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Abstract 21 

When projecting future crop production, the skill of regional scale (> 100km resolution) crop models 22 

is limited by the spatial and temporal accuracy of the calibration and weather data used.  The skill of 23 

climate models in reproducing surface properties such as mean temperature and rainfall patterns is 24 

of critical importance for the simulation of crop yield.  However, the impact of input data errors on 25 

the skill of regional scale crop models has not been systematically quantified.  We evaluate the 26 

impact of specific data error scenarios on the skill of regional-scale hindcasts of groundnut yield in 27 

the Gujarat region of India, using observed input data with the GLAM crop model.  Two methods 28 

were employed to introduce error into rainfall, temperature and crop yield inputs at seasonal and 29 

climatological timescales: (1) random temporal resequencing, and (2) biasing values. 30 

 31 

We find that, because the study region is rainfall limited, errors in rainfall data have the most 32 

significant impact on model skill overall. More generally, we find that errors in inter-annual 33 

variability of seasonal temperature and precipitation cause the greatest crop model error. Errors in 34 

the crop yield data used for calibration increased Root Mean Square Error by up to 143%. Given that 35 

cropping systems are subject both to a changing climate and to ongoing efforts to reduce the yield 36 

gap, both potential and actual crop productivity at the regional scale need to be measured. 37 

 38 

We identify three key endeavours that can improve the ability to assess future crop productivity at 39 

the regional-scale: (i) increasingly accurate representation of inter-annual climate variability in 40 

climate models; (ii) similar studies with other crop models to identify their relative strengths in 41 

dealing with different types of climate model error; (iii) the development of techniques to assess 42 

potential and actual yields, with associated confidence ranges, at the regional scale. 43 

1.  Introduction 44 

All projections of the impacts of climate change on crop yield rely on models.  Since such models are 45 

incomplete representations of complex biological processes, their accuracy is limited by their 46 

structure. Model accuracy is also limited by error (i.e. inaccuracy) and uncertainty (known 47 

imprecision) in model inputs. Projections of crop  yield using crop and climate models have identified 48 

uncertainty in climate as a significant, if not dominant, contribution to total projected uncertainty 49 

(e.g. Baron et al. 2005; Challinor et al., 2010, 2009a, 2005a; Cruz et al. 2007; Mearns et al. 2003; 50 

Trnka et al., 2004). Lobell [this issue] finds that ignoring measurement errors when using an 51 

empirical crop model can underestimate sensitivity to rainfall by a factor of two or more. These 52 

sensitivities have clear implications for assessments of the impact of climate change on food 53 

production and food security, and for the way in which adaptation options are formulated (e.g. 54 

Challinor, 2009). 55 

Calibration and weather inputs can have random or systematic errors at a variety of spatial and 56 

temporal scales.  For example, climate models can overestimate the number of rainy days whilst 57 

underestimating rainfall intensity (Randall et al., 2007) and may also fail to represent the sub-58 

seasonal variation in rainfall. Observational data such as crop production or daily weather may 59 

contain uncorrelated, random errors introduced in measurement or recording, and systematic bias 60 

from aggregation to the regional scale.  These biases each have different implications for crop 61 

simulation, with some types of error being easier to correct than others (Challinor et al., 2005b).  62 



While current efforts are underway to both quantify and reduce uncertainty in climate models (e.g., 63 

the Coupled Model Intercomparison Project Phase 5), the specific impact of such errors on crop 64 

models at the regional scale are still unknown.  Crop models are often calibrated using historical 65 

crop yield data, which is made available at the regional scale by organizations such as the Food and 66 

Agriculture Organization of the United Nations (FAO) and the International Crops Research Institute 67 

for the Semi-Arid Tropics (ICRISAT).  Unlike climate model output, the quality and availability of this 68 

data varies region by region. 69 

The sensitivity of field-scale crop models to weather inputs has been assessed in a number of studies 70 

(e.g. van Bussel et al., 2011;  Dubrovsky et al., 2000), and the importance of calibration data in field 71 

scale models has previously been analyzed (Batchelor et al., 2002). Sensitivity studies with regional 72 

scale crop models, such as those reviewed by Challinor et al. (2009b), are less common. These 73 

models integrate inputs at different scales, and are effectively test beds of theory about what 74 

processes dominate variability in crop yield at these scales. Regional-scale models tend to be less 75 

complex than field-scale models, therefore the impact of errors in input data on these two types of 76 

model can be expected to differ. Berg et al. (2010) investigated the sensitivity of a large-scale crop 77 

model to errors in rainfall inputs, but to date errors in rainfall, temperature and yield observations 78 

have not been systematically studied at this scale. 79 

Our objective in this study is to quantify the contribution made by specific data error scenarios to 80 

error in regional scale yield projections.  We take a published set of crop yield simulations (Challinor 81 

et al., 2004), and introduce error into the input data in order to assess its impact on model error.  82 

We use a set of simulations where regional-scale yields were reproduced skillfully using observed 83 

weather data. The errors introduced to that data can be understood to represent uncertainty in the 84 

simulation of weather by a climate model, and errors in the collection and collation of crop yield 85 

information. The errors are introduced (i.e. simulated) at a range of temporal scales and using two 86 

methods.  The first samples and resequences values from the baseline climate to break temporal 87 

structure (described in Section 2.2.1).  The second alters the observed values such that they include 88 

and then exceed observed values from the baseline climate (Section 2.2.2).  Results from applying 89 

these methods to rainfall, temperature and yield inputs are presented in Section 3.1, and a 90 

comparison of these two schemes is given in Section 3.2. Three model configurations are used in the 91 

study. These are described in Section 2.1 and the difference in results between these model 92 

configurations is described in Section 3.3. The implications of the results for regional scale crop 93 

modelling are discussed in Section 4 and conclusions are drawn in Section 5. 94 

2. Material and Methods 95 

2.1 Crop model 96 

Crop yields were simulated using the General Large Area Model for annual crops (GLAM). This 97 

model, which is freely available for non-commercial use via a licence agreement, has been used to 98 

simulate the mean and variability of yields in current and future climates across the tropics (see 99 

Challinor et al., 2010). 100 



GLAM uses soil properties, a planting window, rainfall, solar radiation and minimum and maximum 101 

temperature to simulate crop growth and development on a daily time step. It is calibrated by 102 

adjusting the Yield Gap Parameter (YGP) to minimise discrepancies (as measured by Root Mean 103 

Square Error, RMSE) between simulated and observed yields. Altering YGP alters the rate of change 104 

of leaf area index with respect to time. We replicated the simulations of Challinor et al. (2004), 105 

hereafter referred to as C2004.  C2004 simulated groundnut yield across India on a 2.5 by 2.5 degree 106 

grid for the period 1966 to 1989, using observed annual yield data for calibration and gridded 107 

weather data derived from observations.  Rainfall data were daily; the monthly temperature data 108 

were linearly interpolated to produce the daily values required by GLAM. Solar radiation data were 109 

monthly climatological solar radiation, which were linearly interpolated to daily values. Using these 110 

data, C2004 were able to demonstrate the importance of both inter-annual and intra-seasonal 111 

variability in rainfall in determining crop yield. The parameter set of C2004 is based on literature 112 

searches to identify plausible ranges of parameters and subsequent minimisation of RMSE. All model 113 

parameters lie near the centre of the ranges, with the exception of transpiration efficiency (TE). The 114 

parameter set has subsequently been used and tested extensively (Challinor et al., 2009a, 2007, 115 

2005a,b,c; Challinor and Wheeler 2008a,b). 116 

The analysis presented here focuses on a grid cell in Gujarat (GJ) in which both the observed inter-117 

annual variability in yield and the skill of the crop model in reproducing that variability was high 118 

(correlation coefficient, r=0.74). The RMSE of the GJ grid cell is higher than that of the other two grid 119 

cells examined in detail by C2004 (281 kg ha-1 as compared to 105 and 176 kg ha-1). However, both of 120 

these grid cells, and many of the others simulated in C2004 had lower inter-annual variability in yield 121 

than GJ, and also a lower correlation coefficient between observed and simulated yield. Thus the 122 

choice was made to focus on a grid cell where GLAM has demonstrable skill in reproducing inter-123 

annual variability, despite the absolute RMSE not being the lowest.  124 

The replicated C2004 simulations for GJ were used as a control experiment. In all cases, unless 125 

otherwise reported, the model was calibrated by varying YGP in steps of 0.05, from a minimum of 126 

0.05 to a maximum of 1. The calibrated value of YGP is that which produces the lowest RMSE over 127 

the whole time period. Note that variation in model skill when calibration and evaluation time 128 

periods were separated was assessed by C2004, and found to be small. Replication of the original 129 

results was not perfect, due to minor modifications made to the model code since 2004. C2004 130 

reported a model yield RMSE in GJ of 281 kg ha-1, while the control simulation in the current study 131 

gave a yield RMSE of 274 kg ha-1.  Model skill was measured by two metrics: RMSE, and the 132 

correlation coefficient of projected yield and observed yield (r). 133 

Three crop model configurations were used in the study. Configuration A is taken directly from 134 

C2004 and reproduces the yields from that study (subject to the minor differences noted above). 135 

Configuration B is identical to A, but with the GLAM high temperature stress parameterisation of 136 

Challinor et al. (2005c) activated. This configuration was used because the temperatures resulting 137 

from some of the biases described in Section 2.2.2 below fall outside the range observed in the 138 

baseline climate. In particular, they exceed the critical value beyond which anthesis and pod set are 139 

affected. Configuration C is identical to B, but with the transpiration efficiency (TE) set to 2.5 Pa. This 140 

new value is at the centre of the range of values identified from the literature by C2004. Since TE is 141 

the only model parameter not found by C2004 to be near the centre of the range suggested by the 142 

literature, configuration C approximates a set of simulations where little a priori calibration of the 143 



model was carried out. In these simulations, the primary impact of the use of yield data is through 144 

the calibration parameter, YGP. Therefore, through comparing configurations A and C, conclusions 145 

may be drawn on the importance of historical crop yield data in the development of model 146 

parameterisations. 147 

2.2 Simulating model input errors 148 

Rainfall, temperature and yield model inputs were each perturbed using two methods. Random 149 

temporal resequencing (referred to concisely as shuffling) of the primary data (daily rainfall, monthly 150 

temperature and annual crop yield) was used to simulate errors where certain temporal information 151 

is destroyed, but values remain consistent with the current climate. The second method biased the 152 

primary input data across a range that includes, and also exceeds, values found in the baseline 153 

climate. These two methods are described in detail in Sections 2.2.1 and 2.2.2.  Both of these 154 

methods were used to assess the impact of data errors on GLAM at three timescales: subseasonal, 155 

seasonal and climatological. Minimum and maximum temperature values were perturbed 156 

simultaneously in order to maintain consistency in the diurnal temperature range. Since we are 157 

interested in the effect of errors in the input data available to the model, only the relevant 158 

observations were perturbed – not the interpolated values. 159 

2.2.1 Random shuffling of input data 160 

In order to assess the importance of temporal information in GLAM’s input given the current 161 

climate, values from the full June to September, 1966 to 1989, dataset were randomly shuffled at 162 

three timescales, according to the following three operations: 163 

1. Shuffle-Subseason: daily rainfall and monthly temperature values shuffled within a season, 164 

which preserves inter-annual variability and climatology. 165 

2. Shuffle-Season: rainfall, temperature and yield seasons shuffled as individual units (i.e., 166 

keeping within-season values intact), which retains subseasonal information. 167 

3. Shuffle-All: subseasonal and inter-annual variability in rainfall and temperature are both 168 

altered by shuffling values across the entire dataset. 169 

Yield calibration data were only included in Shuffle-Season, as only seasonal values exist.  Each 170 

shuffling operation was repeated using 1000 unique random number seeds, so that their aggregate 171 

behaviour could be determined.  GLAM was then run on each shuffled dataset in turn, where all 172 

inputs were the same as in C2004 except for a single shuffled input type (i.e., the effect of rainfall, 173 

temperature and yield shuffling were each tested separately).  This procedure was repeated for 174 

parameter configurations A, B and C. 175 

2.2.2 Biasing input data 176 

Biasing temperature, rainfall and yield allows the simulated errors to go beyond the range of values 177 

of these variables that are observed in the current climate. Two options were considered for 178 

assessing the impact of input data biases: using known climate model error to alter observed 179 

weather, and systematically perturbing weather by introducing standardised noise. The first option 180 

has the advantage of clear links to the current skill of climate models and the second has the 181 

advantage of inter-comparability across the error introduction experiments. Since the second option 182 



permits qualitative comparison of simulated error with existing climate model error, this method 183 

was chosen.  As with the shuffling, each input data variable was perturbed in isolation, to assess its 184 

individual impact on crop model skill. Since the variables perturbed are in different units, we chose 185 

to base the bias rate p on standard deviation, to permit comparison across variables. Standard 186 

deviation is a commonly used aggregate variable characteristic which is in the same units as the 187 

variable being considered.  Biased values were randomly chosen from the normal distribution 188 

defined by a reference value v and a standard deviation equal to p% of the standard deviation of the 189 

input values being perturbed.  For example, when p = 0%, the perturbed value will equal v, and as p 190 

is increased, the likelihood of perturbed values being chosen further from v increase. 191 

Datasets were perturbed at three timescales, using the following operations: 192 

i. Bias-Day. Each daily rainfall value was perturbed independently of all other values.  That is, 193 

each input value v was replaced with a perturbed value v’ chosen from the normal 194 

distribution with a mean of v and a standard deviation p% of the climatic rainfall standard 195 

deviation.  Note that the use of the term ‘bias’ here has been chosen to simplify the naming 196 

scheme – this operation does not uniformly alter multiple values simultaneously. 197 

ii. Bias-Season: A single adjustment of value d was applied to all input values across the entire 198 

growing season in any one year. For rainfall and temperature inputs, d was chosen by 199 

subtracting the seasonal mean from the value v’ selected from a normal distribution with 200 

mean equal to the seasonal mean, and standard deviation equal to p% of the seasonal 201 

standard deviation.  Since only single yield values were available per season, biased yield 202 

values were calculated according to their climatological standard deviation. 203 

iii. Bias-Climate: All input values were uniformly altered by the single value d, chosen by 204 

subtracting the climatological mean from a value chosen from the normal distribution with 205 

mean equal to the climatological mean, and standard deviation equal to p% of the 206 

climatological standard deviation. For temperature and precipitation, this climatological bias 207 

represents an error in the simulation of the mean climate, with no error in inter-annual 208 

variability. For yield data, it represents a systematic bias in the measurement of regional-209 

scale crop yield data. 210 

Each of these operations were performed for values of p ranging from 0 to 299, so that the impact of 211 

biases chosen from distributions with up to three times the input standard deviation were tested.  212 

As in Section 2.2.1, each perturbed variable was tested in isolation, with all other inputs the same as 213 

in C2004.  GLAM was run on each biased dataset with 100 random number seeds.  Figure 1 provides 214 

an example illustration of the effect of climatological biases on these GLAM runs, while Table 1 215 

summarizes the shuffling and bias experiments performed in this study. 216 

Table 1 Experiments performed for each input type and dataset operation.  Shaded cells indicate studies that were not 217 
performed.  Operations that resulted in an average RMSE that differed from the result of the baseline simulation by 218 

more than 50% are marked with a ♦. 219 

 Shuffle 
Subseason 

Shuffle 
Season 

Shuffle 
All 

Bias 
Day 

Bias 
Season 

Bias 
Climate 

RainA  ♦ ♦  ♦ ♦ 

RainB  ♦ ♦  ♦ ♦ 

RainC       

TempA     ♦  



TempB     ♦  

TempC     ♦  

YieldA      ♦ 

YieldB      ♦ 

YieldC      ♦ 

 220 

3. Results 221 

An overview of the input data operations that, on average, resulted in more than 50% difference in 222 

RMSE is shown in Table 1.  While this average effect on RMSE is a crude indicator of the impact of 223 

each data operator on GLAM’s performance, characteristics such as GLAM’s resilience to varying 224 

degrees of perturbation types, and the relative spread of behaviours across random seeds, are key 225 

to understanding the true impact of these errors at the regional scale.  This section describes these 226 

results, and compares the relative impact of data operations across input variables. 227 

3.1 Impact of temperature, rainfall and yield error on model skill 228 

Figure 2 shows the results of shuffling, in turn, temperature, precipitation and yield in model 229 

configuration A. In the vast majority of cases, introducing error into these variables increases the 230 

RMSE of the simulated yield. The largest impact on RMSE comes from shuffling rainfall seasons. 231 

Shuffling of temperature seasons also results in RMSE that, in the vast majority of cases, is greater 232 

than that of the control simulation. Shuffling of temperature and rainfall on subseasonal timescales 233 

both result in similar changes to RMSE.  234 

The correlation between simulated and observed yield is also plotted in Figure 2. Altering seasonal 235 

total rainfall has by far the greatest effect on r, with yield and temperature perturbations having the 236 

smallest effect.  For both rainfall and temperature, increases in RMSE are associated with decreases 237 

in correlation. Thus the increase in RMSE is due primarily to increased error in simulating the inter-238 

annual variability of yield, as opposed to being associated with increased error in the simulation of 239 

mean yield. In the case of perturbed yield input, there is far less evidence of any inverse relationship 240 

between RMSE and correlation coefficient. This is because the calibration parameter, YGP, affects 241 

mean yield more than it affects inter-annual variability. 242 

The box and whiskers diagrams in Figure 2 have a smaller number of component time series for yield 243 

than for either temperature or precipitation: there are 17 unique time series of yield, compared to 244 

1000 for Shuffle-Season of both temperature and precipitation. This is a direct result of the 245 

calibration procedure, whereby YGP is incremented in steps of 0.05; a smaller increment would 246 

result in more time series. The difference in sample size between yield and the other two variables 247 

does not affect the character of the results (see Section 3.3). 248 

The impact of input data bias on model skill is presented in Figures 3 (RMSE) and 4 (correlation 249 

coefficient). Each figure shows the impact averaged over all 100 random seeds. For p < 100, rainfall 250 

biases had a greater effect on model skill, as measured by both of these metrics, than either 251 

temperature or yield biases.  At these low values of p, daily, seasonal and climatological rainfall 252 

biases all resulted in similar RMSE. Thus, calibration provides greater compensation for errors in 253 



yield and temperature than it does for rainfall.  For p < 50, this compensation is almost complete: 254 

temperature and yield errors have no significant impact on model skill. 255 

 256 

For p > 100, seasonal biases to temperature begin to significantly affect model skill, as measured by 257 

both correlation coefficient and RMSE. This loss of skill is caused by greater inter-annual variability in 258 

crop duration, which results in inter-annual variability in yield no longer being dominated by 259 

precipitation. In contrast, climatological biases to temperature do not on average significantly affect 260 

model skill, because the calibration procedure compensates for the mean bias in temperature. 261 

Similar behaviour is seen for rainfall: climatological biases to rainfall are more easily compensated 262 

for by calibration than seasonal biases. This is particularly evident in the correlation coefficient 263 

(Figure 4); though it can also be seen in RMSE (Figure 3). The behaviour of yield biases for p > 100 264 

contrasted with that of temperature: seasonal biases to yield do not affect model skill and 265 

climatological biases do. This is a direct result of the calibration procedure, which is based on yields 266 

averaged over the whole time period. 267 

3.2 Comparison of bias and shuffle schemes 268 

The two schemes used to introduce error in this study are not directly comparable. In order to 269 

provide some indication of the relationship between the schemes, an analysis was conducted. 270 

Climatological mean monthly temperature was computed for each perturbation scheme in turn, and 271 

for the observed data. The percentage of random number seeds that produced at least one value 272 

outside the observed range (OR) was calculated. This was repeated for cumulative monthly 273 

precipitation. The results varied by month, variable and scheme. Shuffle-Season, by definition, 274 

produced no values outside of current climatology. Shuffle-Subseason produced relatively high 275 

values for temperature (52 to 75%, across the four months) and September rainfall (93%) and 276 

relatively low values for June, July and August precipitation (24.2, 0 and 1.3%, respectively). A similar 277 

pattern was seen for Shuffle-All. 278 

The results for the bias scheme are too numerous to report. In general, OR increased with increasing 279 

p. A comparison between the shuffle and bias schemes was made by incrementing p from zero 280 

upwards and noting the first value at which OR (biased) > OR (shuffled). For precipitation, this 281 

occurred mostly at low values of p: 0 or 1 for June to August; 35 for September Bias-Season; and the 282 

condition was not met for September Bias-Climate. For temperature, p was higher: 9-19 for Bias-283 

Season and 180 for Bias-Climate. Whilst in many cases OR (biased) becomes comparable to OR 284 

(shuffled) at relatively low values of p, the variation in the values of OR across months and variables 285 

suggests that it is impossible to determine even a guideline range of values of p which may be 286 

equivalent to the shuffled data. 287 

A clearer distinction between the shuffle and bias schemes can be found by assessing the results 288 

qualitatively. For example, for p < 150, any type of rainfall bias has a greater impact on RMSE than 289 

either temperature or yield. This is consistent with the shuffle simulations at all timescales except 290 

one: Shuffle-Subseason produces a significantly lower reduction in model skill than Bias-Day. By 291 

altering seasonal totals, Bias-Day degrades model performance in a manner not seen in the 292 

equivalent shuffle simulations. The fact that shuffle simulations either maintain or destroy the 293 

temporal structure of variables is perhaps the clearest difference between this scheme and the bias 294 

scheme. The latter, at least for moderately high values of p, always destroys temporal structure. 295 



3.3 Comparison of model configurations 296 

Model configurations A and B, which differ only in the activation of the high temperature stress 297 

module, produced equivalent model behaviours for both the shuffled and biased operations.  The 298 

temperature data used in this study are monthly, with no attempt to reproduce observed daily 299 

extremes. Thus this equivalence is not surprising. Model configurations A and C produce different 300 

results in both the shuffled and biased cases. With no biasing or shuffling of input data, the RMSE of 301 

these two configurations is 274 and 322 kg ha-1, respectively.  Thus RMSE increases by 17.5% when a 302 

value of transpiration efficiency from the centre of the observed range is used instead of the 303 

calibrated value.  The increase in RMSE would be larger if the value of YGP were not calibrated using 304 

yield data. At p=0 the yield gap parameter was 0.8 for the control simulation (i.e. configuration A 305 

with no bias or shuffling), and 0.2 for the corresponding simulation of configuration C. This 306 

difference is the result of calibration compensating for the higher value of TE.  307 

The performance of the shuffled configuration C simulations is shown in Figure 5. The broad 308 

response of rainfall and temperature across the timescales is similar to that of configuration A. 309 

However, unlike configuration A, RMSE was reduced and correlation coefficient increased by 310 

subseasonal shuffling. Also, shuffling temperature both subseasonally and seasonally (i.e. Shuffle-All) 311 

produces a lower RMSE than Shuffle-Season alone. Subseasonal shuffling, on average, makes the 312 

seasonal distribution of values more uniform than observations, and therefore less realistic.  These 313 

results are therefore further manifestations of incorrect model calibration. 314 

 Since yield is a calibration input, the Shuffle-Season perturbation produced a limited number of 315 

unique model results.  Configuration A produced 17 unique yield projections, with RMSE of 317, 346 316 

and 387 together accounting for 72% of the 1000 different seeds.  Configuration C resulted in 2 317 

unique yield projections – one with a RMSE of 370 (863 occurrences) and the other with RMSE of 318 

323 (137 occurrences).  This is a direct result of the calibration procedure, whereby the yield gap 319 

calibration parameter is incremented in steps of 0.05. YGP decreases between configurations A and 320 

C, in order to compensate for the higher value of transpiration efficiency. A step of 0.05 at lower 321 

values of YGP will result in greater changes in simulated yield than the same step at higher values of 322 

YGP, thus producing less unique yield time series with the higher transpiration efficiency of 323 

configuration C. In order to test whether or not the difference between the baseline RMSE of 324 

configurations A and C is an artefact of the chosen YGP increment of 0.05, these simulations were 325 

repeated with a YGP increment of 0.01 (ie 99 simulations with YGP varied between 0.01 and 1). 326 

Similar results were found: RMSE of 274 for configuration A and 318 for C, as compared to 274 and 327 

322 respectively for a step of 0.05. 328 

Figure 6 presents the results from the bias simulations for configuration C. As was the case for 329 

shuffle operations, the character of the response of RMSE to rainfall, temperature and yield bias 330 

errors was similar for configurations A and C. The seasonal and climatic yield biases resulted in 331 

significantly higher RMSE in configuration C compared to A at all values of p. For temperature and 332 

precipitation, this difference was less marked. For precipitation, the rate of increase in RMSE in 333 

response to increased p was higher in configuration A (Figure 3) than in C, particularly for p < 50. 334 



4. Discussion 335 

4.1 The importance of calibration data 336 

The interaction between model configuration and errors in rainfall, temperature and yield 337 

calibration data (Section 3.3) demonstrates the importance of both crop yield data and observed 338 

weather data. Without both of these data sources, it would have been impossible to determine 339 

where the optimal value of transpiration efficiency lay. Errors resulting from this omission would 340 

then be compounded by errors in observed yield, which is also used in the calibration procedure. 341 

The yield calibration data in this study contributed to the skill of the model in two ways: (1) selection 342 

of crop model parameters at a country scale (configuration A vs configuration C), and (2) as the basis 343 

of regional calibration.  Configuration C provides an estimate of the impact on RMSE of having 344 

insufficient data to determine a value of transpiration efficiency that is appropriate for a regional-345 

scale groundnut model in India. The increase in RMSE of 17.5% when switching to the non-calibrated 346 

value of TE demonstrates the importance of regional-scale yield data in the development of 347 

parameterisations within regional-scale crop models. This is in addition to the important role of yield 348 

data in regional calibration and evaluation of models. In the current study, the largest increase to 349 

RMSE that was induced by introducing errors to the crop yield calibration data was 143% (Bias-350 

Climate, p=113). For comparison, the largest increase to RMSE induced by the shuffle scheme was 351 

60%. The role of yield data for calibration is made more important by climate change, which will 352 

affect both observed yields and transpiration efficiency, as well as other regional-scale crop 353 

parameters that have not been assessed here. 354 

If differences in RMSE across model configurations are comparable to the uncertainty in the 355 

measurement of yield, then it is impossible to conclude which configuration is the most skilful. Since 356 

the yield data do not have error bars, this comparison is difficult to make. Some indication of 357 

uncertainty in yield measurement may come from comparing datasets. The Root Mean Square 358 

Difference (RMSD) between the all-India groundnut yield data of the Food and Agriculture 359 

Organization and that of the ICRISAT data (both used in C2004) is 33 kg ha-1, 4% of the mean yield of 360 

either time series. The RMSD between configurations A and C is 96 kg ha-1, which is 15% of the mean 361 

yield. Comparison of these two results suggests that the difference between configurations A and C 362 

is significant. However, disagreement across datasets of observed yields is often greater than 4%. 363 

Nicklin (in preparation) has shown that the RMSD between available groundnut yield datasets in 364 

Mali vary by region and are between 83 kg ha-1 and 342 kg ha-1. 365 

The importance of yield data for model calibration and evaluation will likely increase as climate 366 

continues to change and as efforts to increase yields continue. These independent, but connected, 367 

drivers of crop productivity continually alter the baseline situation that crop-climate models seek to 368 

reproduce. The role of closing yield gaps in promoting food security has been noted by many authors 369 

(e.g. Lobell et al., 2009). Bhatia et al. (2006) estimate that the yield gap for groundnut varies 370 

significantly across Gujarat: 1180 to 2010 kg ha-1, which is 103-175% of the mean yield across the 371 

region. Without monitoring of the yield gap, the contribution of climate variability and change to 372 

crop productivity will be impossible to determine. Without assessments of the accuracy of yield 373 

data, it is impossible to determine how much error is introduced to regional-scale crop models 374 

through the calibration procedure. 375 



4.2 Relative importance of rainfall, temperature and yield data 376 

The importance of weather data to crop modelling is well established.  Depending on the crop and 377 

region under consideration, the relative impact of data quality of these input variables varies.  Lobell 378 

and Burke (2008) found that uncertainties in temperature generally had more of an effect than 379 

uncertainties in precipitation across 94 crop-region combinations.  Mearns et al. (1996) found that 380 

simulated wheat yields were sensitive to changes in both temperature and precipitation, which 381 

depended on soil characteristics.  Nonhebel (1994a) found that temperature and solar radiation data 382 

errors generated up to 35% overestimation of yield.  In water-limited conditions, the model was 383 

sensitive to inaccuracies in precipitation and solar radiation data, but when there was sufficient 384 

water, it was sensitive to errors in temperature and solar radiation data (1994b).  Heinemann et al. 385 

(2002) found variations in simulated yield for soybean (up to 24%), groundnut (up to 13.5%), maize 386 

(up to 7.6%) and wheat (up to 2.7%) resulting from errors in rainfall observations. Berg et al. (2010) 387 

found that the frequency and intensity of rainfall, as well as cumulative annual rainfall variability, are 388 

key data features  for crop models to have skill in water-limited regions.   In the current study rainfall 389 

is found to be more important than temperature in simulating crop yield (Section 3.1). This is 390 

consistent with the rainfed monsoon environment in Gujarat. 391 

A more detailed analysis of the relative importance of rainfall, temperature and yield data in this 392 

study requires some understanding of how the shuffle and bias schemes can be compared. Whilst 393 

interpretation of the shuffle experiments in bias space is not trivial (Section 3.2), some comparisons 394 

can be made. Figure 8 shows the performance of configuration A for both shuffle and bias 395 

operations at the seasonal timescale. The bias results are those with the closest mean RMSE to the 396 

corresponding shuffle simulation. Following Taylor (2001), Figure 8 illustrates the relationship 397 

between the correlation coefficient, standard deviation and RMSE of observed and simulated yields. 398 

Errors in precipitation, whether induced through random temporal resequencing (i.e. shuffling) or 399 

through biasing, produced the largest systematic difference from observed yield. 400 

Two other differences are clear from Figure 8: for all variables (i.e. temperature, yield and rainfall) 401 

shuffling results in a lower standard deviation in yield than biasing (points 3 vs points 4 in the figure); 402 

and the use of non-calibrated TE (point 1 vs point 2 on the figure) significantly alters simulated 403 

yields. The second of these results is discussed in Section 4.1. The first result indicates an important 404 

difference between the two methods of error introduction. In all simulations, the standard deviation 405 

in yield is lower than observations; but this is particularly true of the shuffled simulations. Associated 406 

with this lower standard deviation is a lower correlation between observed and simulated yields. 407 

Thus, by directly altering the temporal structure of the rainfall, temperature or yield data, the 408 

seasonal shuffle operation has a greater impact on the skill of the model in simulating inter-annual 409 

yield variability when compared to bias operations that result in a similar RMSE. 410 

In order to assess the implications of the results presented above for operational crop forecasting, it 411 

is necessary to compare the errors simulated here to those found in climate models. Section 4.1 412 

briefly discusses such an analysis for yield data. In order to assess temperature and precipitation, the 413 

HadCM3 historical climate simulation of Collins et al. (2010) was analysed. Figure 9 compares the 414 

observations used in this study to the HadCM3 simulation. The seasonal cycle of monthly 415 

precipitation is captured by the climate model, but there is a significant dry bias. This is consistent 416 

with the findings of Ines and Hansen (2006).  The HadCM3 temperature data are closer to 417 

observations. 418 



It is not possible to associate a single value of p with the HadCM3 simulation. However, using 419 

observations as a reference point, some values of p that are associated with the HadCM3 run can be 420 

calculated. This was carried out as follows. Climatological mean monthly temperature was computed 421 

for the observed data, for HadCM3, and the synthetic biased data. The RMSD of the observed 422 

monthly values and those of each of the synthetic time series was calculated. The value of p that 423 

produced the RMSD closest to the RMSD of HadCM3 and observations (p3) was recorded. The 424 

procedure was repeated for monthly cumulative rainfall. For climatological means, the resulting 425 

values of p3 for temperature were 271 for Bias-Season and 238 for Bias-Climate. For rainfall, p3 was 426 

77 and 66, respectively. The low values of p3 for precipitation are the result of the high standard 427 

deviation in the observed values (see Figure 9) that are used to scale p. When inter-annual variability 428 

in rainfall was assessed in the error metric, by repeating the entire procedure using monthly 429 

standard deviation in lieu of mean values, p3 values were 168 and 293 for Bias-Season and Bias-430 

Climate respectively. Taken together, these results suggest that the range of values of p used in this 431 

study is consistent with the errors observed in climate models. 432 

4.3 Generality of results 433 

A number of factors that are specific to the current study affect the extent of applicability of the 434 

results found. These fall into three categories: the crop model chosen, the location chosen, and the 435 

perturbation operators used. GLAM does not account for non-climatic drivers of yield. Where biotic 436 

stresses dominate, these results are likely not relevant. Also, since Gujarat is a water-limited 437 

environment, the numerical analyses presented here are only relevant for rainfed environments, 438 

where water availability is the main determinant of yield. Furthermore, the experiments of this 439 

study were designed to allow comparison of the perturbations across different input variables, but in 440 

some cases the perturbations differed across variables. For example, the distribution of values in the 441 

rainfall dataset differ from the temperature values, so the equivalent Bias operations can have 442 

differing effects. Ideally, we would have the same perturbation scheme applied to all variables 443 

(comparable methods) which would have the same effect wherever applied (comparable effects). 444 

With current methods, we can only choose one of these. For this study we have chosen comparable 445 

methods, since if we had employed different methods, the differences resulting from perturbations 446 

would have been due to methodological as well as numeric-specific issues like the example 447 

described above. 448 

 Despite these limitations to the generality of results, some broader conclusions are possible. In 449 

particular, the relationship between climate model bias and crop model calibration is worthy of 450 

some discussion. 451 

Yield data are required in order to calibrate any crop model. In the current study, YGP was used as a 452 

process-based and time-independent calibration parameter to minimise RMSE between observed 453 

and simulated yields. This process can correct a significant amount of climatological bias in 454 

temperature, but is less effective for the systematic errors in yield or precipitation data in this study 455 

(Figure 3). However, for precipitation, all three Bias perturbations in this study produce more wet 456 

than dry biases; and the ability of YGP to compensate for systematic dry bias has been shown to be 457 

greater than that for wet bias (Challinor et al., 2005d). Note also that the analysis presented in this 458 

paper likely underestimates the importance of temperature, since the simulations are based on 459 

monthly interpolated data and have no representation of daily extremes. More realistic time series 460 



of daily minimum and maximum temperature may have resulted in heat stress, which would have 461 

had an influence on the RMSE of the configuration B and C simulations.   462 

Whilst every crop model has its own equations, parameters and calibration procedure, common 463 

characteristics may be expected across models. Any aspect of climate or weather that has been 464 

proved to be an important determinant of crop yield will be an important quantity for a climate 465 

model to simulate, regardless of the crop model used. Thus the importance of seasonal rainfall for 466 

crop simulation is not specific to GLAM. Similarly, yield data are a crucial part of the calibration and 467 

evaluation of any crop model. However, differences in model formulation mean that the relative 468 

importance of temperature, precipitation and calibration data will vary between models. Many 469 

models are more complex than GLAM and therefore have a higher number of crop-specific 470 

parameters that can interact with each other. A complete treatment of these interactions is beyond 471 

the scope of this study. Here, we investigated only two parameters (YGP and TE) at the regional 472 

scale, and have therefore most likely produced a minimum estimate of the importance of 473 

interactions between calibration parameters in other crop models. 474 

5. Conclusions: improving the skill of crop-climate simulations 475 

The results from this study suggest that errors in the inter-annual variability of seasonal temperature 476 

and precipitation are likely to cause greater crop model error at the regional scale than systematic 477 

bias in the simulation of climate. This study is based on one crop model alone. Similar studies with 478 

other crop models would not only assess the robustness of the results, but may also identify the 479 

relative strengths of crop models in dealing with different types of climate model error. 480 

Regional-scale yield data for crop model calibration are central to the future of crop productivity 481 

assessments. We found increases in crop model RMSE of up to 143% when the observed yield data 482 

used for calibration were perturbed. Without assessments of the accuracy of yield data, it is 483 

impossible to determine how much error is introduced to regional-scale crop models through the 484 

calibration procedure. Where possible, confidence ranges should therefore be provided with 485 

observed yield data. Ongoing efforts to close the yield gap, coupled with changes in climate and 486 

other environmental drivers, mean that the monitoring of potential yields is also crucial. Without 487 

estimates of the yield gap, the contribution of climate variability and change to crop productivity will 488 

be impossible to determine. The spatial heterogeneity in the yields of many cropping systems is 489 

significant. Thus improved measurement of actual and potential yields at the regional scale involves 490 

not only improved monitoring, but also carefully developed geo-spatial techniques. 491 

The results of this study suggest three key endeavours for improved assessment of future crop 492 

productivity at the regional-scale: (i) increasingly accurate representation of inter-annual climate 493 

variability in climate models; (ii) similar studies with other crop models to identify their relative 494 

strengths in dealing with different types of climate model error; (iii) the development of techniques 495 

to assess potential and actual yields, with associated confidence ranges, at the regional scale. 496 
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Figures 584 

  585 

Figure 1 Effect of the Bias-Climate operation on yield inputs for GLAM configuration A.  On each panel, the line 
represents the mean value across the 100 random number seeds used, and the bars show the standard deviation.  As 
the value of p is increased, the input data values (top panel), along with the RMSE of the perturbed input data to the 
original observations (second panel), can be seen to deviate from the source input.  The third panel plots the value of 
GLAM’s Yield Gap Parameter (YGP), while the bottom two panels show the mean projected yield, and the RMSE of 
projected yield against observed yield. 



  586 

Figure 2 RMSE and correlation coefficient of observations against GLAM configuration A’s projected yield, for each of the 
shuffle operations across 1000 unique random number seeds. As in Figure 5 below, each box extends from the upper to 
the lower quartile value, and each red line shows the median. The whiskers indicate the most extreme value within 1.5 * 
the inner quartile range, with values beyond this illustrated with a ‘+’.  The distance between the unperturbed model’s 
projected yield and observations is represented by the dotted lines.  Only seasonal shuffling was performed on yield 
inputs, since this dataset is comprised of per-season values. 



  587 

Figure 3 Mean RMSE of projected model yield compared to observed yield for increasing p (configuration A). 



  588 

Figure 4 Mean correlation coefficient of projected model yield compared to observed yield as p is increased 
(configuration A). 



  589 

Figure 5 Performance of GLAM configuration C for each shuffle operation.  As in Figure 2, the dotted lines represent the 
distance between observations and the unperturbed configuration A yield projection.  The dashed lines represent the 
distance of configuration C. 



  590 

Figure 3 Mean RMSE of projected model yield compared to observed yield as p is increased (configuration C). 



  591 

Figure 4 Mean correlation coefficient of projected model yield compared to observed yield as p is increased 
(configuration C). 



592 
Figure 5 Comparison of the mean correlation coefficient and mean standard deviation (normalized to 
observations) of each data scheme, for configuration A at the seasonal timescale.  For each Bias type, the single 
value of p whose mean RMSE was closest to the equivalent shuffled RMSE was chosen.  The performance of the 
control runs of configurations A and C are also shown. 



 593 

Figure 6 Comparison of monthly precipitation and temperature observations with the Hist2 control run of the QUMP 17-
member HadCM3 ensemble.  The mean and standard deviation for each month in the growing season is shown for the 
years 1966-1989. 
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