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One nanometre wide carbon nanoreactors are utilised as the

reaction vessel for catalytic chemical reactions on a

preparative scale. Sub-nanometre ruthenium catalytic

particles which are encapsulated solely within single-walled10
carbon nanotubes offering a unique reaction environment are

shown to be active when embedded in a supercritical CO2

continuous flow reactor. A range of hydrogenation reactions

were tested and the catalyst displayed excellent stability over

extended reaction times.15

Nanoparticles of transition metals (MNPs) have been

demonstrated to be excellent candidates for catalysis due to their

remarkable chemical and physical properties.1 As nanoparticles

are intrinsically thermodynamically metastable the stabilisation of

MNPs is vitally important to prevent leaching and sintering of the20
metal during catalysis. Immobilising the active nanoparticles on

solid supports such as alumina,2 silica,3 zeolites,4 amorphous

carbon5 and graphene6,7 and utilising the resultant materials as

heterogeneous catalysts is an effective method to tackle these

problems. Recently, carbon nanoreactors in which MNPs are25
located on the inside and/or the outside of multi-walled carbon

nanotubes (MWNTs) have been proposed as catalyst support

materials.8-12 The cylindrical shape and high chemical and

thermal stabilities of carbon nanotubes make them ideal catalyst

supports and nanoreactors, stabilising the metal nanoparticles and30
providing a unique local environment leading to new products.8

One significant challenge facing the development of carbon

nanoreactors is the scaling down of the nanoreactor channel by

one or two orders of magnitude, from 10-100 nm in the case of

MWNT, to a size closer to that of the reactant molecules. This35
decrease in reactor size to generate a more extremely confined

reaction environment is predicted to enhance the effect that the

carbon nanoreactor sidewalls have on chemical reaction

pathways. Additionally such extreme confinement should

improve the stability of the catalyst: a narrower nanoreactor40
should prevent sintering and leaching further, thus improving the

reactivity and recyclability of the catalytic MNPs.

Single-walled carbon nanotubes (SWNTs) have been proposed as
the ideal nanoreactor, possessing a diameter of 1-2 nm which is
commensurate in size to typical organic reactants.8 The diameter45
of SWNTs (crystallographic diameter 1.5 nm and van der Waals

Fig. 1. a) Schematic diagram of the hydrogenation of cyclohexene (blue)
to cyclohexane (pink) using bundles of RuNPs@SWNT catalytic
nanoreactors (shown in the expanded box) in a continuous flow scCO250
milliscale reactor. TEM images of b) a bundle of RuNPs@SWNTs and c)
an individual RuNPs@SWNT both showing that the Ru metal is located
solely within the internal nanotube cavities. d) EDX spectroscopy
confirms the presence of Ru metal in the nanotubes (Cu and Ni peaks are
due to the specimen holder and metal catalyst used for nanotube55
fabrication respectively). e) RuNP and SWNT diameters were measured
by TEM.

internal diameter ~ 1nm) is large enough that typical reactant

molecules (van der Waals diameter ~0.4-0.8 nm) can fit inside

the nanotube but narrow enough that they will be influenced by60
the proximity of the nanotube sidewalls (see ESI file). However

significant practical transport issues exist in accessing such

narrow nanotube channels which have prevented SWNTs from

being utilised in catalytic reactions to date.
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In this Communication, we introduced the Ru metal into the

carbon nanotubes in the gas phase using a volatile Ru3(CO)12

precursor following the procedure described to produce W, Re

and OsNPs inside SWNTs.13 Thermal treatment leads to the

decomposition of the ruthenium carbonyl to generate NPs whose5
size are controlled by the nanotube diameter. CO gas generated

by carbonyl decomposition inside the SWNT prevents the metal

NPs sintering to form rods. When formed the naked RuNPs are

stabilised by adhesion to the internal nanotube sidewall and the

CO gas is vented from the nanotube leaving the internal channel10
ready to accommodate reactant molecules. TEM shows very

small RuNPs with a narrow diameter distribution (dNP = 0.92 ±

0.13 nm). The internal channel of the SWNT acts as a template to

nanoparticle formation enabling precise control of the NP size.

As the NP size is closely linked to the catalytic activity,14 varying15
the diameter of the SWNT to template NPs of different sizes

could be utilized to modulate the catalytic properties of the NPs.

The RuNPs@SWNT catalyst was immobilised in a high pressure

milliscale reactor packed with a mixture of the catalyst and sand

(Fig.1a). Reaction performed over the reaction bed using a20
gaseous mixture of cycloalkene and H2 led to negligible (<5%)

conversion.. This is in contrast to previous work reported for

MWNT based nanoreactor catalysts reporting high yields for a

wide variety of gas phase reactions.8 The reduced conversion in

SWNT is most likely as a result of mass transfer limitations due25
to the much narrower diameter of SWNTs (dNT = 1.39 ± 0.05

nm). However the conversion of reactions using RuNPs@SWNT

increased significantly when supercritical carbon dioxide (scCO2)

was added as a reaction solvent. This is most likely due to the

negligible surface tension and low viscosity of scCO2 enabling it30
to deliver molecules into very narrow nanotubes.15 In addition,

scCO2 is a highly effective medium for hydrogenation as H2 is

fully miscible with scCO2.
16-18 It has also be shown to be a

suitable solvent for non-polar organic molecules being utilized in

a number of continuous flow reactions over a variety of35
heterogeneous supported metal catalysts.19,20

For example, the catalyst efficiently converted cyclooctene to

cyclooctane in yields up to 80% at temperatures above 160 °C

despite low amounts of available catalyst (1 mg of Ru metal in 20

mg of Ru@SWNT) relative to the flow rate of organic substrate40
(0.03 mL/min), Fig. 2a. For the hydrogenation of cyclooctene the

temperature of the fixed catalyst bed was cycled and showed

good stability over a series of temperature cycles at constant flow

rates for a number of hours (Fig. 2a). Following this process the

catalyst bed was held at fixed temperature of 110 °C for 11 hours45
for the hydrogenation of cyclooctene with no loss in activity

observed. TEM of the RuNPs@SWNT catalyst after 24 h of

reaction revealed that the structure remained unaltered confirming

the stability of the catalyst (ESI file). Unconfined RuNPs would

be unstable under these conditions and undergo fast coalescence50
and Ostwald ripening drastically reducing their activity.

The extreme confinement imposed by the narrow nanotubes

efficiently stabilises the nanoparticle catalyst and also provides a

unique reaction environment. Interestingly, the activity of the

confined catalyst is reduced as compared that of the traditionally55
used Ru/C catalyst due to the spatial restriction in SWNT

nanoreactor: the turnover frequency (TOF, number of product

molecules formed per active Ru atom, see ESI file for details) of

the RuNPs@SWNT and Ru/C (20 mg of the commercially

available catalyst, 5% by wt. Ru) catalysts for the hydrogenation60
of cyclooctene at 50 °C were measured to be 32 min-1 and 103

min-1 respectively. The reduction in catalyst activity in

nanoreactors is less severe than expected under the conditions of

extreme spatial confinement in RuNPs@SWNT due to the fact

that scCO2 is an ideal solvent able to access the catalyst in SWNT65
narrow channel.

Fig. 2. Reaction kinetics for the reduction of (a) cyclooctene (■) to 
cyclooctane (○) and other products (▲), (b) butryaldehyde (■) to butanol 
(○) and small amounts of other products (▲) and then changing the 70
feedstock solution for the reduction of (c) cinnamaldehyde (■) to 
hydrocinnamaldhyde (○) and cinnamyl alcohol (▲). The reactor internal 
temperature is shown as the solid line in all plots. Flow rates were as
follows; 1mL/min CO2, 0.03mL/min organic substrate, 0.06mL/min H2

under 100bar pressure.75
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In addition to olefins, the catalyst also exhibited good activity

towards carbonyl hydrogenation, RuNPs@SWNT successfully

reduced butyraldehyde to butanol (ca. 50% conversion at 200 ⁰C,

see Fig. 2b). It was also possible to selectively reduce

cinnamaldehyde to hydrocinnamaldehyde (ca. 70% conversion,5
>99% selectivity, Fig. 2c). Interestingly at 60 ⁰C, the major

product was cinnamyl alcohol, but at relatively low conversion

(<6%). In the case of cinnamaldehyde no doubly reduced

products were observed (i.e. phenylpropanol). In both cases the

reduction proceeded smoothly with negligible reduction in yields10
when held at the upper reduction temperature of 200 °C.

Fig. 3. a) TEM image of two nanotubes of the RuNPs@SWNT catalyst

after exposure to C60. b) Structural diagram showing the positions of the15
C60 molecules (grey) and the RuNP (blue) inside the carbon nanotubes.

To illustrate that the size and shape of the RuNPs themselves do

not impede reactants from being able to reach a portion of the

RuNPs within these structures and to confirm that hydrogenation

takes place solely inside the nanoreactors, the RuNPs@SWNT20
catalyst was exposed to gaseous C60. TEM was subsequently

utilised to confirm the encapsulation of the fullerene molecules

and the extent to which they could penetrate the internal channels

of the catalyst (Fig. 3). As the 1 nm sized C60 spheres fit snuggly

into the nanotube channel they prevent access of any substrate25
molecules to the internal RuNPs. In a control experiment the

resultant (C60 + RuNPs)@SWNT material was used in a test

hydrogenation reaction of cyclooctene and showed no activity

confirming that the catalysis occurs solely via RuNPs located

inside the nanotubes. The fact that the C60 molecules can30
penetrate through to RuNPs within the nanotube (Fig. 3a) visually

demonstrates the accessibility of the metal centres in

RuNPs@SWNT to organic reactants during preparative

hydrogenation in a flow of scCO2.

35
Conclusions
We have successfully combined the concept of carbon nanotube

nanoreactors with supercritical continuous flow technology,

which demonstrate the potential for the utilisation of fixed bed

carbon nanoreactors. This is the first example of catalysis within40
SWNT, which not only provide precise control of catalyst size

but also preventing sintering of the RuNPs leading to enhanced

stability. Due to the extreme spatial confinement the

RuNP@SWNT catalyst showed a lower TOF for the reduction of

cyclic alkenes in comparison to a Ru/C catalyst, but no drop in45
activity or change in structure of the RuNPs observed over 24

hours at 110 °C. The development of a methodology to utilise

nanoreactors of dimensions commensurate with molecular

reactants and products provides the potential for the formation of

new species which are impossible to form without this unique50
reaction environment. Future work will also investigate the

optimal nanotube length in order to maximise catalyst turnover

frequency.
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