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Cognitive Context and Arguments from
Ontologies for Learning

Christiana PANAYIOTOU"!, Brandon BENNETT
aSchool of Computing, University of Leeds, LS2 ,Leeds,UK

Abstract. The deployment of learning resources on the web by diffeegperts
has resulted in the accessibility of multiple viewpoint®uatthe same topics. In
this work we assume that learning resources are underpmnedtologies. Differ-
ent formalizations of domains may result from different teotts, different use of
terminology, incomplete knowledge or conflicting knowledtVe define the notion
of cognitive learning contextwhich describes the cognitive context of an agent
who refers to multiple and possibly inconsistent ontoledi® determine the truth
of a proposition. In particular we describe the cognitivetess ofambiguityandin-
consistencyesulting from incomplete and conflicting ontologies redjpely. Con-
flicts between ontologies can be identified through the déam of conflicting ar-
guments about a particular point of view. Arguments can leel trs detect inconsis-
tencies between ontologies. They can also be used in a delogfween a human
learner and a software tutor in order to enable the learngrstdy her views and
detect inconsistencies between her beliefs and the tudar’s Two types of argu-
ments are discussed, namely: arguments inferred directly faxonomic relations
between concepts, and arguments about the necessaryrhdgafficient features
that define concepts.

Keywords. ontologies, reasoning, formal comparison between oni@tog

Introduction

Learning resources are becoming increasingly availabte®@web. As a result a learner
may have access to multiple resources about a single topiasglime that each learning
resource is underpinned by an ontology. Ontologies of theesg&omain may be repre-
sented at various degrees of abstraction and granulahigy ay also represent knowl-
edge at different degrees of completeness. Reasons caackd to different points of
view and experience of the experts that derive them. Thedganay not be able to de-
termine whether discrepancies in ontologies arise duedonipleteness of knowledge,
due to disagreement between ontologies, or due to diffeseimcthe perspectives giv-
ing rise to different viewpoints. Our long term objectivetéisdevelop a computational
framework of an agent capable of handling viewpoint disarees in the ontologies of
learning resources and to enable a learner to engage inogdéelith the software tutor
to clarify differences of her own viewpoints with the viewpts of learning resources.
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This paper focuses on the formalization of three importapeats of this framework,
described below.

Firstly we formalize two cognitive states, namely the cogaistates of ambiguity
and inconsistency that enable us to plan the interactiomd®t a human learner and the
software agent. In order to address the problem of cogratiwbiguity and confusion of
learners, we allow resources with conflicting or differexformation to be part of the
same cognitive context. We assume that the context is detatéhe goal of the learning
activity (referred to as thivcusof the learning activity) rather than on the compatibility
of the resources referred to by the context. As a consequéreeontext may involve
multiple domains, if multiple domain points of view are neat to the learning topic. For
example, the topic may involve the points of view of multigiemains like psychology,
social science and anthropology in order to form a partiquisition.

Secondly, we propose a proof-theoretic approach to theratto derivation of ar-
guments from ontologies. To resolve cognitive confusiasirag from inconsistencies in
ontologies, we suggest the use of reasoning via argumentatti theorem prover can
be used to check consistency of arguments of one ontolodyamitologies of other re-
sources when arguments are translated into an appropoiaite k can also be used in
human computer interaction to enable the learner and tbetutlarify their positions
about a topic via arguments. The software agent can alsty vke validity (soundness)
of alearner’s argument from its form. We formalize two di#fet types of arguments that
are useful in learning. These are syllogistic argumentse@from hierarchical relations
in ontologies and arguments about necessary and jointlicigut features of concepts.

Thirdly, we suggest a set of utterances that enable a leantka tutor to exchange
arguments in a human computer interaction and check théityadif the learner’s argu-
ments. In order to facilitate human-computer interactidgterances between agents are
represented internally as dialogue moves. Each move méydim@n ontological state-
ment of a particular resource and may cause a change on ibésl{ehtologies) of the
participants of the dialogue. Also as the focus of the irdgoa may change during the
dialogue, the set of ontologies associated with the cogrligiarning context may change
as well. In order to capture this dynamic behavior of theaystve make the learning
context of the participants and the belief stores of theigpénts of the dialogue situa-
tion depended and we formalize changes via the use of situaélculus. Our third ob-
jective in this paper is to formalize a set of moves that em#ti# exchange of arguments
inferred from particular ontologies.

The rest of this paper is outlined as follows. Section 1.2eses related work on
the definition of context and on paraconsistent logics. Tét@ns of cognitive learning
context, cognitive ambiguity and cognitive inconsisteany discussed in this section. In
section 3 we discuss syllogistic arguments and argumelattedeto the necessary and
jointly sufficient properties of concepts. Section 4 showsxample of an interaction of a
learner with the software agentin order to discuss diffeesrin ontologies of underlying
resources. Finally section 5 outlines the main issues digaliin this paper and briefly
describes future research plans.



1. Related Work
1.1. Mental Spaces

Notable approaches to modeling cognitive context can bedam the linguistics liter-
ature. We note the works of Fauconnier [1] and Dinsmore[@udennier [1] advocated
the idea ofmental spacesvhich are described as constructs build up in any discourse
according to guidelines provided by linguistic expressiddbjects in mental spaces are
treated as real objects independently of their status iratieal world. Mental spaces
can be built up from many sources and domains. Examplesuofss are: the immedi-
ate experience of the agent, what other people say to us, aratimer people think, etc.
They are created b$pace Buildersvhich are particular words triggering the creation of
a new space. For example, one such space builder is themaybe used to build the
possibilitymental space. Aase mental spade the mental space in which the discourse
takes place. Other important notions introduced in theditee of mental spaces are: the
notion of ambiguity arising from multiple connecting patietween partitioned configu-
rations that yield multiple understandings and the reauiénet of compatibility between
mental spaces. Fauconnier's work aimed to address thegmnshif referential opacity,
the projection of presuppositions, the semantic procggssficounterfactuals, etc [3].

Dinsmore [2] complemented Fauconnier’s theory by focusinghe external struc-
ture of mental spaces and attributed semantics to them sthéhacan be used in rep-
resenting and reasoning about knowledge. He introduceddtien of knowledge par-
titioning as the process of distributing knowledge alonffedént spaces according to
context. The context of a space is a propositional functiog, the context of Mary’s
space is a function that takes a propositicend maps it onto the proposition that Mary
believes. Dinsmore, showed that inheritance of information from epace in another
is determined by the semantic properties of the respeatimtegts. Inheritance contexts
constitute a form of secondary contexts, the latter beiegl tis provide a mapping from
the content of one space to the contents of another [3].

Fauconnier’s contribution to modeling mental spaces tbatespond to linguistic
forms and words is important for representing the contextigfrances and for referenc-
ing objects in different contexts. However, the focus ofihigestigation was the mental
configurations resulting from english sentences and thetoaction of meaning during
discourse. Instead, we focus on the epistemic state of agédmd have access to incom-
plete resources. Several of the notions used in the repesemof knowledge partitions
by Dinsmore point to the artificial intelligence perspeetdf context representation and
contextual reasoning [4,5,6,7]. Although they providegngicant insight to the prob-
lem of context representation and reasoning, their modelsod capture the notions of
incompleteness and inconsistency between different regsu

1.2. Local reasoning with multiple epistemic alternatives

The Local Model Semantics [8] provide a foundation for redsg with contexts which
is based on two main principles: the principlelo€ality and the principle otompati-
bility. The first states that reasoning requires only a part of vehapientially available
[8]. The principle of compatibility states that there is quatibility among the kinds of
reasoning performed in different contexts [8] and assesidifferent contexts with some



meaningful relation of subsets of their local models. Ouiaroof cognitive context is
different from the above as it may include incompatible teses that are related to the
reasoning task of the learning activity. However, the pgglecof locality and the assump-
tion that the available information may be incomplete aftae way learners interpret
information and are used to model the cognitive state ofe¢heler.

Several logics addressed the problem of inconsistencygiic theories and knowl-
edge bases. To hame but a few, paraconsistent logics, nengeMogics and modal log-
ics have been developed to tackle inconsistency. Amongfmdable uses of paracon-
sistent and possible world semantics to model mental magel&pistemic states are the
works of [9] and [10]. Fagin and Halpern [9] consider eachra@es asociety of minds
rather than a single mind. Inspired by the work of Fagin antpéta [9], Lokhorst [11]
developed a (two-valued) local reasoning model of splitepés as a structure:

M = (W,wy,¥,S, R, V) (1)

wherel¥ denotes a set of possible worlds, the actual world¥ a set of minds (each
mind behaves independently of the othef)a functionS : W — (V) (S maps a
world to the set of minds in which this world is possible) aRds a function from
¥ into W x W. The above model had some utility in creating our cognitearting
context for the following reason. Suppose that we represacit mind ind above, as a
(local) ontology with its own signature. Theéfwould associate each (separate) ontology
with the set of worlds with which this ontology is compatibléhis would be useful if
the learner was unable to compare information from diffeceriologies. Hence lack of
comparison would mean lack of confusion caused from diffees between ontologies.
But this differs from the problem we are trying to solve. Téfere the above model
cannot be applied as it is to model the cognitive learningexdrof a learner.

The paraconsistent logiEE ! is based on the idea of multiple observers having di-
verging views about a certain state of affairs. It extendssital logic with the formula
p? wherep? is satisfied whenever holds in all plausible worlds. Unlike the traditional
modal logics approach to modeling necessity and possiftitie L £'1 employs two sat-
isfaction relations: the credulous and the skeptical agpgitoMartins et al. [10] provided
a multiple world semantics to the above idea where each ibleusorld corresponds to
a particular view of the world. The above approach is usefabmparing beliefs derived
by the credulous vs. skeptical entailment relation whidtifferent from the focus of this
paper. In this paper we assume that each agent combineswele & reasoning: a lo-
cal reasoning level which considers each ontology locaily the meta-epistemic level,
at which the agent compares inferences drawn locally in eattlogy and determines
compatibility with other ontologies.

2. Cognitive Context, Incompleteness and Inconsistency

We illustrate the notion of incompleteness and inconsestém resources via the use of
an example. Then we introduce our proposed definitions ®rictncepts of cognitive
context, ambiguity due to incompleteness and inconsigtesing the possible world
semantics.



2.1. Example

A learnerL comes across a professional training programming coursésoal basic.
This resource states thasual Basic is an object-oriented languadde learner believes
that an object-oriented language needs to satisfy the pgyopkencapsulation but she
does not know whether visual basic has this property. Inteadthe online notes of
her class instructor show visual basic as an example of agtgact oriented language’
because it does not have the property of inheritance.

The learner in this example makes use of three resources ewrebackground
knowledge about object oriented languages, the instrsatmline notes and the pro-
fessional programming course site. All of them are part ef¢hgnitive context of the
learner. Two of these resources, namely the instructotssnand the professional pro-
gramming course are inconsistent. Although the learnexckground knowledge is not
directly inconsistent with the online resources, it is rehforced by them either. Since
both online resources are assumed to be expert resourdeather does not know how
to interpret lack of evidence supporting her own knowled®the experts possess par-
tial knowledge about significant concepts of the domain?uhcelevant information
from both resources be integrated or should one be droppexhfiher? Since there is
no definite answer for all situations and more than one iné&ations of the situation are
possible, we interpret the epistemic state resulting frois gituation as ambiguous. In
the following paragraphs of this section we formalize theore referred to in the above
example. In this paper we represent each learning resoiadtswnderlying ontology.
So a definition of ontology is relevant.

2.2. Ontology

In this project we us®©WL-DL as an ontology representation language because it is a
decidable fragment of description logic and expressiveighado satisfy our need for the
representation of concepts, roles and hierarchies thatrgge to the type of arguments
formalized in this work. An Ontology in this paper is desetbas a structurél’, A)
whereT denotes a DL TBox (i.e. a set of terminological) axioms ahdenotes a DL
ABox (i.e. a set of grounded assertions). Each ontologytisasain signature consisting
of a disjoint set of relation names, concept hames and canstanes of individuals.
We denote the signature of an OWL ontolo@y by Sig(O;) = RUC U N, whereR
denotes the relation namé&s the concept names atd the set of individual names. The
interpretationl; of the Sig(O;) is the structuré D;, -1 whereD; is the domain of the
ontology and’i is the interpretation function such that’s C D;, R" C D;™ (in OWL

is D; x Dz)

2.3. Cognitive Learning Context

The model of the local reasoning learning context of a leafnis defined as a structure
Tsit = <Ov Wa 57 7, S> (2)

whereO = {0},...0,} andO, = (T}, A,) represents the part of each ontola@y =
(T;, A;) referenced that is relevant to tfecus 7, of the learning activity, i.eT,-' CT;
andA; C A; . Each ontologyD; has a standard interpretation= (A, ). LetT =



TyU...uT, andA = A, U...UA,. Let I be an extension (interpretation) fifon
T U A. We definelV to be the set of interpretations 8fU A, i.e. W = {I}i=1..»
and¢ to be an accessibility relation associating eééhs O in each situation to a set of
possible epistemic alternatives: O — o(W). n) is a proposition.

Note that there may not be any interpretation satisfyingmatiblogies. If we assume
that ontologies are locally consistent then there is at leas interpretation satisfying
each ontology irO. For example, ifAC B € T; andAC C € T; butAC C ¢ T; then
there exist two subsets of possible worldsin 17, andWs, say, such thakl; supports
bothAC B andAC C andW, supportsA C B but notAC C. Also, for each conflicting
set of formulaed C B € T; andA T —B € Tj for i # j, there is at least one possible
world w € W which assigns true to one formula and false to the other.dJsie above
definition of the cognitive state of a learner, we are now abldiscuss the cognitive
states of ambiguity and inconsistency.

2.4. Cognitive Ambiguity due to Incompleteness

Intuitively, a learner reaches a cognitive state of amlyjgwhenever she has access to
more than one plausible epistemic alternatives and thedeas unable to choose one.
The Oxford English Dictionary defines ambiguity agavering of opinion, hesitation,
doubt, uncertainty, as to one’s course, or, capable of beinderstood in two or more
ways, or, doubtful, questionable, indistinct, obscure, eciearly defined and lastly, ad-
mitting more than one interpretation or explanation; of t¢eimeaning or several pos-
sible meaninggin [12]). The notion of ambiguity in our case refers to theeipretation
of incompleteness of information contained in learningteses by the learner. We as-
sume that a learner becomes aware of the incompletenes®afranlg resource when
she compares it with her background knowledge or with amodssurce.

2.4.1. Definition of Cognitive Ambiguity

Assume a resourcB; anddé(R;) = Wgr, C W i.e. Ry is compatible with a subset of
possible worlddV, of W. Then, assume that the agent has access to another resource
Ry which is compatible with’r, C W. If there existw,, wy € W wherew; € Wg,

andw, € Wg, such thatw; supports; andw, supports-n then we say that ageunt is
ambiguous with respect tpand we denote this a4 (7).

2.4.2. Vocabulary Assumption

The type of ambiguity we address here is the ambiguity thaulte from incomplete-
ness of knowledge rather than the lexical vocabulary useghloh resource. The set of
resources relevant to the subject of the learning activigy thange in each situation
according to the focus of the learning activity. To be ablel@étermine incompleteness
and inconsistency between ontologies we need to make s@umpsons regarding the
vocabularies of the ontologies that form part of the cogaitiontext. Assume a unified
signatureX which consists of the union of all the signatuﬁ’i@(O;) (defined as above).
To simplify matters, we assume that any two identical nagidal symbols of two re-
sourcesRk; and R, are considered the same unless there is evidence to thegontr
Further, where we have explicit default mappings betweengeve may apply default
inference rules to draw conclusions between multiple agfiels as follows:



[Ry: C(z)] : [Ry : C(z)] < [R1 : C(x)]
[R2 : C()]

©)

Default rule 3 states that if there is no inference incoesisto[R; : C(x)] < [Ry :
C(z)] in Ry thenR, : C(z) can be asserted iR,. A similar default inference rule is
used for relations between concepts and names of indigdual

[R1: R(z,y)] : [Ra : R(z,y)] < [R1: R(z,y)]
[Re : R(z,y)]

()

The biconditional used in the inference rules aims to mairgansistency with map-
pings of terms between different vocabularies. If the cosidn of the default rule that
refers to an assertion about a resource is not inconsistémthre assertions of the re-
source and is not already in the ontology of the resourca,ttieresource is incomplete.

As an example, of a case where direct equivalences of asmursgian be used to
assert new facts about different resources consider twpl@éb; and P, say) viewing
a scene from opposite sites then: right(P1,z) < Py: left(P2,x) for some object
x. Further assume that the constréin right(P1, z) ——P;: left(P2, z) wherei # j
andi, j € {1, 2} holds for each person. Then obviously, it is inconsisterissume that
Py : right(Py,x) < Py: right(Pe, x). Note that the intended meaning of the notions of
P;: right(P;, X) andP;: left(P;, X ) for eachi € {1, 2} is independent of the situation
of P;. However the actual assignment of terms is dependent ongitigtion.

2.5. Coghnitive Inconsistency (Confusion)

Intuitively, we assume that cognitive inconsistency aris@en in the actual world of the
learner, information about a topic is conflicting. It is @ifént from cognitive ambiguity
in that cognitive ambiguity appears as a consequence ofipp@spistemic alternatives
(not necessarily inconsistent) due to lack of knowledge nvielel this by the derivation
of refuting arguments relating to thiecusof the learning activity.

2.5.1. Definition of Inconsistency

Assume a resourc®; andd(R,) = Wg, C W. Then, assume that eithé(R;) =
Wg, C W for some resourc&, (or thaté(BK) = Wg,,, € W whereBK is the
background knowledge of the agent). If for any twe, ws € W such thatv; € Wg,
andwy € Wg, (orwy € Wg,,.) we have thatv; supportsy andws supports—n then
we say that agem is inconsistent with respect tpand we denote this agnca(n).

The use of argumentation to identify and justify claims timaty be conflicting each
other is not only important for the recognition of the cogtstate of the learner but also
for the recognition of differences or inconsistencies itotrgies automatically. In the
next section we discuss the formalization of two types ofiargnts that can be inferred
from ontologies, namely syllogistic and arguments abouersary and jointly sufficient
features associated to the definition of concepts.

3. Syllogistic Arguments and Ontological Taxonomic Relatins.

An Ontology may include one or more hierarchies of concdpstan be used to infer
categorical statements.



3.1. Concept hierarchy

A concept hierarchys a structure{ = (Cy, Ry) whereCy is a set of concepts, st.
Cy C C of the ontologyO, andRy, = {Disjoint, SubclassO f,Union, Intersects}

and every concept i@} is associated with another concept via a relatioRjn OWL-

DL provides for all of relations iR, and therefore a hierarchy can be represented in
it. We are interested in those interpretations of a hieraticht satisfy all the taxonomic
relations within the hierarchy. A modelt;, of H is an interpretatiod of H where alll

the taxonomic relations iy, are satisfied. Obviously 4 is a sub-model of\1 and
therefore any entailment g¥1,; is an entailment of\1.

3.2. Categorical statements

Generalized statements the forvery X is a Yor Every X has the property of &an be
inferred from taxonomic hierarchies and can be combinedrm yllogistic arguments
These statements are referred teategorical statement# syllogism [13] is a particu-
lar type of argument that has two premises and a single csiocland all statements in
it are categorical propositions.

3.2.1. Individuals

In ontologies, a distinction is made between individuald elasses. In the consequent
we argue that the set equations that can be used to repregettgical primitives can
be translated to propositional logic formulae that can bedus test validity of argu-
ments. To simplify computation and to prove whether an iigigl belongs to a class
(or arefutation that an individual belongs to a class) weasent individuals as singular
sets consisting of that individual only. In this way we trgmtividuals as classes during
inference. An ontology may include one or more hierarchfe®acepts that can be used
to infer syllogisms.

3.2.2. Syllogisms

Syllogisms form a particular type of arguments that are ttanted from generalized
statements (categorical statements). There are four baggorical statements which
can be combined to produce 64 patterns of Syllogistic Argumerhese are shown
below together with the corresponding ontological privas:

Categorical Statement Ontological Primitive

Every Sisa P SubclassOf(S, P)

NoSisaP SubclassOf( S, ComplementOf(P)
Some SisaP Intersects(S, P)

Some Sis not P Intersects(S, ComplementOf(P))

However, only27 of them are valid syllogisms. This suggests the need to check
the validity of syllogisms constructed from ontologies axdhanged during interaction
with the learner.



3.3. Necessary and Sufficiency Conditions Arguments.

The classical view of the representation of concepts stattghe features representing
a concept arsingly necessargndjointly sufficientto define a concept. In line with the
above view we propose the following definitions for thecessaryndjointly sufficient
features representing a concept.

3.3.1. Necessary Features for the Representation of a @bnce

Intuitively, a featurey is singly necessarfor the definition ofC' if and only if existence
of C implies existence ofy. Assume a featuré. We define a se® consisting of all
individuals of the domain which have property(e.g. via the onProperty restriction in
OWL-DL ). Then,¢ is a necessary property for the representation of concdpand
only if CT C ®. An example of a refutal to the assumption thds a necessary feature
for C is the derivation of an individual that belongs@band to a class disjoint witt®.

3.3.2. Jointly Sufficient Features for the Representatfaan©oncept

Let{®,,...,P,} represent the set of concepts corresponding to featires, ¢,, re-
spectively. Thenyy, ..., ¢, are jointly sufficient for the representation of concépff
and only if{®;N,...,N®,} C C’. An example of a refutal (i.e. an attacking argument)

to the above assumption would be the existence of an indiVithat has these proper-
ties but does not belong t@. Conflicting arguments about these notions can be used to
differentiate concept definitions between different cogiés.

3.4. Bennett's theory

Bennett [14] proved that set equations can be translatetbfopitional logic formulae
that can be tested for their validity with a Gentzen theoreaver. Although his theory
was intended primarily for reasoning with mereologicaatiens it is applicable in our
case for reasoning with the type of arguments describedealidws is because the mere-
ological relations being represented using this theorgeatioresemble the set-theoretic
semantics attributed to the ontological primitives ddsng associations between con-
ceptsin ontologies. Bennett [14] proves that the mereoldgiquations with set theoretic
semantics can be translated to equivalent universal emsatvhich can in turn be con-
verted to propositional logic formulae that can be validatéth a simple Gentzen the-
orem prover. Based on Bennettkssical entailment correspondence theoreewere
able via a small adaptation to derivdaxonomic entailment correspondence theorem
which is very similar to the theorem described above but eomhierarchical relations.
This is stated below:

3.4.1. Taxonomic entailment correspondence theorem
My Edif andonlyif Moy E7=U (5)

wherel/ is the universe of discourse. Unintended models of the thax@ excluded by

the use of (entailment) constraints. It therefore followattsatisfaction of these con-
straints forms a refutal against the association of corsdeging modeled. To avoid tech-
nical details which are beyond the scope of this paper, fice# to say that since each



categorical statement in a syllogistic argument can beskaged to propositional form,
then the validity of the syllogistic argument can be testgairst a propositional theorem
prover.

3.5. Conflicts between arguments

Intuitively, a set of arguments consists of a minimal set i@hpises (here categorical
statements) used in the derivation of a claim. In this papefagus on strict arguments
that are inferred via the classical entailment relationo Bsguments conflict with each
other (attack) if either (i) the claim of one argument is insistent with the claim of the
other argument (i.aebutal [15]) or (ii) the claim of one argument is inconsistent with
one of the other premises of the other argumentuyinelercutting15]) or (iii) one argu-
ment’s premises are inconsistent with the other argumprgisises. Since a syllogism is
defined entirely in terms of categorical expressions thendyogistic arguments con-
flict each other if any expression in one argument is incomsisvith an expression in
the other argument.

4. Human Computer Interaction Using Arguments

In this section we extend the example given in section 1.2¢tude an interaction be-
tween a human learner and a software agent to clarify differe in ontologies.

4.1. Extended Example

Scenario as above but extended to show the situation wheeerger initiates a dialogue
with the agent to discuss the differences in conceptu@iza(in this paper we make the
simplifying assumption that ontologies are used to represenceptualizations). The
software agent uses the ontology of the resource to proutdeng support to the learn-
ers. The dialogue proceeds as follows:

(1) L: Let us Discuss the statement in Resouf¢é I : Visual Basic is an Object Oriented Langu&ge
(2) A: Does the resource provide a justification vifigual Basic is an Object Oriented Langu&ge

(3) L: The resourcd/ RI; states thatisual basic is an object oriented language because visasich
contains Objects

In line (1) above the learner is confused about the truth of a staterfibetfocus of the dialogue is 'visual
basic is an object oriented language’. The agent resporttie t@quest of the learner to discuss this statement
by trying to find out whether the resource provides a justifice(i.e. whether the statement is a claim of an
argument) or whether the statement is an assertion. To find/loether the learner agrees with the viewpoint
of the resource, the software agehexplores the viewpoint of the learner. The interaction itwrs with:

(4) A: So do you agree thaisual basic includes obje@s

(5) L: Yes..I agree thatisual basic includes objects

(6) A: Do you agree that programming language is object oriented langudigeause itontains object®d
(7) L: I disagree with this.

(8) A: OK, do you agree thatontains objects is a hecessary property of object orietdtaduagé®

9

During lines(4) — (9) the agent collects information about the learner. The Eamay
disagree with the argument given by the resource in theviatig ways: (i) either dis-
agrees that 'visual basic contains objects’ or (ii) disagrthat the property 'contains



objects’ is necessary to infer that visual basic is objeinted language, or (iii) dis-
agrees that 'contains objects’ is sufficient to infer thauail basic is object an oriented
language. In line¢4) — (5) the agent determines whether the learner believes thatlvisu
basic has property ‘contains objects’. In lin&s$ — (7) the agent determines whether the
learner believes that 'contains objects’ is a necessarysaffitient property of 'object
oriented language’ (i.e. whether it defines the conceptbbjgéented language). In lines
(8) —(9) the agent determines whether the learner believes tha¢iyogpntains objects
is necessary for the concept object oriented languager Afie interaction the agent
knows that although the learner believes that 'containeaibj is a necessary property
of 'object oriented language’, it is not sufficient to defihe toncept of 'object oriented
language’.

(10) A: What other property is a necessary property of object aréelenguage?

(11) L: Encapsulation is a necessary property of Object orientegliage.

(12) A: So, you think thatF a programming language contains objects AND has the piyp® encap-

sulation then it is an object oriented language?

(13) L: Yes, that's it!

(14) A: Therefore, you think thaf visual basic has the property of encapsulation THEN Visussic is

an object oriented Language
(15) L: Yes.

During the lines(10) — (15) the agent is able to obtain the learner’s definition of object
oriented language and is able to explain her confusion.isnciise, confusion arises due
to inconsistency between the knowledge of the resourcelanigarner. Such confusion
can arise due to directly conflicting arguments.

4.2. Dialogue Moves

Interaction between the learner and the tutor is enabled s of statement openers and
templates which provide the structure of communication emstrain the scope of in-
teraction. The parts that the user is required to compl@tesent ontological statements
which correspond to OWL-DL statements. Utterances arespargernally asnovesA
dialogue move is a tuple of the form:

DM (id, Speaker, M ove, ¢) (6)

whereid is the identifier of the move§peakeis the uttererMoveis a performative verb
representing the locution being uttered, @anid an ontology statement.

4.3. Situation Calculus Approach to Formalizing Moves

A situation calculus [16,17,18] approach to modeling mams$ changes in the commit-
ment stores of the participants of the dialog, is followediilar approach is advocated
by Brewka in [19]. Each move in our framework is formalizedénms of its effect on
the beliefs of the participants and advances the existiugtsdbn to the next situation.
Below we illustrate the formalization of a set of effect mifeom moves performed by
the learner. It is important to note that both the learnerthedutor are allowed to dis-
agree and challenge each other’s opinion. A complete lish@feffect rules is beyond
the scope of this paper.



4.3.1. The learner initiates the discussion

commit(learner, {x¢}, do(DM (id, learner,iDiscuss, ¢), so)) wherex¢ = —Belp A
—Bel—(9).
i.e. the learner commits to not knowing whetlgeaifter it initiates the discussion.

commit(learner, {x¢, R;: ¢}, do(DM (id,learner,iDiscuss, R;: ¢), so))
i.e. the learner commits th&; : ¢ after it initiates the discussion fa; : ¢.

4.3.2. The learner clarifies a statement asked to clarifyjheyttitor

commit(learner, R;:1, do(DM (id, learner,iClarify, R;: ¢ because ), do(a, s)) «—
a = do(DM (id, tutor, qClarify, ) A commit(learner, R;: ¢, s)).

i.e. the learner is committed th&y; : ¢ is the justification (in our case sufficient condi-
tion) provided forR; : ¢.

4.3.3. The learner justifies a statement challenged or duressd to clarify by the tutor

commit(learner, ¢ because ¢, do(DM (id, learner, iJustify, because ), do(a, s))) «—
commit(learner, ¢, s)A\(a = DM (id, tutor, qClarify, $)V(a = DM (id, tutor, qChallenge, ¢))).
i.e. the learner provides a justification (sufficiency cdiodi) for believinge.

4.3.4. Either of the agents disagrees a statement
commit(S, =p,do(DM (id, S, iDisagree, ), do(a, s))) «— commit(S,¢,s) V a =

DM (id, S, qInquirey, ¢). _
i.e. agent S disagrees thatf the other participantS have already committed o A

full list of moves with their corresponding natural langeagxpression is provided in the
table below.

5. Conclusion and Future Work

In this paper we introduced the notion of cognitive learningtext that refers to multi-
ple and possibly inconsistent ontologies. Differencesnitolmgies can be identified via
arguments that can be inferred from relevant subsets ofinetagical axioms and as-
sertions of ontologies referred to by the cognitive conté show that syllogistic ar-
guments follow naturally from ontological primitives anewepresent arguments about
the necessary and jointly sufficient properties of concées also illustrated via the
use of an example a dialogue where the learner interactsthgtisoftware tutor in or-
der to clarify differences in ontologies via the use of jfissitions provided in support
of claims made either by the learner or the learning resauaceessible to the learner.
Issues like alignment of vocabularies of different ontédsgare addressed via default
inference rules. In the near future we plan to elaborate efidimalization of arguments
and define precisely the associations between argumenthaindelevance to different
situations. Additionally we plan to work on dialogue managat taking into consider-
ation the cognitive state of the learner in each situation.



Speech Act

Natural Language Expression

With inform (super)type:

The discuss move

DM((id,l,iDiscuss*,ist(URL, ¢))

Let us discuss statemegtin U RL.

The clarify move

DM((id,l,iClarify,ist(URL, {¢, ¥ = ¢}))

The resource wittV RI = U RL states that) holds because
v holds

The justify moves

DM (id, 1, iJustify, ¢)

Becausep.

DM (id, t,iJustifyp)

(v holds) Because.

DM (id, 1, iJustify, )

Because) andy = ¢.

The agree moves

DM (id,l,iAgree, ¢)

Yes, | agree thap.

DM (id, t,iAgree, ¢)

Yes, | agree thap.

The disagree moves

DM (id, l,iDisagree, ¢)

| disagree tha.

DM (id, t,iDisagree, ¢)

| disagree that.

DM (id, 1, iDisagree, _)

| disagree with the previous statement.

DM (id, t,iDisagree,_)

| disagree with this statement.

DM (id, l,iDisagree, )

| disagree becauseg.

DM (id,l,iDisagree, ) = ¢)

| disagree becausg¢ implies ¢.

The claim moves

DM (id, 1, iClaim, ¢)

| think that ¢.

DM {(id, 1,iClaim, = ¢)

I think that if ¢ thene.

The concede moves

DM (id, S, iConcede, ¢)

Yes, | think thatep.

With Question (super)type:

The clarify move

DM ((id, 1, qClarify, 7 : ist(URI, ¥ = ¢))

What is the explanation given in resource with
Resourceyr; = URI for ¢?

The inquire moves

DM (id, t, qInquirer, ¢) Do you think thatp?

DM (id, t, gInquirer,y = ¢) Do you think that if) theng ?
<id,t,qInquire, ¢ > What is¢?

The challenge moves

DM (id, t, qChallenge, ¢) Why do you think thatp?

DM (id, t, qChallenge, v = ¢)

Why do you think that) implies ¢? (Here we assume thait
is given as a reason, the rule of which is not clear)

Table 1. Istands for thdearner, t stands for the tutokp

s a statement in the domain langua@eR L is the

uri of the external resource anslt(U RL, ¢) means tha is true in resource with/ RI = URL.
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