Global Change Biology 2004; 10: 1870-1877.
31	Kothawala DN, von Wachenfeldt E, Koehler B, Tranvik LJ. Selective loss and preservation of lake
32	water dissolved organic matter fluorescence during long-term dark incubations. Science of the
33	Total Environment 2012; 433: 238-246.
34	Kujawinski EB. The impact of microbial metabolism on marine dissolved organic matter. Annual
35	Review of Marine Science, Vol 3 2011; 3: 567-599.
36	Lawaetz AJ, Stedmon CA. Fluorescence intensity calibration using the raman scatter peak of water.
37	Applied Spectroscopy 2009; 63: 936-940.
38	Li JW, Ziegler S, Lane CS, Billings SA. Warming-enhanced preferential microbial mineralization of

1	humified boreal forest soil organic matter: Interpretation of soil profiles along a climate transect
2	using laboratory incubations. Journal of Geophysical Research-Biogeosciences 2012; 117.
3	Mack MC, Schuur EAG, Bret-Harte MS, Shaver GR, Chapin FS. Ecosystem carbon storage in arctic
4	tundra reduced by long-term nutrient fertilization. Nature 2004; 431: 440-443.
5	Marschner B, Kalbitz K. Controls of bioavailability and biodegradability of dissolved organic matter in
6	soils. Geoderma 2003; 113: 211-235.
7	Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, et al. Soil warming and carbon-cycle
8	feedbacks to the climate system. Science 2002; 298: 2173-2176.
9	Minero C, Lauri V, Falletti G, Maurino V, Pelizzetti E, Vione D. Spectrophotometric characterisation of
10	surface lakewater samples: Implications for the quantification of nitrate and the properties of
11	dissolved organic matter. Annali Di Chimica 2007; 97: 1107-1116.
12	Mulholland PJ. Dissolved organic matter concentration and flux in streams. Journal of the North
13	American Benthological Society 1997; 16: 131-141.
14	Ohno T. Fluorescence inner-filtering correction for determining the humification index of dissolved
15	organic matter. Environmental Science & Technology 2002; 36: 742-746.
16	Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Persistence of soil
17	organic matter as an ecosystem property. Nature 2011; 478: 49-56.
18	Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE. The effect of permafrost
19	thaw on old carbon release and net carbon exchange from tundra. Nature 2009; 459: 556-559.
20	Sollins P, Homann P, Caldwell BA. Stabilization and destabilization of soil organic matter: Mechanisms
21	and controls. Geoderma 1996; 74: 65-105.
22	Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor, M., et al. Climate change
23	2007: the physical science basis. Contribution of Working Group to the Fourth Assessment
24	Report of the IPCC. Cambridge University Press, Cambridge, United Kingdom 2007.
25	Song J, Luo YM, Zhao QG, Christie P. Novel use of soil moisture samplers for studies on anaerobic
26	ammonium fluxes across lake sediment-water interfaces. Chemosphere 2003; 50: 711-715.
27	Stedmon CA, Markager S, Kaas H. Optical properties and signatures of chromophoric dissolved
28	organic matter (CDOM) in Danish coastal waters. Estuarine Coastal and Shelf Science 2000;
29	51: 267-278.
30	Stutter MI, Lumsdon DG, Cooper RJ. Temperature and soil moisture effects on dissolved organic matter
31	release from a moorland Podzol O horizon under field and controlled laboratory conditions.
32	European Journal of Soil Science 2007; 58: 1007-1016.
33	Ussiri DAN, Johnson CE. Characterization of organic matter in a northern hardwood forest soil by C-13
34	NMR spectroscopy and chemical methods. Geoderma 2003; 111: 123-149.
35	von Lutzow M, Kogel-Knabner I. Temperature sensitivity of soil organic matter decomposition-what do
36	we know? Biology and Fertility of Soils 2009; 46: 1-15.
37	Wang H, Holden J, Spera K, Xu X, Wang Z, Luan J, et al. Phosphorus fluxes at the sediment-water
38	interface in subtropical wetlands subjected to experimental warming: A microcosm study.

1 Chemosphere 2012.

- Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K. Evaluation of specific
 ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved
 organic carbon. Environmental Science & Technology 2003; 37: 4702-4708.
- 5 Wilson HF, Xenopoulos MA. Effects of agricultural land use on the composition of fluvial dissolved
 6 organic matter. Nature Geoscience 2009; 2: 37-41.
- Yano Y, McDowell WH, Aber JD. Biodegradable dissolved organic carbon in forest soil solution and
 effects of chronic nitrogen deposition. Soil Biology & Biochemistry 2000; 32: 1743-1751.
- 9 Zhang ZJ, Wang ZD, Holden J, Xu XH, Wang H, Ruan JH, et al. The release of phosphorus from
- 10 sed

11

sediment into water in subtropical wetlands: a warming microcosm experiment. Hydrological Processes 2012; 26: 15-26.

Wetland ID	County	Latitude and longitude	Main wetland use	Annual mean water depth (m)	Annual mean flow velocity, (m min ⁻¹)	pН	Organic matter (g kg ⁻¹)	Total nitrogen (g kg ⁻¹)	Total phosphorus (mg kg ⁻¹)	Water contents (%)	
ShiJiu multipond	liaVing	120°41'31"E,	Water	1 20	1.69	7.20	1460	1.450	2460	22.62	
wetland (SJ)	JiaAilig	30°53'55"N	reservoir	1.20	1.00	/. 3 a	14.0 a	1.43 a	340 a	32.0 a	
Entry (III)	ShaoXing	120°33'32''E,	Water	2.50	0.05	7.2 a	25.5 a	1.89 a	579 b	25.10	
JIIIHU (JH)		30°01'58''N	reservoir	2.30	0.03					55.1 a	
XiXi national	Han a 7h au	120°03'59''E,	Tourism	0.95	0.10	740	22 Gb	2.97	501h	55 Ob	
wetland park (XX)	Haligzhou	30°16'23''N	Tourisiii	0.83	0.10	/.4a	52.00	5.870	5210	55.00	
BaoYang riverine	ChangVing	119°54'24''E,	Water	0.69	1 22	7 10	20.2 h	2.40 b	0220	545b	
wetland (BY)	ChangAing	31°04'31"N	reservoir	0.08	1.52	/.1 a	39.30	2.400	833C	54.5 D	
Vie Thubu (V7)	DaOina	120°02'54''E,	Tourism and	1.50	0.10	7.0	(17)	4 22 0	000	64.50	
Λ laZhunu (Λ Z)	DeQing	30°31'28''N	aquaculture	1.50	0.12	/. 3a	04./ C	4.32 C	900 C	04.5 C	
YaTang riverine	TV:	120°29'13''E,		0.90	1.02	74	4 1141	(01)	25201	(07.	
wetland (YT)	TongXiang	30°43'15"N	winxed use	0.80	1.02	7.4 a	114 d	0.81 d	2530 d	68./ c	

Table 1. Descriptions of the study sites for sampling in May 2008 and the basic son chemical properties

^aDifferent letters labeled in the column of soil chemical properties, i.e., "pH", "organic matter", "total nitrogen", "total phosphorus" and "water contents" indicate significant differences in the means between study sites by one-way analysis of variance (ANOVA) with study site as a factor and Student-Newman-Keuls (SNK) method was conducted for multiple comparisons. The organic matter, total nitrogen, total phosphorus in wetland soils were calculated based on dry soils, while water contents were calculated based on fresh soils.

Table 2. Mean \pm standard error of UV-visible absorbance at 254 nm wavelength in a 1cm quartz cuvette (A₂₅₄, cm⁻¹), as well as dissolved organic carbon concentration-normalized UV-visible spectral indices, including the specific UV-visible absorbance at 280 nm (SUVA₂₈₀, L mg⁻¹ m⁻¹) and at 254 nm wavelength (SUVA₂₅₄, L mg⁻¹ m⁻¹), UV-visible spectral slope between 280 and 400 nm wavelengths (*S*₂₈₀₋₄₀₀) and the ratio of absorbance at 253 and 203 nm wavelength (A₂₅₃/A₂₀₃) measured in soil pore-water of the six studied wetlands (i.e., SJ, JH, XX, BY, XZ, and YT) between treatments (control *vs.* warmed). Water samples were collected on Dec-08-2012, 4.5-years from the onset of experimental warming incubation. For each wetland, bold indicates a significant difference in the warming treatment compared to the control with asterisks indicating * *p* < 0.05, or ** *p* < 0.01 by Student's *t*-test. The bottom row indicates *p*-values from ANOVA conducted to test for differences between treatments across all wetlands as a whole.

Wetlands	A ₂₅₄		SUVA ₂₈₀		SUVA ₂₅₄		S_{28}	0-400	A ₂₅₃ /A ₂₀₃	
	Control	Warmed	Control	Warmed	Control	Warmed	Control	Warmed	Control	Warmed
SJ	0.17 ± 0.05	0.23 ± 0.06	0.32 ± 0.06	0.57 ± 0.14	0.37 ± 0.08	$0.70^* \pm 0.17$	9.70 ± 3.80	6.70 ± 1.81	0.95 ± 0.12	0.50*±0.12
JH	0.13 ± 0.01	0.17 ± 0.04	0.30 ± 0.04	0.30 ± 0.07	0.35 ± 0.03	0.40 ± 0.10	20.1 ± 2.2	16.3 ± 2.6	0.93 ± 0.04	0.68* ± 0.09
XX	0.14 ± 0.01	$0.28^{**} \pm 0.03$	0.33 ± 0.04	$0.53* \pm 0.05$	0.44 ± 0.05	0.69* ± 0.04	11.8 ± 1.5	9.83 ± 3.35	2.93 ± 1.13	0.63*±0.14
BY	0.12 ± 0.01	$0.21^{**} \pm 0.01$	0.27 ± 0.02	$0.35^{*} \pm 0.02$	0.38 ± 0.03	$0.47* \pm 0.03$	10.3 ± 1.5	13.5 ± 3.8	0.87 ± 0.31	0.49 ± 0.08
XZ	0.36 ± 0.06	$0.54* \pm 0.00$	0.84 ± 0.28	1.01 ± 0.14	0.96 ± 0.33	1.21 ± 0.19	12.6 ± 2.6	7.40* ± 1.41	0.89 ± 0.09	$0.63* \pm 0.03$
YT	0.50 ± 0.06	$0.81* \pm 0.03$	0.74 ± 0.11	1.24* ± 0.21	0.93 ± 0.14	1.56* ± 0.27	16.4 ± 2.7	15.8 ± 0.7	0.44 ± 0.02	0.41 ± 0.01
p-value	< 0.001 (Increase)		0.010 ()	Increase)	0.008 (1	Increase)	0.839 (N	o change)	0.026 (I	Decrease)

Table 3. Mean \pm standard error of dissolved organic carbon concentration-normalized fluorescence spectral indices, including fluorescence index (FI), freshness index (β : α), and humification index (HIX), as well as the fluorescence intensity ratio of peak A to peak C (I_A/I_C). The position of peak A and peak C falling within the specific 3D EEM regions are expressed as excitation and emission coordinates (Ex/Em) represented in the columns on the right. Water samples were collected on Dec-08-2012. For each wetland, bold indicates a significant difference in the warming treatment compared to the control with asterisks indicating * *p* < 0.05, or ** *p* < 0.01. The bottom row indicates *p*-values from ANOVA conducted to test for differences between treatments across all wetlands as a whole.

Wetlands]	FI		β: α		HIX		I_A/I_C		Peak A		Peak C	
weuanus	Control	Warmed	Control	Warmed	Control	Warmed	Control	Warmed	Control	Warmed	Control	Warmed	
SJ	2.12 ± 0.06	2.11 ± 0.09	0.64 ± 0.04	0.52 ± 0.10	0.91 ± 0.01	0.90 ± 0.01	n.d.	1.42 ± 0.10	240/415	240/415	n.d.	315/400	
JH	2.24 ± 0.01	2.09 ± 0.10	0.98 ± 0.23	1.48 ± 1.36	0.82 ± 0.03	0.89* ± 0.02	n.d.	1.76 ± 0.12	235/400	230/410	n.d.	295/395	
XX	1.97 ± 0.37	2.16 ± 0.07	0.67 ± 0.14	0.51 ± 0.08	0.78 ± 0.04	0.87* ± 0.03	1.74 ± 0.06	n.d.	240/420	235/400	315/400	n.d.	
BY	2.22 ± 0.04	2.14 ± 0.02	0.47 ± 0.04	0.71 ± 0.46	0.84 ± 0.02	0.85 ± 0.06	1.68 ± 0.22	1.42 ± 0.06	245/435	240/400	300/400	300/410	
XZ	2.27 ± 0.03	2.25 ± 0.02	0.72 ± 0.01	0.70 ± 0.02	0.88 ± 0.01	0.89* ± 0.00	1.43 ± 0.08	1.12** ± 0.06	230/400	250/430	305/415	330/440	
YT	2.08 ± 0.16	2.15 ± 0.07	0.65 ± 0.06	0.62 ± 0.01	0.89 ± 0.02	$0.92^* \pm 0.00$	0.87 ± 0.08	0.67* ± 0.03	245/410	250/415	325/410	330/425	
p-value	<i>e</i> 0.979 (No change)		0.645 (No change)	< 0.0	< 0.001 (Increase)		< 0.001 (Decrease)		Not Available			

Table 4. Mean \pm standard error of percent fluorescence distribution (P_{*i*,n}, %) in the specific 3D EEM regions (i.e., Region I-V) of the entire EEM spectra. Water samples were collected on Dec-08-2012. For each wetland, bold indicates a significant difference in the warming treatment compared to the control with asterisks indicating * *p* < 0.05, or ** *p* < 0.01. The bottom row indicates *p*-values from ANOVA conducted to test for differences between treatments across all wetlands as a whole.

Wetlands	Region I		Region II		Region III		Regi	on IV	Region V	
	Control	Warmed	Control	Warmed	Control	Warmed	Control	Warmed	Control	Warmed
SJ	24.9 ± 0.7	$23.0^{*} \pm 0.4$	26.8 ± 0.4	25.7*±0.3	25.8 ± 0.2	26.5 ± 0.1	17.0 ± 0.3	16.5* ± 0.1	5.42 ± 0.97	8.27** ± 1.04
JH	23.9 ± 1.2	23.7 ± 0.2	26.5 ± 0.3	25.9*±0.3	27.7 ± 0.1	27.5 ± 0.0	15.6 ± 0.6	16.0 ± 0.5	6.37 ± 0.89	6.81 ± 0.03
XX	25.2 ± 0.5	24.1 ± 0.1	26.9 ± 0.3	26.7 ± 0.2	24.4 ± 1.0	26.4 ± 0.0	17.9±1.6	15.5 ± 0.1	5.56 ± 0.28	7.36** ± 0.25
BY	22.5 ± 1.8	22.5 ± 1.0	28.6 ± 0.6	27.5 ± 0.1	24.3 ± 1.2	24.9 ± 0.6	17.9 ± 1.5	17.5 ± 0.7	6.66 ± 0.32	7.62*±0.79
XZ	24.3 ± 0.7	22.3*±0.5	26.4 ± 0.4	25.9 ± 0.7	26.5 ± 0.2	25.8* ± 0.0	15.4 ± 0.3	15.9 ± 0.2	7.43 ± 1.02	10.1** ± 1.1
YT	20.9 ± 1.3	19.7 ± 1.1	26.6 ± 0.5	25.4 ± 1.0	24.0 ± 0.8	22.4* ± 1.4	17.3 ± 0.8	18.4 ± 1.0	11.1 ± 1.8	14.2** ± 2.5
p-value	0.098 (Marginal decrease)		0.072 (Marg	inal decrease)	0.722 (N	o change)	0.696 (N	o change)	0.014 (Increase)

Fig. 1 DOM concentration dynamics during 4.5-years of warming incubations, including July 2009 (A), August 2010 (B), November 2010 (C), February 2011 (D), July 2011 (E), July 2012 (F) and December 2012 (G). For each panel of A-G, two-way ANOVA was conducted with F and *p* values shown of differences in mean values of DOM concentrations from six wetlands between control and warmed treatments. Asterisks represent significant (**p* < 0.05, ***p* < 0.01) Student's *t*-test differences in means for each wetland between treatments. The percent changes in mean values of DOM concentrations from six wetlands between treatments at each sampling month through time are shown in panel H. Vertical bars in each panel show the 95% confidence interval.

Fig. 2 Excitation-emission matrix fluorescence spectra for soil pore-water in SJ (control: A and warmed: B) and YT (control: C and warmed: D), two typical wetlands in this study. Spectra are examples from each of the replicates. The fluorescence intensities of each EEM panel are corrected for inner-filter effects using absorbance measurements, and the raw data are transformed between 0 and 1, and thus intensities here are unitless.

