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Exponential Time Response in Analogue and Geiger
Mode Avalanche Photodiodes

C. Groves, C. H. Tan, J. P. R. David, Senior Member, IEEE, G. J. Rees, and M. M. Hayat, Senior Member, IEEE

Abstract—The mean avalanche current impulse response in an
avalanche photodiode exhibits an initial transient and then grows
or decays, above or below breakdown, at exponential rates which
depend only on the probability distributions of the electron and
hole ionization events. The process continues while the electric field
profile remains unchanged by the applied bias or the evolving space
charge. Below breakdown the distribution in the avalanche dura-
tion also exhibits an initial transient and then decays exponentially
at the same rate as the mean current. Below breakdown the stan-
dard deviation in current decays exponentially at one half of the
rate of the mean current, while above breakdown it grows expo-
nentially at the same rate as the mean. Consequently the jitter
in a Geiger mode avalanche photodiode becomes independent of
time after the initial transients have decayed away. This behavior
is quite general and independent of the electric field profile or of
the presence of heterojunctions in the multiplication region. Using
simple models for carrier transport we find the predicted enhance-
ment in the velocity to ionization of those carriers which ionise
shortly after their ballistic dead space significantly speeds up the
avalanche dynamics in short devices.

Index Terms—Avalanche diodes, impact ionization, timing jitter.

I. INTRODUCTION

I
MPACT ionization generates internal gain in an avalanche
photodiode (APD). However, the multiple carrier transits of

the avalanche region from ionization feedback processes delay
the recovery of the diode, following optical excitation, to an ex-
tent which increases with the gain. Above breakdown the APD
operates in the Geiger mode, so that a single absorbed photon
can generate a measurable current. The avalanche build-up time
is then also governed by these feedback processes, as is the
standard deviation in the time taken to reach a predetermined
threshold current chosen to register a breakdown event. This
“jitter” increases the uncertainty in the time to breakdown and
hence in the arrival time of the photon which may have triggered
this event. These aspects of the time response of APDs are im-
portant features in determining the performance of the detection
systems which they comprise.

Hayat and Saleh have shown analytically [1] that the mean
avalanche current impulse response in an APD and its mean
square value decay exponentially at long times, with an expo-
nential rate given by the Malthusian parameter [2]. Their anal-
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ysis assumed a multiplication region with a uniform electric
field, that carriers travel always at constant speeds down the field
and that the carrier ionization path length probability distribu-
tion functions (pdfs) are represented by exponentials, displaced
to include the effects of dead space. We also observe this expo-
nential decay at long times in our numerical modeling of APDs
under more general conditions which relax the assumption of
constant carrier velocities, and using a variety of techniques.
These include Monte Carlo calculations of varying degrees of
sophistication [3]–[7] and a recurrence equation technique [8]
which allows for arbitrary carrier speeds to ionization and also
for random fluctuations about these mean speeds, corresponding
to diffusion.

Hayat and Dong [9] showed how to calculate the pdf
of avalanche duration, the distribution in times for the last
avalanche carrier to exit the multiplication region, under the
same restrictive conditions as used in [1]. Ng et al. [10] gener-
alized this technique by relaxing the conditions to those used
in [8]. Both groups found that the pdfs of avalanche duration
decay exponentially at long times.

Carrier diffusion appears to have only a small effect on
the shapes of the current impulse response [3], [8] and of the
avalanche duration pdf [10]. However, our modeling work
[3]–[6], [11]–[13] predicts that those carriers which ionise at a
distance shortly after the ballistic dead space, travel to this
early ionization event at an average speed which is considerably
higher than for carriers which ionise further downstream. We
expect the effect to be important in thin APDs and that it more
than compensates [5] for the slowing effect of dead space [1]
which increases the number of carrier excursions back and
forth across the multiplication region to maintain gain [7].

We have shown [14] that this speed enhancement can be ex-
plained in terms of the reduction in scattering which causes car-
riers to ionise at short distances. We have also argued [14], using
simple models, that the mean speed, to ionization at a dis-
tance after the carrier is injected cold can be written approxi-
mately as , where is the limiting value
of at long ionization path lengths. Indeed, this simple ex-
pression describes very well the behavior which we observe in
our numerical simulations.

In this note we generalize the technique of Hayat and Saleh
[1], relaxing some of their restrictive assumptions, to show how
both the mean and the mean squared avalanche current impulse
response in an APD depend exponentially on time, following the
initial transients, and how these exponential rates are related to
the probability distributions of the ionization events. The argu-
ments apply both below breakdown and also above it, when the
device operates in Geiger mode, resulting respectively in expo-
nential decay and growth, provided the effects of space charge

0018-9383/$20.00 © 2005 IEEE



1528 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 52, NO. 7, JULY 2005

and of external quenching processes can be ignored. The be-
havior of the standard deviation in the current is examined below
and above breakdown, as is the behavior of jitter, which is pre-
dicted to become independent of time in Geiger mode opera-
tion. We also show that, following the initial transients, the pdf
of avalanche duration decays at the same exponential rate as the
mean avalanche current.

We demonstrate that this behavior is to be expected, irrespec-
tive of the electric field profile in the multiplication layer, thus
allowing for the effects of residual, unintentional doping, of de-
pletion into the p- and n-contacts and for the presence of hetero-
junctions. We assume the most general form for ionization event
pdfs and require only that the arbitrary field profile remain con-
stant during the avalanche process. The results therefore hold
only while the avalanche space charge remains small, since this
will have a significant effect on the field profile at macroscopic
current levels, and before external quenching reduces the ap-
plied bias. These exponential rates are then evaluated numeri-
cally for specific cases, assuming constant carrier velocities and
also allowing for the predicted enhancement in velocity to early
ionization. It should be noted that the model presented is one di-
mensional and therefore does not consider jitter associated with
lateral diffusion of carriers to the edge of the breakdown region.

II. MEAN CURRENT RESPONSE

When the ionising electric field depends upon position in the
multiplication region then the ionization event pdfs depend on
the time, elapsed between carrier injection and ionization and
also on its position, of injection, as well as its position, of
ionization [15], and not only on their difference, . The
ionization event pdf for electrons (holes) then takes the form

instead of the simpler, conventionally assumed
form, appropriate for a uniform field.

Tan et al. [8] derive equations [their (1) and (2)] for the mean
current impulse response at time , resulting from
injection of an electron (hole) at position and time into
a multiplication region with uniform electric field and width .
We can generalize their equations to nonuniform field to find

(1a)

(1b)

Here electrons are imagined to drift from left to right and holes
from right to left. The first terms on the right-hand side of these
equations represent the contributions from the injected, primary
currents, , and

(2a)

(2b)

are the probabilities that the injected carriers avoid ionising be-
fore exiting the multiplication region before time .

After these primary current contributions have died away
we can, following Hayat and Saleh [1], seek asymptotic,
exponentially decaying solutions for the remaining currents,

, which result only from car-
riers generated by impact ionization. Substituting this form in
(1), in the absence of the primary current terms we find

(3a)

(3b)

where

(4a)

Here we have used the fact that, since the ranges of and are
limited, vanishes for large and we can replace
the upper limit, in the integral by .

The consistency of the coupled, homogeneous, linear (3)
constitutes a condition which determines the value of , the
Malthusian parameter [2] which depends only on the form of
the . When this condition is satisfied the solutions,

are also determined to within an arbitrary, multiplicative
constant.

III. MEAN SQUARED CURRENT RESPONSE

Tan et al. [8] also derive equations [their (3) and (4)] for the
mean squared current impulse response, at time .

Again, generalizing to nonuniform field and after the primary
currents have died away, we can extract the asymptotic expo-
nential behavior by writing ,

(5a)

(5b)
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to find (5), shown at the bottom of the page. Here the
are as defined earlier and given by (3).

For an APD biased below breakdown . If we suppose
that 2 then the terms involving

are asymptotically small and (5) can be cast in the form
of (3), with replacing . It follows that ,
confirming our supposition that and consistent with
[1].

The standard deviation in the currents, given by

(6)

with , behaves asymptotically as , since the
second term under the square root decays faster than the first.

In the case of an APD biased above breakdown to operate
in Geiger mode then and the mean asymptotic impulse
response current grows exponentially. If we again suppose that

, then again we find , for the same reasons
as before. However, this time it follows that is
negative, contrary to our supposition, which therefore cannot
be correct. If, on the other hand, we suppose that

, then the terms involving diverge
at long times and dominate the right-hand side of (5), which
increase as , in contrast to the left-hand sides, which
are independent of time, also ruling out this supposition. There
remains only the possibility that , when (5) become
inhomogeneous integral equations for and . Thus,
for an APD biased above breakdown with , we find that

, so that the standard deviation in the current in (6) in
this case behaves asymptotically as .

We arrive at the curious result that below breakdown
, whereas above breakdown , where

is the Malthusian parameter [2] describing the decay or growth
of the mean current. Interestingly, this type of asymmetrical
asymptotic behavior in the second moment, above and below
breakdown, is also seen in other models of population dynamics
(see [2, p. 109, (5)]).

IV. AVALANCHE DURATION

Ng et al. [10] derive equations for the probability,
that, below breakdown, an avalanche, initiated by injecting an
electron (hole) at position in a uniform multiplication region at
time , terminates before time [their (2) and (3)]. Again we
can generalize these equations to the case of nonuniform fields,
so that

(7a)

(7b)

Here represents the probability that an electron
(hole) injected at position escapes the multiplication region
before time has elapsed. In fact the original (2) and (3) in [10]

are in error and the depend also on , as well as on , as
correctly acknowledged here in our (2).

The pdfs of avalanche duration following electron (hole) in-
jection are given by and can be
evaluated by differentiating (7). After waiting sufficiently long
(of the order of a carrier transit time) for the inhomogeneous
terms on the right of these equations to die away we find, for
the electron initiated avalanche duration pdf,

(8)

At time the probabilities are zero so that the
first term on the right-hand side of (8) is also zero. At long times
these probabilities approach unity so that the equation then sim-
plifies to

(9a)

Similar arguments for hole injection yield

(9b)

These equations are identical in form to (1), after the primary
currents have decayed away, with replaced by

. It follows that the avalanche duration pdfs decay
exponentially in time at the same exponential rate as the mean
avalanche current.

When the multiplication region is uniform then the
depend only on the difference and

not separately on and , so that we can write
and . It follows from

(3a) and (3b) that

(3c)

(3d)

where

(4b)

In the general case we could attempt to find by discretizing the
integrals in (3) to generate a set of linear equations from which
we could find numerically the value of which gave nontrivial
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solutions for . However, as shown by Hayat and Saleh
[1], for simple forms of we can make further analyt-
ical progress.

V. MODELS FOR

A. Dead Space and Constant Carrier Velocity

Hayat and Saleh [1] used a displaced exponential model for
the spatial part of and assumed that electrons travel always
at their constant speeds so that

for

for

where represents the electron dead space. It follows that

for (10a)

for (10b)

B. Dead Space and Enhanced Carrier Velocity

Assuming a conventional displaced exponential for the spa-
tial part of but that the electron velocity to ionization at posi-
tion downstream from the injection point is given by

, then we find

for

so that

for (11a)

for

(11b)

We can summarize the results of both of these models by
defining . Then

for (12a)

for (12b)

where for the constant velocity model and for
the enhanced velocity model .

When both of these models collapse into the conven-
tional, local, constant velocity model, giving

(13)

The corresponding expressions for holes throughout are
found by replacing and and with

and .

VI. SOLUTION FOR

Substituting (12) and the corresponding expressions for holes
into (3) we find

(14a)

(14b)

Multiplying these equations respectively by and
and differentiating with respect to we find

(15a)

(15b)

The boundary conditions on are found from the integral
equations (14)

(16a)

(16b)

Equations (15) admit solutions of the form

(17a)

(17b)

where the equation for

(18)

is found by substituting (17) into (15) and eliminating E and H.
Where the roots of (18) are complex these occur in conjugate
pairs since (18) is a real equation for .

When (18) turns into a quadratic equation for
with two roots, . We find (18) also has two roots
when , though we must find these solutions, nu-
merically.

We can then seek general solutions for (15) of the form

(19a)

(19b)

Substituting these solutions into (15a) and equating the coeffi-
cients of the terms in and in we find

(20a)

(20b)

Applying the boundary conditions (16) to the solutions (19)
gives

(21a)

(21b)

Finally we combine (20) and (21), eliminating A, B, C, and D,
to find (22), shown at the bottom of the page. Equation (22)

(22)
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Fig. 1. 
� versus �w for d =w = 0 (circles), 0:1 (squares), and 0:2
(triangles), for the constant (filled) and enhanced velocity (open) models.
v = v ; d = d , and � = � in all cases. The constant and enhanced
velocity models coincide at d = 0 = d , as do their results.

constitutes an equation for , whose solution can be found
numerically.

An alternative and equivalent condition on may also be
found by substituting (19) into (15b) and again using (21) to
eliminate the coefficients. When the roots and of (18)
are complex conjugates the real part of the left-hand side of (22)
is identically zero and is found from the zero of the imaginary
part.

VII. RESULTS

Equation (22) was solved numerically to find the Malthusian

parameter for a range of values of multiplication region width

, enabled ionization coefficients and for electrons and

holes, velocities to ionization and , and dead spaces

and . Results were derived using both the models for con-

stant [(10)] and enhanced [(11)] velocities to ionization and are

plotted in terms of the dimensionless quantity , the

Malthusian parameter normalized to the electron “transit” time,

.

Fig. 1 shows as a function of the dimensionless elec-

tron ionization coefficient, , plotted for a range of values of

and assuming equal ionization parameters for electrons

and holes. When the constant and enhanced velocity

models coincide, as do the corresponding results. For smaller

values of , corresponding to weaker ionization, is posi-

tive so that the current impulse response to injected carriers ul-

timately decays with time, as in an APD. As is increased

falls, changing sign when the device breaks down (corre-

sponding to when the dead space is zero) so that the

current impulse response ultimately grows exponentially with

time, as in a SPAD. The value of at breakdown increases

with , as might be expected since, as dead space is in-

creased, a greater portion of the avalanche region is denied to

multiplication and the ionization coefficients must increase to

compensate. For any values of and the absolute value

of is always larger for the enhanced velocity model than for

the constant velocity model of ionization, confirming that the

Fig. 2. 
� versus �=� for �w = 0:5 (squares), 1:0 (circles), and 1:5
(triangles), for the constant (filled) and enhanced velocity (open) models.
v = v and d w = 0:1 = d w in all cases.

Fig. 3. 
� versus v =v for (circles) �w = 0:5, (triangles) 1:0, and
(squares)2:0, for the constant (filled) and enhanced velocity (open) models.
� = � and d w = 0:1 = d w in all cases.

velocity enhancement accelerates both the decay in the current

response in an APD operated below breakdown and its growth

in an APD operated in Geiger mode. The breakdown value of

(where ) is the same for both models, as might be

expected since multiplication depends only on the number of

ionization events and not on the speed with which they happen.

Fig. 2 shows curves of against , assuming equal values

for other electron and hole ionization parameters, at a value of

and for a range of values of . For any value of

the current decays for small values of but increasing

this ratio pushes the device through breakdown, as does in-

creasing .

Fig. 3 shows the effect on of the hole/electron velocity ratio,

with other electron and hole ionization parameters equal,

for and for a range of values of . As decreases,

so that falls toward zero for fixed , so the dynamical

behavior, asymptotic decay below breakdown or growth above,

depending on the value of , becomes slower. The asymptotic
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Fig. 4. (Full lines) Dimensionless mean current, (dashed lines) mean squared
current and (dash-dot lines) current standard deviation, assuming constant
(faint) and enhanced (bold) velocities to ionization versus dimensionless time,
tv =w, assuming equal ionization parameters for electrons and holes, with
d =w = 0:1. (a) Below breakdown, with �w = 0:5 and (b) above breakdown,
with �w = 2:5.

behavior described here depends on the cooperation of both elec-

trons and holes and when one set of carriers becomes fixed the

process stops. As becomes large the rates saturate since

they are then limited only by the speed of the electrons.

Fig. 4 shows the mean impulse current response to pure

electron injection, normalized to the injected primary cur-

rent, , the mean of the square of this quantity and the

normalized current standard deviation, calculated by solving

numerically the recurrence equations derived in [8]. We as-

sume equal ionization parameters for electrons and holes, take

m/s and m and calculate the

responses for (below breakdown) in Fig. 4(a) and

(above breakdown) in Fig. 4(b). Both above and

below breakdown the curves show transient behavior at early

times and then settle down to exponential growth and decay

respectively. Including velocity enhancement in the model

for the ionization process clearly speeds up the dynamical

behavior at long times and detailed inspection shows that the

exponential rate constants are as predicted by (22). These

numerical solutions also confirm the analytical predictions that

the mean current and the mean squared current exhibit the

Fig. 5. RPL calculations of distributions of times to reach avalanche currents
of (full line) 0.01 mA, (dotted line) 0.1 mA, and (dashed line) 1 mA assuming
d =w = 0:1 with �w = 2:5 and identical ionization parameters for electrons
and holes.

same exponential decay rate, below breakdown, so that the

standard deviation in the current decays as . By contrast,

above breakdown the mean squared current grows with an

exponential rate twice that of the mean current, so that the

standard deviation in current grows with the same exponential

growth rate as its mean, also as predicted analytically.

The jitter, defined here as the standard deviation in time be-

fore reaching a predetermined threshold current chosen to reg-

ister a breakdown event, limits the precision with which this

event, and hence the arrival of any photon which stimulated it,

can be located in time. This jitter can be estimated by dividing

the standard deviation in current, by the slope of the

mean current response, . Since these two quan-

tities increase exponentially at the same rate we expect the jitter

in a Geiger mode APD to be independent of time at long times.

It follows that the jitter first undergoes a transient behavior, fol-

lowing initiation of the breakdown event, and then becomes in-

dependent of current when this is growing exponentially.

This analytical prediction is supported by the numerical cal-

culations in Fig. 4(b) of the mean impulse response current

and its standard deviation. It is also supported by independent

random path length (RPL) calculations [13] of the distributions

of times taken to reach threshold currents spanning two decades,

an example of which is shown in Fig. 5. In this example a Monte

Carlo scheme is used to select the random positions and times

of the ionization events in an avalanche process according to the

displaced exponential, constant velocity ionization event pdfs

leading to (10). This independence of jitter on time in a de-

vice operated above breakdown has also been observed in ear-

lier Monte Carlo simulations [16]. Below breakdown the jitter

is predicted to grow exponentially, at a rate .

VIII. SUMMARY AND DISCUSSION

A technique was derived to calculate the rates of exponen-

tial growth or decay of the mean impulse response current

and its standard deviation in an APD biased above or below

breakdown, together with the pdfs of avalanche duration below
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breakdown. The exponential rate is found by requiring the

consistency of homogeneous integral equations whose kernels

are the Laplace transforms of the pdfs of ionization events for

the ionising carriers. The exponential behavior described here

is quite general and is independent of the electrical field profile

of the multiplication region and of the presence of heterojunc-

tions, provided the field profile remains independent of time.

Moreover the (3) from which is calculated are independent

of the initial injection conditions, as is the asymptotic behavior

which describes.

These rate constants are evaluated ignoring the effects of car-

rier diffusion and the results are compared for the cases when

carrier velocities to ionization are assumed constant, and also

allowing for the velocity enhancement to ionization associated

with the reduced scattering predicted for carriers which ionise

shortly after their ballistic dead space. For short multiplication

regions designed for high speed the velocity enhancement leads

to significantly faster dynamical behavior, both above and below

breakdown.

The exponential time behavior discussed here strictly applies

asymptotically. However, it is apparent from Fig. 4 that it ap-

pears to become well established after an initial transient which

lasts a few carrier transit times of the multiplication region and

corresponds to a decade or so of current increase. In an APD

biased below breakdown exponential current decay can be

expected to continue until chance fluctuations stop the current

and the multiplication process terminates, although, strictly

speaking we are here concerned with the mean current, aver-

aged over many trials, which continues to decay indefinitely.

In a Geiger mode device other factors intervene to limit the

exponential growth in mean current above breakdown. Conven-

tionally the avalanche current is quenched with a series ballast

resistor, or active quenching circuit, chosen so that the satu-

rated avalanche current does not exceed A [17] so that

a statistical fluctuation is then likely to terminate the avalanche

process. The primary current due to the injected carrier is given

by Ramo’s theorem as , where is the carrier velocity. In a

“thin” device [17], where m this corresponds to nA

so that the current can be expected to grow in its exponential

mode by a couple of decades or so before saturating and by per-

haps four decades in a “thick” device, where m.

Alternatively, if the ballast resistor is small then the increasing

space charge associated with the avalanche current will eventu-

ally start to distort the electric field profile in the multiplica-

tion region and the current will again saturate. The current car-

ried by carriers of charge in the depletion region is given

by . If these charges are spread uniformly across

the diode cross sectional area then the resulting electric field

dropped across the depletion region is given from Poisson’s

equation by , where is the

electrical permeability. This field becomes comparable with the

breakdown field, when , where is the

breakdown voltage, by which time the current has increased by

a factor over its primary value. In a “thin” de-

vice of diameter m say, where V the current

can grow exponentially by some three orders of magnitude be-

fore it begins to saturate because of space charge effects. In fact

carriers of opposite charges will partially cancel in the resulting

the space charge so that the exponential current range estimated

here represents a lower bound.

When an APD is operated below breakdown, in analogue

multiplication mode, its frequency response is determined both

by the initial transient behavior of the impulse response current,

which depends on the carrier injection conditions, and also by

the exponential decay, discussed here. In this case the transient

behavior dominates the speed since the response at longer times

is de-weighted by the exponential decay of the current. Con-

versely, when the device is used above breakdown in the Geiger

mode the initial transient behavior is relatively insignificant. The

exponential growth of the mean current impulse response then

dominates the speed, since the current must grow by several or-

ders of magnitude before a breakdown event is registered. Nu-

merical simulations of the mean current impulse response in

both modes, using a technique which allows for nonuniform car-

rier velocities, illustrate these arguments and show that in Geiger

mode an order of magnitude estimate of the time dependence of

the mean impulse response current may be obtained from the

exponential growth rate, assuming that its initial value is given

by the injected primary current.

Our analytical arguments show that both the pdf of the

avalanche duration and the mean squared impulse response

current below breakdown fall with the same exponential decay

rate as the mean current, so that the current standard deviation

falls at one half of this rate. By contrast, above breakdown

the mean squared current increases with twice the exponential

growth rate of the mean current, so that the standard deviation

in current grows at the same rate as the mean.

The jitter, taken here as the standard deviation in time be-

fore the mean current reaches some predetermined value, is pre-

dicted, at long times, to fall below breakdown at an exponen-

tial rate . Above breakdown, after the initial transients have

died away and the avalanche current triggered by absorption of

a single photon rises to measurable values, this jitter becomes

independent of time, and hence of the mean current, while this

is still growing exponentially.
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