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FUSING SIMILARITY RANKINGS IN LIGAND-BASED VIRTUAL SCREENING

Peter Willett *

Abstract: Data fusion is the name given to a range of methods for combining multiple sources of evidence. This mini-review
summarizes the use of one such class of methods for combining the rankings obtained when similarity searching is used for ligand-

based virtual screening. Two main approaches are described: similarity fusion involves combining rankings from single searches

based on multiple similarity measures; and group fusion involves combining rankings from multiple searches based on a single

similarity measure. The review then focuses on the rules that are available for combining similarity rankings, and on the evidence

that exists for the superiority of fusion-based methods over conventional similarity searching.

MiNI REVIEW ARTICLE

Introduction

Virtual screening involves ranking a database of previously
untested molecules in order of decreasing probability of biological
activity, and is an increasingly important component of lead-discovery
programmes in the agrochemical and pharmaceutical industries [1-4].
There are two main approaches: structure-based virtual screening,
which requires knowledge of the 3D structure of the biological target;
and /Jigand-based virtual screening, which requires knowledge of at
least some ligands that exhibit the desired bioactivity. In this paper,
we focus on szmilarity searching, which is arguably the simplest, and
probably the most widely, used approach currently available for
ligand-based virtual screening [5-9].

In its simplest form, similarity searching assumes the existence of
at least one active (or potentially active) molecule, which is normally
referred to as the reference or rarger structure, and a database of
molecules that have not, thus far, been tested in the assay of interest.
If one assumes that molecules that are structurally similar are likely to
have similar properties, an assumption that is normally referred to as
the similar property principle [10], then the molecules most similar to
the reference structure are those with the greatest probabilities of
activity, and hence prime candidates for biological testing.

There are very many different ways in which inter-molecular
similarities can be computed, but all measures comprise three basic
components: the representarion that characterizes each molecule; the
weighting scheme that is used to (de)prioritise different parts of the
representation to reflect their relative importance; and the simiariy
coefficient that provides a numeric value for the degree of similarity
Many different types of
representation have been reported in the literature [7, 8, 11] but these
are all of three basic types: sets of computed molecular properties

between two weighted representations.

(such as molar volume, molecular weight, numbers of heteroatoms, log
octanol/water partition coefficient etc) yielding so-called ID
representations; topological (or 2D) representations encoding patterns
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of atoms and bonds; and representations that encode 3D atom
coordinate or shape information. There have been only limited
discussions of weighting schemes for similarity searching [12, 13] but
many studies of the various types of representation and similarity
coefficient that are available [7, 8, 14-17]. Combining the three
components hence enables the creation of very large numbers of
possible similarity measures, with several detailed comparisons
available that seek to establish the most appropriate for chemical
similarity searching [8, 18-20].
recognised that no single measure can be expected to provide the best
level of search effectiveness in all circumstances [2, 18, 21-23], with
the result that researchers have looked for ways of combining the
results obtained from use of multiple similarity searches. This is
normally effected using the technique known as daca fusion [24]; an
analogous combination approach, there called consensus scoring, is
also widely used in structure-based virtual screening [25].

However, it has become widely

Data fusion

The term ‘data fusion’ 1s used to describe a range of methods for
combining information that has been obtained in digital form from
different sources, with the aim of producing a fused source that is
more informative than are individual data sources [26-28]. The
techniques are used in many different application areas [29]. When
used for similarity searching, a data source is a similarity measure that
calculates a similarity score for each of the structures in a database and
then ranks the structures in decreasing order of these scores, where the
scores (or the ranks, vide infra) are assumed to reflect the probabilities
of each of the database structures exhibiting the same biological
activity as the reference structure. The availability of multiple sources
of information means that combining several different similarity
rankings to give a single fused ranking is expected to provide a
superior level of screening effectiveness than will the ranking obtained
from any single similarity measure.

The basic procedure that has been developed for similarity
searching is shown in algorithmic form below.

FOR x:= 1 to n DO
FOR y:=1 to NDO
Calculate the similarity, SIMi(d), for the j-th database-
structure using the ath similarity scoring function
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FOR y:=1to NDO
Use a fusion rule, £, to combine the set of n scores {SIM:{(d))}
for the y-th database-structure to give its fused score, FSIM,
Sort the database into decreasing order of the fused scores, FSIM,

In this algorithm, there are n different ways for calculating the
similarity SIM.(d,) for each of the /N structures in the database that is
being searched (I < x< n,and I < y < N). The fusion rule, £ is a
procedure that combines the set of n different similarity scores for
each database structure, y, to a yield the final fused score, FS/M,. The
N fused scores, one for each database structure, are then sorted into
decreasing order to provide the final output of the similarity search.
The procedure is shown diagrammatically in Figures I and 2. The
yellow shading denotes the database that is to be searched and the
purple ovals in Figure I denote the sets of top-ranked molecules
retrieved in three individual similarity searches, e.g., those occurring in
the top-1% of the rankings. Some of these retrieved molecules are
active, as denoted by the red circles. Figure 2 shows the application of
a fusion rule to the three individual search outputs, with the resulting
combined output, e.g., the top-1% of the fused ranking, containing a
greater concentration of actives than do the outputs in Figure I from
the three individual searches.

Search 2

Search 1

Search 3

Figure 1. Individual search outputs for three similarity searches (the
purple ovals) of a chemical database (the yellow volume), with highly
similar active molecules denoted by the red circles.

The fusion procedure, as described digrammatically in the figures
or algorithmically in the pseudo-code is completely general in nature
and can be implemented in several different ways.

First, one must specify the nature of the n different searches that
are carried out [30]: in sumiarity fusion, n different similarity
measures are used to search the database with a single reference
structure; and in group fusion, n different reference structures are used
to search the database with a single similarity measure. The similarity
fusion approach was the first to be discussed in the late Nineties.
Sheridan er al at Merck described the fusion of pairs of rankings
generated using different types of fingerprint [31, 32] while Ginn er
al. at Sheffield described the fusion of 2D, 3D and spectral rankings
generated using different types of similarity coefficient [33, 34]. Both
groups found that data fusion gave search results that were generally at
least as effective as the best individual similarity searches, and that
multiple sources of information could lessen the rather substantial
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variations in effectiveness that are often encountered in individual
searches using conventional approaches to similarity-based screening.
The group-fusion approach was first studied in detail by Willett er al
at Sheffield, comparing the results obtained with those from similarity
fusion and from conventional similarity searching [30, 35, 36]. They
found that group fusion was notably superior to the other two
approaches, especially when searching for structurally heterogeneous
sets of active molecules, and group fusion has become widely used as
standard technique for ligand-based virtual screening [7].

Search 2
5 : i
Bl
Search 1
Search 3

Figure 2. Combined search output resulting from the application of a
fusion rule to the three individual search outputs in Figure 1.

Second, one must specify what is fused once the searches have
been carried out. The algorithm above assumes that it is the actual
similarities, i.c., the set of i scores {SIMy{ d)} for the y-th database-
structure, that are combined to give the fused score that forms the
basis for the final ranking that is presented to the user. Alternatively,
the fusion rule can be applied to the ranks of the N database
structures when all of the similarity scores are ranked in decreasing
order [30, 34, 37]. Ranks are derived from similarities and hence
provide less information; however, they are useful in similarity fusion
when, as is often the case, the n different similarity measures give
similarity scores that follow non-identical frequency distributions and
that could hence introduce some degree of bias into the results. For
example, if similarities are calculated using the cosine coefficient and
the Tanimoto coefficient, which are two of the best-known and most
widely used similarity coefficients [38], then the cosine scores will
always be greater than the Tanimoto scores (except at the extremal
values of zero and unity, when the two will be identical).

Thus far, we have referred to the combination of different
rankings, so as to produce a single output ranking, without specifying
how the combination is achieved in practice. This is the function of a
fusion rule, and many such rules have been reported in the literature as
described in the following section.

Fusion rules

Using the notation in the algorithm above, the basic input to a
fusion rule comprises 1 (1> 2) sets of /N similarities or ranks and the
output is a ranking of the /N structures comprising the database that is
being searched. The many fusion rules that have been discussed in the
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literature are of two basic types: an unsupervised rule operates directly
on the similarity or rank information, whereas a supervised rule
requires an initial training procedure using available structure-activity
data. In this mini-review we focus on the former class of rules since
they have been more widely used to date; however, we shall exemplify
the latter class by describing work on belief theory carried out by a
group at Abbott [39].

Fusion is normally implemented by applying simple arithmetic
operations on the lists of similarity scores (or ranks) resulting from
the n searches, and these arithmetic fusion rules are reviewed in some
detail by Chen er al [40]. The two most common examples of this
class are the so-called MAX and SUM rules. Using the terminology
in the algorithm shown previously, the fused score FSIM, for the
MAX rule has the form

Max{SIM;(d,), SIM:(d,)..SIM\(d,)..SIMA(d})},

i.e., it assigns the y~th database-structure, d}, a score that is the largest
of the n similarities to the reference structure that have been
calculated; while the fused score for the SUM rule has the form

3 SM(h)

and hence assigns d a score that is the sum (or, equivalently, the
arithmetic mean) of the n individual similarities. An early comparison
of arithmetic rules for similarity fusion by Ginn er al. suggested that
the SUM rule was generally the most effective [34]. However, Hert er
al found that the MAX rule was notably more effective for group
fusion when similarity scores were to be fused [35, 41]. This finding
was confirmed in a very detailed comparative study by Nasr er al that
used over 40 public datasets [42] and the approach has now been
Widely adopted (see, e.g., [7, 43-45]).

Although defined above in terms of similarity scores, SIM(d),
such arithmetic rules are equally applicable to the rank data,
RANK{(d)), obtained when the similarity scores are sorted into
descending order. Chen er al describe a further rule, the reciprocal
rank fusion (RRF) rule, that is applicable only to rank data and that
derives from the fact that virtual screening often involves applying a
cut-off on the similarity scores (such as the top-1%) so that only a
small fraction of the database is considered further in a project [40].
Let p (p < n) be the number of times that an individual database
structure o, occurs above the chosen cut-off. Then the RRF rule
involves summing the reciprocal ranks for those p occurrences to give
a fused score

P 1
;wwwm'

Chen er al. found that RRF out-performed all of the other rules that
they considered in their detailed comparative study. They ascribed
this to the close relationship they were able to demonstrate between
the reciprocal rank of a database structure and its probability of
activity as determined from an analysis of sets of bioactive molecules
in the MDDR and WOMBAT databases.

Another, more Complex fusion rule has been described recently by
Cross et al. [46]. Fusion here is based on Pareto ranking, where the
Pareto rank of each database structure is the number of structures that
have a larger similarity score in all of the n ranked lists that are to be
fused. Ties in this initial Pareto ranking are then resolved by
considering the number of molecules with larger similarities in all but
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one (all but two, all but three etc.) ranked lists, a procedure that Cross
et al. found to be superior to the SUM rule when used with rank data.

Unsupervised fusion rules, such as those described above, require
just the 11 sets of /V similarity scores (or the resulting ranks) as inputs,
whereas the many supervised rules additionally require a quantitative
relationship between the structural similarity of two molecules and
their corresponding similarities in activity. Several such approaches
have been described [45, 47-49] as exemplified by the recent study of
Muchmore er al on data fusion using belief theory [39]. This
involves the calculation of a degree of belief in some outcome given
the evidence available from different sources, i.e., belief in the activity
of a database structure given its similarities to the reference structure
in a set of similarity searches. Muchmore er al analysed a large in-
house file of screening data to identify the similarities, using various
similarity measures, between pairs of molecules that had comparable
activities, and were hence able to derive a relationship between B the
belief that a pair of molecules are equally active using the xth
similarity measure, and S/M, the similarity score for the xth
similarity measure. The rule for combining the individual beliefs for a
given database structure in each of the n similarity searches is

1—f[ (1-By),

x=1

and Muchmore er al found that this rule yielded rankings that were
comparable to those resulting from use of the SUM rule but that were
casier to interpret [39]. The approach has subsequently been used for
lead-hopping [50] and for combining the results of ligand-based and
structure-based virtual screening [ST].

The increasing availability of large volumes of linked chemical and
biological data means that supervised fusion rules are likely to become
more widely used in the future; currently, unsupervised rules provide a
simple, widely used approach to the effective combination of multiple
search outputs.

Why does data fusion work?

The basic assumption in data fusion is that the availability of
multiple sources of information (i.e., similarity rankings in the present
context) will yield better results than when just a single source is
available. The review by Willett [24] summarized a range of studies
demonstrating that this does indeed seem to be the case for ligand-
based screening: fusion-based screening is often comparable with, or
even superior to, the best of the screening methods that are being
combined, especially when group fusion is used; and fusion results in a
level of screening effectiveness that is far more consistent from search
to search than is the case when just a single similarity method is
available. Studies in Sheffield have investigated the reasons for the
success of data fusion, using both empirical and theoretical approaches
[52-55].

Whittle er al. developed and tested an analytical model of fusion-
based similarity searching [52-54]. The study focused on the use of
the SUM and MAX rules in similarity fusion to combine pairs of
rankings derived from searches with different similarity coefficients,
but Whittle er a/. demonstrated that their methods could be extended
to similarity fusion with different types of fingerprint or to group
fusion. Assume that searches are carried out using two similarity
coefficients, such as the cosine coefficient and the Tversky coefficient,
and that one then plots the corresponding frequency distributions for
the similarities between the reference structure and the database
structures. Consider the numbers of similarities that are of magnitude
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at least x using the cosine coefficient and at least y using the Tversky
coefficient: an effective fusion rule will then be one that preferentiaﬂy
populates this portion of the joint frequency distribution with active
molecules (or depopulates it with inactive molecules) when compared
with the corresponding distributions for each of the individual
coefficients. Whittle er a/. demonstrate that this is the case in practice
for the SM and MAX fusion rules if, and only if, sufficient training
data are available, since even the fusion of just two similarity lists
requires information about eight distinct frequency distributions. If
some cut-off, e.g., the top-1%, is applied to each ranking then the
following distributions must be considered: those for the top-ranked
actives and for the top-ranked inactives above the cut-off for each
similarity coefficient for both the database structures that occur above
the cut-off in both lists and for those occurring in just one of the lists.
When such data are available then the model predicts that the MAX
rule will perform better than the SUM rule for group fusion, that
SUM will be better than MAX for similarity fusion, and that the
former type of fusion is generally to be preferred. These predictions
are fully in accord with the many previous empirical studies [24],
hence validating the model and providing a rationale for why data
fusion can indeed enhance the effectiveness of similarity searching.
However, the model's complexity and the volume of training
information that it requires means that it is most unlikely that it could
be used, as was originally the hope, to predict the utility of new types
of fusion rule.

Drawing on work carried out by Spoerri on the use of data fusion
to combine the outputs of text search engines [56], Holliday er al
have reported a systematic study of the use of multiple rankings for
similarity-based virtual screening [S5S5]. Their experiments used two
standard test databases, the MDDR and WOMBAT databases [57],
and similarity searches with five different similarity coefficients and
five different types of fingerprint, i.e., a total of 25 different similarity
measures. A similarity search was carried out for a bioactive reference
structure using one of these measures and a note taken of the number
of top-ranked database structures that had the same bioactivity as the
reference structure (specifically, a database structure was assumed to
have been retrieved in a screening search if it occurred in the top-1%
of the ranking after the database had been ranked in order of
decreasing similarity with the reference structure). This procedure was
repeated for each of the other 24 similarity measures, so that it was
possible to determine how many database structures were retrieved by
just one measure, by just two measures, by just three measures etc. It
was found that very many structures were retrieved in the top-I% of a
single search but that the numbers of retrieved structures fell away
very rapidly as one considered the top-1% of two searches, of three
searches, of four searches etc.  This behaviour was observed
consistently across all the types of bioactivity that were searched for,
suggesting that this is an entirely general phenomenon. Indeed,
Holliday er al were able to demonstrate and to rationalise the
existence of a power law relationship [58, 59] between the numbers of
structures retrieved and the numbers of searches. Since there are
decreasingly few structures common to increasing numbers of
rankings, then data fusion will be effective when many of these
common structures have the same bioactivity as the reference
structure. Holliday er al showed that only a small proportion of the
many structures retrieved by a single search were active, but that this
proportion increased rapidly as one considered the structures retrieved
by two searches, the structures retrieved by three searches etc. The
probability of activity of a database structure hence increases in line
with its frequency of retrieval in multiple similarity searches, thus
providing a simple, but direct, empirical justification for using
combination methods to enhance the effectiveness of virtual screening.
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Summary and outlook

Simﬂarity searching is one of the most Widely used methods for
ligand-based virtual screening. A range of different types of similarity
measure are available for this purpose, and data fusion provides a
simple way of combining the results from multiple similarity searches
to increase the effectiveness of screening above that normally
obtainable from the use of a single similarity measure. Two
approaches to fusion have been described in the literature: similarity
fusion involves matching a single reference structure against a database
using multiple similarity measures; while group fusion involves
matching multiple reference structures against a database using a single
similarity measure. If multiple actives are available then the latter
procedure is normally to be preferred.

The fusion rules that have attracted most attention thus far are
unsupervised, in the sense that they do not require any training data
relating similarity scores to probabilities of activity; however the
increasing availability of such structure-activity data means that
supervised rules provide an obvious focus for future research in data
fusion. Other areas where developments may be expected include the
combination of different types of virtual screening method, the
comparison of supervised fusion with existing screening approaches
based on machine learning (which also requires the availability of
extensive training data), and further attempts to provide a theoretical
underpinning for the use of fusion methods.
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