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Enhanced tracking and recognition

of moving objects by reasoning about

spatio-temporal continuity

Brandon Bennett a, Derek Magee a, Anthony Cohn a and
David Hogg a

aSchool of Computing, University of Leeds, Leeds, LS2 9JT,UK

Abstract

A framework for the logical and statistical analysis and annotation of dynamic scenes
containing occlusion and other uncertainties is presented. This framework consists
of three elements; an object tracker module, an object recognition/classification
module and a logical consistency, ambiguity and error reasoning engine. The prin-
ciple behind the object tracker and object recognition modules is to reduce error by
increasing ambiguity (by merging objects in close proximity and presenting multiple
hypotheses). The reasoning engine deals with error, ambiguity and occlusion in a
unified framework to produce a hypothesis that satisfies fundamental constraints
on the spatio-temporal continuity of objects. Our algorithm finds a globally con-
sistent model of an extended video sequence that is maximally supported by a
voting function based on the output of a statistical classifier. The system results
in an annotation that is significantly more accurate than what would be obtained
by frame-by-frame evaluation of the classifier output. The framework has been im-
plemented and applied successfully to the analysis of team sports with a single
camera.

Key words: Visual Surveillance, Spatial Reasoning, Temporal Reasoning,
Resolving Ambiguity, Continuity

1 Introduction

No computer vision algorithm for tracking or object recognition is perfect un-
der real-world operating conditions. Object trackers have difficulty with com-
plex occlusions (e.g. in crowded pedestrian scenes or on the sports field) and
object recognition algorithms rarely give 100% accuracy, even on well posed
data sets, let alone under unconstrained circumstances. This lack of reliability
is one of the reasons for the slow commercial uptake of visual surveillance
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systems based on object tracking. In this paper we propose a framework for
enhancing the imperfect output of an object tracker by enforcing principles
of logical consistency and spatio-temporal continuity of physical objects. This
results in a scene annotation that is far more accurate than the raw output
from the tracker.

Our tracker processes a video recording of a dynamic situation, taken with a
single fixed camera (i.e. a sequence of 2D images). Using statistical techniques,
the tracker detects and classifies moving objects in the scene. The tracking and
recognition systems explicitly model the possibility of ambiguity and error by
assigning probabilities for the presence of objects within bounding boxes in
each video frame. However, the tracker output is unreliable in that: a) the
object detected with the highest probability may not actually be present in
the box; b) there may be multiple overlapping or occluding objects within any
box, and the tracker output does not tell us how many objects are present.

This imperfect tracker output output is passed to a reasoning engine which
constructs a ranked set of possible labellings for the whole video sequence, that
are consistent with the requirements of object continuity. The final output is
then a globally consistent spatio-temporal description of the scene which is
maximally supported by probabilistic information given by the classifiers.

A number of researchers have attempted to deal with object occlusion (and the
resultant tracking problems) by attempting to track through occlusion. This
can involve reasoning about object ordering along the camera optical axis,
either using ground-plane information [1–3] or simply reasoning about relative
spatial ordering [4]. 3D [3] or 2D (planar) [1] object models may be used
with a known camera-to-ground-plane transformation to identify occlusion
for a given set of object configurations. This can then be used to exclude
subsets of image information from the model fitting process. This works well
for ‘hypothesise-and-test’ type tracking (e.g. [2]). However, complete occlusion
leads to zero information from the image, and weak constraints on object
position/configuration. [5] takes a conservative approach of not tracking in
uncertain situations, such as object occlusion. The ends of broken tracks are
then joined based on spatio-temporal similarity measure.

Another approach has been to use multiple cameras in an attempt to circum-
vent the occlusion problem. In [6] multiple football players are tracked using
eight cameras. Each view is tracked separately and overlapping/occluding ob-
jects are associated with the same blob (as in our system). Each blob from
each camera is projected to the ground-plane (using a camera calibration),
and associated with one, or more, players using a “closed-world” assumption,
and a stochastic constraint optimisation procedure.

Dynamic models such as the Kalman filter are often used to model the posi-
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tion of occluded objects [7,8], under the assumption of known dynamics (e.g.
linear motion), when no visual information is available. In [9] the authors use
both motion models and 2D dynamic appearance models to track through oc-
clusion. This work is interesting as it is a composite of a moving region (‘blob’)
segmentation/extraction algorithm (that has no explicit notion of occlusion),
and a model based tracker, that can track through partial and (short term)
complete occlusion using motion and appearance models.

The success (or otherwise) of tracking through occlusion with motion and
appearance models depends on a number of factors: the degree to which the
models accurately model object dynamics and appearance, the time over which
the occlusion occurs, the complexity of object behaviour during occlusion,
the degree to which objects are occluded (partially or completely), and the
similarity (or otherwise) of the occluding objects. Our proposed method (see
later) is independent of all these factors (except object similarity). Multiple
cameras have also been used to bypass the occlusion problem [10,11]. However,
this is not always possible or practicable, and it is not necessarily a complete
solution.

Our approach to occlusion handling differs from this body of work and has
more similarity with the methods of McKenna et al. [12] and Sherrah and
Gong [13]. These works do not attempt to disambiguate occluding objects,
but instead reason about the occlusion taking place. McKenna et al. track
‘blobs’ that may be groups or individuals. In their work, it is initially assumed
all objects are separate (an assumption we do not make); and when blobs
merge the resultant blob is recorded as a ‘group’ made up of the contributing
individuals. A dynamically updated model of global object colour is used to
disambiguate objects at the point at which blobs split. This model is also used
to reason about object occlusion within a group that makes up a single blob.
This is useful when a split group consists of more than two individuals; how-
ever, it relies on an assumption that no object is completely occluded during
the split. Sherrah and Gong [13] present work in a highly constrained scenario
where the head and hands of a single individual are tracked as blobs. The
hands may occlude each other or the face (to form a single blob). A hand-
built Bayesian network is used to perform frame-by-frame occlusion reasoning,
based on available data (blob positions, velocities, number of blobs etc.). Per-
haps the closest work to ours was presented recently by Yang et al. [14]. This
system uses multiple cameras to provide a top view of the ‘visual hull’ of a
crowd scene. Constraints on the number of pedestrians represented by each
observed blob are determined according to the size of the blob’s bounding
box. These constraints are propagated from frame to frame to give an upper
and lower limit on the number of objects present. All observed moving objects
are assumed to be pedestrians, and no attempt is made to localise or identify
individual pedestrians. Lipton et al. [15] present a system that uses simple
object classification (pedestrian vs. car) to aid object tracking. Simple tempo-
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ral consistency rules are used to prune transient objects resulting from noise.
None of these systems performs more than frame-by-frame reasoning or allows
for the possibility of error in the underlying low-level tracking and recognition
algorithms. Our system performs long-term reasoning about object-blob asso-
ciations over extended sequences of frames. By maintaining spatio-temporal
consistency over sequences, many local imperfections and ambiguities in the
low-level data are eliminated.

Our system is based on ‘blob tracking’ and object classification methods. Much
prior work has been presented in these areas. ‘Blob tracking’ may be described
as tracking with a weak object model. This has the advantage that trackers
based on this approach (e.g. [16,17,9,18]) are able to track a wide range of
objects. Such trackers are often based on background modelling methods (e.g.
[16,9,19]), which are used to extract foreground regions that are associated over
time. The disadvantage is a lower grade of information is obtained; typically
only position, scale and 2D shape are extracted. In contrast, model-based
trackers may extract pose [3], posture [20] or identity information [21], for
a particular (known) class of objects objects only. The acquisition of good
models for model based tracking is also a non-trivial problem.

The extraction of a wider range of parameters from ‘blob tracker’ output may
be seen as a separate post-processing operation. In [22] neural networks are
used to classify vehicle type (small, medium, or large) based on edge informa-
tion in the region around an object detection. In [23] a k-nearest neighbours
classifier based on vector quantisation (similar to that used in our work) is
used on various simple object features (height/width ratio, area, etc.) to clas-
sify tracked objects as pedestrian or bicycle. In [24] the output of a blob tracker
is classified in an unsupervised manner into various categories (representing
colour, and texture etc.). From this temporal protocols are learnt. In [12] his-
tograms of foreground pixel colour are used to parameterise appearance and
recognise individuals at a later time, using histogram intersection. We also use
the colour histogram approach. However, any of the classification approaches
described (or others) could be used equally well within our framework. Classi-
fication using colour histograms is simply used as an example to demonstrate
the power of the reasoning framework presented. Using more complex classi-
fication methods would obviously improve the initial classification. However,
we argue that no classification method is 100% accurate in unconstrained sce-
narios and there is always a potential benefit from the type of spatio-temporal
reasoning presented in this paper.

Our inspiration for using high-level spatio-temporal relationships as a means
for determining consistency of dynamic scene interpretations, comes from the
literature on Qualitative Reasoning [25] and more specifically from the sub-
fields of qualitative spatial [26–28], temporal [29] and spatio-temporal reason-
ing [30–32]. Qualitative spatio-temporal reasoning[28] has been employed or
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advocated in a number of computer vision contexts before (e.g. [33–37]). Of
particular relevance is work on spatial change [30], and continuity networks
(aka conceptual neighbourhoods), which encode those transitions between re-
lations that are consistent with an underlying notion of continuous change
[28]. Such knowledge can be used for example to perform qualitative simu-
lations [38] or to filter video input for consistency [33]. However we are not
aware of any work in this area specifically addressing the focus of this article:
tracking and recognition of moving objects using explicit symbolic qualitative
notions of continuity.

2 An Architecture for Tracking and Recognition with Error Cor-

rection based on Consistency Reasoning

Our proposed architecture consists of three parts: i) a modified ‘blob tracker’,
ii) an object recognition/classification system, and iii) an error reasoning and
consistency checking module. The relationship between these components is
illustrated in figure 1.

Fig. 1. An Architecture for Robust Scene Analysis

The grey arrows in figure 1 represent the potential for feedback from the
high-level reasoning system to the lower level modules. This feedback is not
exploited in the system presented in this paper; however this is an active area
of research. The individual elements of this architecture are described in the
following sections.
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3 The Blob Tracker

Much effort has been put into visual object tracking methods over the last two
decades, and a number of methods have been developed that are robust under
certain constraining conditions. These constraints are usually on the type of
motion possible (e.g. Kalman filter based trackers such as [7] assume approxi-
mately constant velocity), on the total number of objects possible and on the
types of multiple object occlusions possible. There is little evidence of any
object tracking system that will work in completely unconstrained scenarios
such as crowd scenes (e.g. in an crowded airport terminal), or for team sports
surveillance (e.g. football, rugby or basketball). A popular solution to this is
to present tracking results as a probability density over a space of possible
model configurations, as for example the CONDENSATION algorithm of Is-
ard and Blake [2]. This works well for propagating short-term (frame to frame)
configuration information; however these densities are usually represented as
approximations to the true density, and long term configuration information
is not preserved. This is compounded by the fact that many high level sys-
tems that use the output of such object trackers require as their input a single
track result (for example [7,39]). In such cases the maximum a-priori proba-
bility configuration (or similar) is usually taken and the information present
in the densities is lost (we do not encourage such an approach!).

In contrast, more traditional single hypothesis (e.g. Kalman filter based) object
trackers are now becoming popular again for multiple object tracking due
to their lower computational cost and demonstrable robustness (the system
of Stauffer and Grimson [16,17] has been running on-line for a number of
years with a very low error rate). These benefits are of course at the expense
of detail in the tracker output (such as object identity or pose). However,
in many applications this detail is not required, or can be obtained from a
separate module. The object tracker used in this paper is an extension of the
car tracker of Magee [18], which in turn is based on the work of Stauffer and
Grimson [16,17]. The tracker is operates in the 2D image plane (as opposed
to the 2D calibrated ground-plane of the original work [18]). The principle
behind these trackers is illustrated in figure 2.

Such an object tracker (or ‘blob tracker’) tracks coherent ‘blobs’ using a loose
model of object position, size, velocity and colour distribution which is up-
dated on the fly. In reality, a one-to-one mapping between blobs and objects
cannot be assumed for such a tracker (although this is often the case). This is
often ignored as ‘error’; however in our later analysis (see section 5) we explic-
itly do not assume this global one-to-one mapping. This allows us to explicitly
increase tracker ambiguity in cases where an error may occur (e.g. when ob-
jects are close or occluding) by merging overlapping blobs (blobs are also split
horizontally or vertically if they are a composite of two easily separable blobs).
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Fig. 2. Schematic of Blob Tracker Operation

This technique reduces to near zero the occurrence of tracker errors such as
lost/additional objects in our chosen example domain. The remaining errors
may be eliminated by more traditional techniques such as ignoring transient
objects (i.e. objects present only for a very short period of time). An example
of the tracker output for a simple basketball sequence is given in figure 3.

a) b) c) d)

e) f) g) h)

Fig. 3. Example Output Sequence from Blob Tracker

The boxes in figure 3 represent a visualisation of the statistical foreground
models in figure 2 which includes an estimate of the variance of blob foreground
pixel locations about the blob mean in 2 perpendicular directions (vertical and
horizontal in this case). These variances are estimated for each blob over time
using a rolling average. The initial estimate is set to be marginally larger than
the largest object expected to prevent objects being tracked as multiple blobs.
This explains the large size of the ‘ball’ bounding box in figure 3(h). The
rolling average output gives a much stabler estimate of the range of the object
than either the per-frame pixel location variances, or the per-frame bounding
box of blob foreground pixels, due to noise in the foreground segmentation. For
more details of exactly how these variances are estimated see [18]. The boxes
in figure 3 represent a threshold on these distributions that defines the area
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containing the blob (typically 3 standard deviations). Assuming a Gaussian
distribution of blob pixel locations along 1D axes, this means (for a threshold
of 3 standard deviations) statistically >99% of blob foreground pixels should
lie within this bounding box. 1 A similar confidence for the bounding box could
not be derived from a simple per-frame bounding box of pixels classified as
foreground associated with the blob, as there is a non-zero probability of a mis-
classification of a pixel as foreground/background. The ‘statistical’ bounding
box described is used in the error reasoning and consistency checking module
(section 5).

4 Object Classification

As noted above, we cannot expect an object recognition/classification sys-
tem to have 100% accuracy except under very restricted operating conditions.
However, our higher-level processing (see section 5) is designed to cope with
imperfect and ambiguous input. Indeed, the power of the reasoning system
can only be fully appreciated when there is significant error in the classifier
output.

We have implemented a system that combines a number of simple exemplar-
based classifiers. Positional and foreground segmentation information provided
by the tracker is used to determine a feature description of each object tracked.
Our classification module has very low computational cost and so can be incor-
porated into an on-line system. (Currently the reasoner operates as an off-line
post-processor for the tracker/classifier output. The possibility of implement-
ing an on-line reasoner will be discussed in Section 5.5.)

A colour histogram using the UV colour-space is formed for each object
tracked, using the colour values of the foreground pixels identified as belonging
to that object by the object tracker. The UV colour-space is a 2D truncation
of the 3D YUV colourspace that separates colour (UV) and intensity (Y) into
separate channels 2 . We discard the intensity channel to give a degree of light-
ing invariance. A training video sequence is automatically tracked (using the
object tracker), and the objects identified hand labelled with their identity
(at approximately 1 second intervals). Around 50 examples of each object are
used. The resultant set of histograms is clustered, using the K-means clus-
tering algorithm, to give a set of exemplar histograms (corresponding to the
cluster means). Each cluster is assigned an object label based on the identity

1 In practice, the proportion of blob pixels within the bounding box is 100% for
most frames, due to the finite number of pixels associated with each blob, and the
actual distribution having a shorter tail than a Gaussian.
2 See http://www.fourcc.org/yuv.php for a fuller description of this colourspace
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of the majority of training examples in that cluster. The number of clusters is
selected such that each cluster contains at least 99% examples of a single iden-
tity, and there is at least one cluster relating to each possible identity. These
labelled exemplars are used (on unseen sequences) as an object classifying
model. The advantage of the exemplar approach is that new objects/classes
can be added to the system easily without a full re-training stage. This is
near essential if training is to be performed on-line as new objects appear
(although we currently work with a ‘closed-world’ offline scenario where all
possible objects are known a-priori).

To apply our exemplar-based model to an unseen tracked object, a YU colour
histogram is formed for the unseen object in exactly the same way as for the
training examples. A model exemplar histogram represents the probability dis-
tribution over colour for a single pixel (P (colour|modeln)). A data histogram
represents the normalised frequency distribution of colour values. Therefore,
to calculate the probability of the novel data observed with respect to a single
exemplar (P (observation|modeln)) it is simply a matter of representing the
two histograms as matrices and calculating the correlation between these two
matrices (equation 1).

P (observation|modeln) =
Nbins
∑

b=1

DbMb (1)

Where:
Db = Bin b of the data histogram
Mb = Bin b of the model histogram
Nbins = The number of bins in the histograms

Using Bayes law:

P (modeln|observation) =
P (observation|modeln)P (modeln)

P (observation)
(2)

= P (modeln) ∗
Nbins
∑

b=1

DbMb

Pb

(3)

Where:
Pb = Bin b of the mean histogram over all training examples
P (modeln) = The a-priori probability of the exemplar. 3

3 We use 1/no of exemplars, as each exemplar represents approximately the same
number of training data items. However, this could be calculated as the normalised
frequency distribution of cluster membership from the K-means clustering.
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To obtain the probability that an observation is of a particular identity,
P (identitym|observation), the maximum value of P (modeln|observation) over
all exemplars relating to that identity is taken. Taking the maximum value is
appropriate as the different exemplars relating to a particular identity gener-
ally relate to different object configurations or viewpoints. As such, exemplars
relating to object configurations or viewpoints other than the actual ones pro-
vide little information. These probabilities (along with the object locations
and sizes from the object tracker) are passed on to the reasoning engine (de-
scribed in section 5).

4.1 Box Classifier Output

Once the probabilities of each object being in each box have been computed,
each frame of input is represented by a data structure encoding both the
tracker box geometries and the associated object probabilities. The represen-
tation is illustrated in Figure 4. A sequence of these structures will form the
input to the reasoning module of our system.

frame(500, 2, %% Frame count, Number of boxes

%% List of box data objects

[ box( 7, 6, %% ID tag, Parent ID

[afro, derek, ball], %% Objects detected

[0.761138, 0.130362, 0.0253883], %% Respective robabilities

[[283.4,133.6],[75.9,121.2]] ), %% Box geometry

box( 8, 6,

[afro, derek, ball],

[1, 0.13897, 0.0253883],

[[95.9,133.0],[74.2,125.7]])

]).

Fig. 4. Tracker/classifier data sent to Prolog reasoning engine

5 Ensuring Spatio-Temporal Continuity

The error reasoning and consistency checking module (figure 1) is designed to
reduce error and ambiguity in the output of the lower level modules by iden-
tifying a solution that both maximises statistical correlation with this output
and is also globally consistent with respect to requirements of spatio-temporal
continuity of objects. Specifically, for a model to be physically possible, it must
satisfy the following spatio-temporal constraints:
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C1) exclusivity — an object cannot be in more than one place at the same
time;
C2) continuity — an object’s movement must be continuous (i.e. it cannot
instantaneously ‘jump’ from one place to another).

In the output given by any statistical classifier, it is quite possible that an
object is detected to a high degree of probability in two locations that are
widely separated. This kind of error is fairly easy to eliminate on a frame by
frame basis. We can consider all possible assignments of different objects to
the tracked boxes in each frame and chose the combination that maximises
the summed probabilities of object to box correspondences. 4

The continuity of an object’s position over time is much more difficult to
model; and considerable problems arise in relating continuity constraints to
tracker output. The main problem is that of occlusion: if an object moves
behind another it is no longer detectable by the tracker; so, under a naive in-
terpretation of the tracker and recognition system outputs, objects will appear
to be discontinuous.

As well as ensuring spatio-temporal constraints are respected, we also want to
find an object labelling which is maximally supported by the frame-by-frame
tracker output and the probabilistic output of the object recogniser for each
tracked box. However, the recognition system was trained to identify single
objects, whereas in tracking a dynamic scene there will often be several objects
in a box. This means there is no completely principled way to interpret the
output figures from the recogniser. Nevertheless, it seems reasonable to assume
that although there is a large amount of error and uncertainty in the low-level
output, it does give a significant indication of what objects may be present.
We shall explain below exactly how our system converts low-level statistics
into a metric of the likelihood of any given set of objects being in a box.

Local continuity information is provided by the low-level tracker module. The
tracker output assigns to each blob’s bounding box an identification tag (a
number), which is maintained over successive frames. For newly split or merged
boxes new tags are assigned but the tag of their parent box in the previous
frame is also recorded. Thus each box is associated with a set of child boxes in
the next frame. Conversely each box can be associated with a set of its parent

boxes in the previous frame. The parent/child relation determines a directed
graph structure over the set of boxes, which we call a ‘box continuity graph’.
Such a graph is illustrated in figure 5. Our algorithm depends on the structure
of this graph, which will be examined in more detail later.

4 This assumes that the classifier is capable of identifying unique objects (such
as particular people) rather than classes of similar objects. In situations where
there may be multiple objects of the same class, the exclusivity constraint must be
weakened.
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Fig. 5. Tracker output expressed as a ‘box continuity’ graph

The continuity-based reasoning algorithm involves a somewhat complex re-
structuring of the available information. To describe its operation we start
by formally specifying the information associated with a tracked box and the
output of the classifier when applied to that box. Formally, a tracker box b
can be represented by a tuple,

〈f,geom,pa, ch,Class〉 ,

where f is the frame number, geom is the box geometry, pa is the set of its
parent boxes (in the frame f −1), ch is the set of its child boxes (in the frame
f+1) and Class represents the statistical output of the object classifier applied
to this box. Frame numbers are elements of a continuous subset of the non-
negative integers with the usual ordering. The initial frame will be denoted f0.
For convenience we introduce the functions f(b), geom(b), pa(b), ch(b) and
Class(b) to refer to the corresponding information associated with box b. The
set of all boxes in the tracker/recogniser output will be denoted by BOXES.

From the point of view of object continuity, the parent and child boxes of a
given box can be regarded respectively as ‘sources’ and ‘sinks’ of that box.
The occupants of a box must have come from its parent boxes and must go
to its child boxes. Assuming no objects enter or leave a scene, each box is
associated with at least one source box in the previous frame and one sink
box in the next frame. However, where two or more boxes become merged, the
merged box will have more than one source; and, when a box is split, it will
have two or more sinks. We do also allow objects to enter or leave the scene,
so there may be some boxes with no source or no sink. 5

5 Such boxes would typically occur at one or other side of the scene, but in the
current implementation we have not attempted to enforce this constraint. A more
sophisticated model would explicitly model all the entry and exit points to a scene.
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Within the box continuity graph are chains of boxes linked by a unique source-
sink relationship (see Figure 5). Each of these corresponds to the ‘history’ of a
tracker box between splitting and merger events. If the tracker were perfectly
accurate, the objects occupying any box would be constant along any of these
linear sub-graphs. Hence, assuming such perfect accuracy, one can enforce
a localised continuity constraint by simply requiring that box labellings are
constant along such sub-graphs. However, as we have already noted, where
there is some overlap between boxes, objects may sometimes transfer between
boxes. This possibility will be considered in the next section.

To model spatio-temporal continuity is useful to introduce an abstract data
object which we call a spatio-temporal box (ST-box for short). ST-boxes will
normally be denoted by symbols Si. In the tracker output, an ST-box cor-
responds to a temporally continuous sequence of boxes which have the same
tag. In terms of the ch function, this is a maximal sequence [b1, . . . , bn] such
that for each i in the range 1 ≤ i ≤ n − 1 we have ch(bi) = {bi+1}.

6

It is convenient to represent an ST-box as an ordered set S indexed by frame
numbers in the range s(S) . . . e(S), where the functions s(S) and e(S) denote
respectively the start and end frames of the period over which S exists. We also
define the partial function box-at(f, S) to denote the box b ∈ S whose frame
number is f . This function is only defined for f in the range s(S) ≤ f ≤ e(S).
Clearly each box b ∈ BOXES is a member of a unique ST-box which we denote
by st(b). The set ST-BOXES = {S | (∃b ∈ BOXES)[st(b) = S] } is the set of
all ST-boxes.

5.1 Coarse Object Grouping with ‘Envelopes’

Although the tracker output enables us to derive a graph representing tempo-
ral continuity between tracked boxes, this structure is only indirectly related to
the trajectories of actual moving objects in the scene. There are several issues
that complicate the relationship between tracker boxes and objects. Firstly,
there is the basic problem caused by proximal and/or occluding objects, which
means that a box may be occupied by several objects. This is compounded by
the possibility that objects sometimes transfer between tracker boxes without
themselves being independently tracked. This can occur because of occlusions
among objects or because of limited resolution of the tracker (or a combination
of the two). When a box containing more than one object is close to or overlaps
another box, an object from the multiply occupied box can easily transfer to

6 This definition means that an ST-box may persist across a split or merger event.
Whether this happens is somewhat arbitrary, as it depends on the box tags that
are assigned. But in the next section we shall divide up the ST-boxes into sections
that cannot persist over any such events.
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the neighbouring box without being detected. Conversely, undetected transfers
are almost always between boxes whose geometries overlap.

A consideration of these problems led us to the idea that in order to get a more
accurate identification of the locations and movements of closely grouped or
occluding objects, we need to employ a representation in which the locations of
objects are modelled at a coarser level than that of individual boxes. Hence,
we introduced a higher level abstract data object that we call an envelope.
Intuitively, we can regard an envelope as a maximal cluster of overlapping ST-
boxes (this will shortly be defined more precisely). The concept of an envelope
is illustrated diagrammatically in figure 6. Here, the shaded areas indicate the
positions of boxes over a sequence of frames and thus correspond to ST-boxes.
The dashed lines show the division of this structure into envelopes.

Fig. 6. Deriving Spatio-temporal Envelopes from Tracker Output

The definition of an envelope depends upon specifying an overlap relation
between boxes, which we write formally as Overlap(b1, b2). Since, the boxes
bound the positions of objects to a high statistical probability, the simple geo-
metric overlap relation between boxes is highly correlated to the possibility of
object transfer between them. Thus we consider two boxes to overlap if there
is point that is interior to both boxes in terms of the box geometries output
by the tracker. Actually, because of the statistical nature of the bounding
boxes, we may vary the scale of the boxes in order to yield stricter or weaker
overlap relations. In the current work we are concerned with demonstrating
the general method by which enforcing continuity constraints improves track-
ing/recognition accuracy, so we have not attempted to tweak the scaling to
produce the optimal output for our data. We have chosen a scale where the
box bounds the object with 97% probability. Limited experimentation indi-
cates that this threshold is a good choice for our data.
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To characterise what constitutes an envelope we first introduce the concept of
a constant-local-group spatio-temporal box or CLG-ST-box. This is a temporal
sub-division of an ST-box, over which it is a member of a constant ‘local
group’ of spatially overlapping ST-boxes. Thus it is part of the same cluster
of ST-boxes throughout this period. Whereas the beginning and end frames
of ST-boxes are determined by merger and splitting, the beginning and end
frames of CLG-ST-boxes are determined by changes in the overlap relation
between boxes. The division of ST-boxes into CLG-ST-boxes is indicated in
figure 6. The divisions coincide with the temporal boundaries of the envelopes.

Local groups are sets of ST-boxes that are related by the transitive closure
of the Overlap relation. This relation is written as Overlap∗(b1, b2).

7 At
each frame over which it exists, any given ST-box stands in the Overlap∗

relation to a set of other ST-boxes, which is its local group at that frame.
Since Overlap∗ is reflexive, symmetric and transitive, at each frame the local
groups form equivalence classes over the set of ST-boxes. Given an ST-box S
and a frame f (with s(S) ≤ f ≤ e(S)), we can define the function

local-g(f, S) = {S ′ | Overlaps∗(box-at(f, S),box-at(f, S ′))} .

A CLG-ST-box can now be defined as a subset of an ST-box corresponding to
a maximal temporally continuous sequence of frames F = [fm, . . . , fn], such
that for each fi ∈ F , the function local-g(f, S) takes a constant value. Each
ST-box determines a unique CLG-ST-box for each frame over which it exists.
Hence we can define the function

clg-st(f, S) = {b ∈ S | local-g(f(b), S) = local-g(f, S) ∧
¬∃f ′[((f(b) < f ′ < f) ∨ (f < f ′ < f(b))) ∧ local-g(f ′, S) 6= local-g(f, S)]} .

The set of all CLG-ST-boxes is given by

CLG-ST-BOXES = {C | (∃S ∈ ST-BOXES)(∃f)[(s(S) ≤ f ≤ e(S)) ∧
clg-st(f, S) = C]}

As with ST-boxes, we use the functions s(C) and e(C) to refer respectively
to the start and end frame of a CLG-ST-box, C. We also write st(C) to refer
to the unique ST-box of which C is a sub-sequence.

Since CLG-ST-boxes participate in the same local group throughout their
history, we can define the function local-g(C), which does not require a frame
argument:

local-g(C) = local-g(s(C), st(C)) .

7 That is, Overlap∗(b1, bn) holds just in case there is some sequence of boxes
b1, . . . , bn, such that for 1 ≤ i ≤ n − 1 we have Overlap(bi, bi+1).
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We can now define an envelope as a maximal set of overlapping CLG-ST-boxes.
Any CLG-ST-box is a member of a unique envelope, given by

env(C) = {clg-st(s(C), S) | S ∈ local-g(C)} .

For an envelope E, the functions s(E) and e(E) denote the beginning and end
frames of the envelope’s existence. By definition, all its constituent CLG-ST-
boxes have the same beginning and end frames.

Each box in the tracker input is related to a unique envelope given by:

env(b) = env(clg-st(f(b), st(b)))

And the set of envelopes derived from the tracker input is given by:

ENVELOPES = {E | (∃b ∈ BOXES)[E = env(b)]}

Later we shall want to refer to the set of envelopes that exist at a given frame.
This is given by:

envs-at(f) = {E ∈ ENVELOPES | s(E) ≤ f ≤ e(E)}

5.2 Enforcing Exclusivity and Continuity at the Envelope Level

Although envelopes give a coarser demarcation of object locations than do
individual boxes, they provide a much more reliable basis for determining
continuity. By definition, two different envelopes cannot spatially overlap (oth-
erwise they would just be parts of a larger envelope). This means that there
is an extremely low probability that an object can transfer between envelopes
without being detected. Hence, our algorithm makes the assumption that the
occupancy of an envelope is constant throughout its existence. The presence
of object l in envelope E will be formally specified by the relation Occ(l, E).

The exclusivity constraint C1, corresponds to the requirement that no object
can occupy two distinct spatio-temporal envelopes that overlap in time.

C1) ∀E1E2 l f [ (s(E1) ≤ f ≤ e(E1)) ∧ (s(E2) ≤ f ≤ e(E2)) ∧
Occ(l, E1) ∧ Occ(l, E2)) → (E1 = E2) ]

It will be seen in figure 6 that the set of envelopes has a continuity graph
structure similar to that of boxes. In fact an envelope continuity graph can be
formed directly from the box continuity graph by collapsing all nodes derived
from boxes in the same envelope into a single node.
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Functions returning parent and child sets for envelopes can be derived directly
from the corresponding relations between tracker boxes:

pa(E) = {E ′ | E ′ 6= E ∧
(∃bb′ ∈ BOXES)[(env(b) = E) ∧ (env(b′) = E ′) ∧ (b′ ∈ pa(b))]}

ch(E) = {E ′ | E ′ 6= E ∧
(∃bb′ ∈ BOXES)[(env(b) = E) ∧ (env(b′) = E ′) ∧ (b′ ∈ ch(b))]}

Because we allow objects to enter and leave the scene we also need to keep
track of off-scene objects. We do this by introducing virtual, off-scene envelopes

to our model. We could have different sets of off-scene envelopes for different
entry/exit points but in the current implementation we assume there is only
one off scene location. Transfer to and from off-scene envelopes can only occur
when a tracker box is either created or disappears.

Off-scene envelopes do not have any spatial structure; so we identify them
simply with a frame pair 〈fb, fe〉 representing the beginning and end frames
of their existence. The limiting frames of off-scene envelopes are defined as
follows:

B-OFFENV = {f | (∃E ∈ ENVELOPES)[ ((pa(E) = ∅) ∧ (f = s(E))) ∨
((ch(E) = ∅) ∧ (f = s(E) + 1)) ] }

E-OFFENV = {f | (∃E ∈ ENVELOPES)[ ((ch(E) = ∅) ∧ (f = e(E))) ∨
((pa(E) = ∅) ∧ (f = s(E) − 1)) ] }

So the set OS-ENVELOPES contains all beginning/end frame pairs that have
no other beginning or end frames occurring between them:

OS-ENVELOPES = {〈fb, fe〉 | fb ∈ B-OFFENV ∧ fe ∈ E-OFFENV ∧
¬∃(f ∈ (B-OFFENV ∪ E-OFFENV)[(f > fb) ∧ (f < fe)] }

The set including both on-scene and off-scene envelopes will be denoted by
ENVELOPES

+ = ENVELOPES∪OS-ENVELOPES. The predicate OS(E) holds
just in case E is an off-scene envelope.

In order to define the continuity relation between envelopes, it is convenient
to first define a successor relation Suc(E1, E2), which holds when the end of
E1 is at the frame immediately before the beginning of E2:

Suc(E1, E2) ≡def ((e(E1) + 1) = s(E2))

We can now define the relation Source-Sink(E1, E2), meaning that envelope
E1 is a source for the objects in envelope E2. The following formula handles
continuity for both on and off-scene envelopes and also for transfers between
the two kinds of envelope.
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Source-Sink(E1, E2) ≡def ((E1 6= E2) ∧
[ ∃b1b2[b1 ∈ pa(b2) ∧ env(b1) = E1 ∧ env(b2) = E2]
∨ (OS(E1) ∧ (pa(E2) = ∅) ∧ Suc(E1, E2))
∨ (OS(E2) ∧ (ch(E1) = ∅) ∧ Suc(E1, E2))
∨ (OS(E1) ∧ OS(E2) ∧ Suc(E1, E2)) ] )

In terms of this relation, the continuity constraint C2, as applied at the en-
velope level, is represented by

C2) Occ(l, E1) → ∃E2[Source-Sink(E1, E2) ∧ Occ(l, E2)] ∧
Occ(l, E2) → ∃E1[Source-Sink(E1, E2) ∧ Occ(l, E1)] ∧
Source-Sink(E1, E2) → ∃l[Occ(l, E1) ∧ Occ(l, E2)]

Our algorithm will generate possible assignments of object labels to envelopes
that satisfy both C1 and C2. It will then choose the one that we consider
‘best supported’ by the classifier outputs.

5.3 Observational Likelihood of Box and Envelope Occupancy

There is a finite set of potential explanations for the output presented by
the blob tracker and object classifier that are consistent with the continuity
constraints described in the previous section. But the number of possible ex-
planations is extremely large even in simple scenarios. A metric is required to
rank these based on the symbolic and probabilistic output of these lower level
processes.

As described above, the low-level classifier computes probabilities based on a
Bayesian combination of learnt binary colour-histogram classifiers. Applied to
a box b the output takes the form

Class(b) = {〈l1, p1〉, . . . , 〈ln, pn〉} ,

where pi is the probability of li being a correct label for the object(s) in box
b. The set of all labels known to the classifier will be denoted LABELS.

Each statistic is an independently computed probability based on the assump-
tion that there is only one object in the box. Thus, the figures are not nor-
malised and cannot be reliably applied to cases where there is more than one
object in a box. However, we assume that, even in multi-object cases, the fig-
ures give an measure, albeit approximate and uncertain, of the likelihood of
an object being in the box. Hence, we can regard the number pi directly as
a ‘vote’ for the presence of object li in box b. We denote this vote value by
vote(l, b).

Our spatio-temporal continuity constraints operate at the level of envelopes
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rather than individual boxes. Thus, we need to convert the votes for box
occupancy into votes for an object being in a given envelope. There are a
number of ways this could be done, none of which is really statistically valid.
The function we have chosen is as follows: for an envelope E and an object l,
we compute for each CLG-ST-box C ∈ E the sum of the box votes for l over
all frames for which C exists. Thus

vote(l, C) =
∑

s(C)≤f≤e(C)

vote(l,box-at(f, C))

To get the vote for the object to be in an envelope we take the maximum of
its votes for each CLG-ST-box in the envelope:

vote(l, E) = Max{ v | (∃C ∈ E) ∧ vote(l, C) = v} .

This would be reasonable on the assumption that the object stays in the same
CLG-ST-box throughout its time within the envelope. This is not necessar-
ily true, so the vote may be unreliable. Devising and evaluating more realistic
voting functions is a subject of ongoing work. (Nevertheless, as will be seen be-
low, our crude voting function is already a good enough metric to significantly
enhance the reliability of recognition.)

In order to reduce the support value given to a label to the range [0 . . . 1], we
compute the fractional vote for l with respect to the total votes of all objects
in the classifier domain {l1, . . . , lN}. This is given by:

frac-vote(l, E) =
vote(l, E)

∑

i=1...N vote(li, E)
.

To determine the support given by an envelope to a given set of labels, we
need to aggregate the votes for each label. However, if we simply added the
fractional votes for each label, this would clearly mean that assignments with
more labels would be favoured over those with fewer labels. On the contrary,
we wish to prefer fewer labels, since we do not want to postulate multiple
objects being present in a box unless we have some evidence for this (e.g.
if a box is seen to split or merge then multiple occupancy can be inferred
by the continuity constraint enforced by the reasoner). Hence, in valuing the
likelihood of an envelope assignment we wish to impose a strong bias that
favours the smallest possible number of objects being assigned to the box. In
order to do this, we sum the fractional votes of each label, but then impose
a penalty of -1 vote per label. Since, the fractional votes are always ≤ 1 this
will mean that adding a label will always decrease the vote (but since we are
looking for the highest voted globally consistent model, multiple labels will
still occur in the most likely labelling found by our reasoning algorithm, that
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will be described in the next section). Because the votes computed this way
all come out negative, we have found it more aesthetic to add a further +N ,
where N is the maximum number of objects that may occur in the scene. This
makes the votes positive, but is not really necessary because it is the relative
scores of models we are interested in.

Another factor we wish to take into account is the duration over which an
envelope persists. If we assume that the classifier outputs at each frame should
have equal weight in determining what objects are present, then we should
multiply the vote obtained by considering the labelling by the duration of the
envelope. Hence, our aggregated voting function for multi-label envelopes is
as follows:

vote({l1, . . . , ln}, E) =

[(

∑

i=1...n

(frac-vote(E, li)

)

− n + N

]

· dur(E) ,

where dur(E) = e(E) − s(E) + 1 is the duration of the envelope in frames.

For off screen envelopes, we take the vote for any set of labels to be 0.

5.4 Selecting the Best Hypothesis for an Extended Frame Sequence

The previous section defined a method for calculating a metric for ranking po-
tential explanations of the output of the lower level systems. In principle, we
could use this to evaluate all possible spatio-temporally consistent sequences
of object labels. However, this would be infeasible for all but the shortest
and simplest sequences. Whenever an envelope divides into two or more child
envelopes, there are several possible assignments of the original envelopes oc-
cupants to the newly created envelopes. Thus the number of possible solutions
grows exponentially with time (as well as being an exponential function of the
number of objects involved). However, by taking a dynamic programming [40]
approach do the problem, the optimal solution can in fact be found by an
algorithm whose complexity is linear in time. Thus, as long as the number
of objects is relatively small, solutions for arbitrarily long sequences can be
computed effectively.

An envelope labelling solution for a given tracker input assigns a set of labels
to each envelope that satisfies the constraints C1 and C2. Our algorithm first
computes the set of envelopes and the Source relation from the complete set
of boxes output by the tracker.

An envelope change frame (ECF) is a frame that is the start of some enve-
lope, or is a frame immediately after some envelope ceases to exist (e.g. when

20



it moves off the scene). We shall build a model by starting at the initial frame
of the tracker output and progressing through each successive ECF. Since
envelope occupancy remains constant between ECFs, this model actually de-
termines a complete assignment to all envelopes at all frames. For any ECF f
(including the initial frame f0) the next ECF after f is denoted by necf(f).
When f is the last ECF in the input frame sequence we let necf(f) = end.

A spatio-temporally consistent assignment to all envelopes starting at or before
some given ECF f will be called a partial model (up to f) and will be denoted
Pi (where the optional i is a distinguishing index). lcf(Pi) denotes the last
change frame of envelopes assigned by Pi. A partial model P is identified with
a set {. . . , 〈Ei, Ai〉, . . .}, where Ai = {l1, . . . , ln} ⊆ LABELS. The set must
contain an assignment for all envelopes starting at or before some ECF. The
function ass(P , E) will denote the set of labels assigned by P to envelope E.

The requirement of spatio-temporal consistency of partial models means that
the exclusivity and continuity constraints C1 and C2 must be satisfied, where
the occupancy relation Occ determined by a model P is given by Occ(l, E)
iff l ∈ ass(P , E).

To compute a spatio-temporally consistent extension of a partial model, we
need only know its assignments to the latest envelopes. Hence we define

last-ass(P) = {〈Ei, Ai〉 | 〈Ei, Ai〉 ∈ ass(P) ∧ s(Ei) ≤ lcf(P) ≤ e(Ei)} .

In order to formalise the notion of one partial model’s being an (immediate)
extension of another, we define

Extends(P ′,P) ≡def ((P ′ \ last-ass(P ′)) = P)

The set of all possible (spatio-temporally consistent) extensions of a partial
model P is then given by

extensions(P) = {P ′ | Extends(P ′,P) } .

extensions(P) is a key function of our algorithm. This function is straight-
forward to compute. We first compute and store the Source-Sink relation for
the tracker input, using the definitions given above. All we need to do is gen-
erate all assignments to the envelopes in E ′ = envs-at(necf(lcf(P))) which
are consistent with the assignment to the envelopes in E = envs-at(lcf(P)).
Using the definitions given above, it is straightforward to compute the Source

relation between envelopes in E and E ′.

Since our model construction proceeds in the direction of the flow of time, we
wish to know where the assigned occupants of envelopes in last assignment
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of the partial model go to after the next ECF. The possible destinations are
‘sinks’ for these objects:

sinks(E) = { E ′ | Source-Sink(E, E ′)}

To satisfy C2 we only need to ensure that for every E ∈ E , every label in
ass(P , E) is assigned to some envelope in sinks(E), and also at least one
label in ass(P , E) is assigned to each E ′ ∈ sinks(E). Moreover, it is easy to
see that if the last assignment of P satisfies the exclusivity condition C1 then
the assignment of any extension constructed in this way will also satisfy the
C1.

In order to choose which are most likely according to the object recognition
software, we compute a vote measure for each model. The total support for a
partial model is just the sum of the support for each of its envelope assign-
ments:

vote(P) =
∑

{vi | 〈Ei, Ai〉 ∈ ass(P) ∧ vote(Ai, Ei) = vi} .

In all but the simplest cases, we may have several different partial models that
agree on their last assignment — i.e. last-ass(P1) = last-ass(P2). These, rep-
resent different assignment paths leading up to the same end state. Typically,
one will have a higher vote support than the other, which gives an indication
that one is the more likely of the two. In such a case we say that the more
likely partial model subsumes the other:

Subsumes(P1,P2) ↔ ((last-ass(P1) = last-ass(P2))∧vote(P1) > vote(P2))

Given a set M of partial models, we can ‘prune’ it to retain only the ‘best’
models that lead up to any given final assignment.

prune-subs(M) = {P ∈ M | ¬∃(P ′ ∈ M)[Subsumes(P ′,P)]}

We initialise the set of partial models by considering all possible assignments
of the domain objects to the initial envelopes, with the additional requirement
that each envelope must be assigned a number of objects that is as least as
many as the number of CLG-ST-boxes it contains. This initial partial model
set will be denoted M0.

We then run the following algorithm, which iterates through successive ECFs
to generate the set of all consistent models:
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f := f0

M := M0

while (f 6= end) {
M

′ := ∅
foreach (Pi ∈ M) {

M
′ := M

′ ∪ extensions(P) }
M := prune-subs(M′)
f := necf(f)

}

We will not give a rigorous analysis of the complexity of our algorithm. How-
ever, we can establish by informal argument that the model building algorithm
(and hence also the selection of the optimal labelling) is essentially linear in
the length of the video sequence and exponential in the number of objects
involved in the scene.

The key observation is that there are a finite number of ways that a finite
set of objects can be distributed among a finite set of envelopes. This number
corresponds to the number of partitions into disjoint non-empty subsets of a
set of given finite cardinality. It can be computed by a recursive algorithm and
is bounded by an exponential. For example, in our main test data we track
a scene with four moving objects (which can move on and off the screen).
This means at any frame there are from 0 to 4 envelopes. Our pruning of
low scoring models that are subsumed by better models with the same end
state, means that number of partial models stored is limited to the number of
distinct assignments that can be made to the end state of the sequence. For
each of the cases of 0 to 4 envelopes, the number of assignments is respectively:
1, 15, 50, 60, 24. So the maximum number of models that must be stored is
60. 8

At each cycle of the algorithm we extend each partial model to the next change
frame. Again, although the number of possible extensions is exponential in
the number of objects involved, for a fixed number of objects it is strictly
bounded to a finite number of possibilities. Computing the new vote total for
an extended envelope can be done in constant time since it depends only on
the final assignment and the prior vote of the partial model being extended.
Detecting the subsumptions among m newly extended models is O(m2), but
is computationally trivial and here again m is bounded by a finite maximum
depending on the number of objects in the scene.

8 The actual numbers of partial models stored will typically be considerably fewer
than these limiting numbers. This is because previous splitting and merger events
in the history of the envelopes can lead to constraints on the minimum numbers
of objects than can be present in some of the envelopes; so certain possibilities are
ruled out. These cardinality constraints are automatically enforced by the model
generation procedure.
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These observations explain why for small numbers of objects, our algorithm
performs very effectively. The crucial factor is our pruning policy means that
the complexity becomes linear in the length of the frame sequence, even though
we are finding the optimal of all possible models that are spatio-temporally
consistent with that frame sequence. This pruning technique enables us to
solve a highly intractable constraint problem by a method that can be seen as
a kind of dynamic programming.

5.5 Off-Line Implementation of the Continuity Reasoner

The continuity reasoner has been implemented using the Prolog language
(SICStus Prolog [41]). This allows easy creation and manipulation of the data
structures required and a natural coding of the continuity reasoning algorithm.
It currently runs in an ‘off-line’ mode — i.e. it processes a whole frame se-
quence and then produces a globally consistent assignment for the complete
sequence. This is a result of the way that we originally conceived the problem
of achieving global consistency by enforcing constraints over the whole extent
of a video sequence. We had thought that the best way of implementing this
would be to start with a data model of the whole sequence and then use a
general constraint solving technique to find consistent solutions. However, it
eventually became clear that such solutions could be efficiently found by the
sequential model building technique described in the previous section, which
processes the input in the direction of time flow.

Because of the way it was developed, our current algorithm carries out a lot
of pre-processing on the video sequence to build data-structures (representing
the continuity graph of envelope objects) that are then used in the model
building. However, it is now apparent that the whole algorithm could have
been designed in an ‘on-line’ mode, where the envelope structure itself is built
dynamically as the input frames are sequentially input. This would enable
continual output of the best hypothesis for the current state of an ongoing
video sequence. However, the dynamically generated best hypothesis up to a
given frame would, in general, be less accurate than the hypothesis generated
after processing the whole video sequence, because it would not take into
account evidence from the object classifier relating to subsequent frames in
the sequence.

Since our present implementation processes the whole sequence in a time only
slightly longer than its actual duration, on-line processing in real time is cer-
tainly possible on present-day hardware. Such re-implementation is a non-
trivial software engineering task, which is planned as a future research objec-
tive.

24



6 Evaluation

The system was evaluated on approximately two and a half minutes of the
basketball scene illustrated in figure 3. This scene consists of four objects
(three players and a ball), variable numbers of which may be in the scene
at any one time. The movie contains much interaction and occlusion that a
conventional object tracker would find hard to track with a single camera. The
movie is tracked and classified at 25fps and the results fed into the reasoning
engine. The system was applied to a sequence of 2200 frames (88 seconds
real time) and took approximately 5 minutes to generate all possible spatio-
temporally consistent labellings. 9 The model with the highest overall score
was compared to a hand-annotated labelling which gives the ground truth
at every 10th frame (plus some extra frames added at particularly dynamic
parts of the video). Thus, over the length of the sequence a total of 612 tracked
boxes were compared.

Figure 7 shows a typical output from the tracker, classifier and reasoner, for
some illustrative frames of the video input (shown on the left of the figure).
The frames show different stages of an event where a ball was passed from
one player to another (from Derek Magee to Aphrodite Galata (Afro)). On
the right we see the boxes detected by the tracker. The list shown above each
box is the ranked list of labels output by the classifier. Here all labels detected
with greater than a given probability threshold are given in decreasing order of
probability (i.e. the leftmost label is the most probable). The list immediately
below the box is the labelling assigned to this frame in the most likely globally
consistent model generated by the reasoner. The list below this is the ground
truth obtained by observing the video and hand labelling the tracker boxes.
(The ordering of reasoner output and ground truth labels is just alphabetic.)

It is informative to look at the final frame (630), where the ball has been
received by Afro. Here we see that the raw classifier output gives the list
[afro,derek,ball] as ranked most likely labels for each of the boxes. This
is clearly impossible in our scenario, since there is only one Aphrodite and she
cannot be in two places at once. But the classifier output for this frame alone
gives us no way to determine the best consistent labelling. Nevertheless, our
reasoning algorithm, by considering continuity requirements over the duration
of the sequence, has indeed found the correct labelling.

Looking at the output for the frames leading up to frame 630 gives an indica-
tion of how the reasoner can work out a correct labelling from such inaccurate
classifier output. Although the actual algorithm involves aggregating the clas-
sifier’s probability values, a good intuition of how this works can be gained by

9 All experiments were carried out on a 500 MHz Pentium III; so real time perfor-
mance is certainly possible on currently existing hardware.
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Fig. 7. Tracked boxes and labellings generated from a ball-passing event.

26



thinking in terms of the probability-ranked labels shown above the boxes.

It will be seen that, at frame 609, Derek threw the ball towards Afro. In
its processing of this frame, the classifier gives a higher probability for Afro
rather than Derek to be in box 1, and also a higher probability for Derek
rather than Afro to be in box 3. Thus, the correct labelling of the locations of
Afro and Derek is better supported than any incorrect alternative (however
there is nothing to suggest where or whether the ball is present). In frame
616, the ball is tracked as a new box, which overlaps with box 3. Boxes 3
and 5 are within the same envelope and the output shown gives the output
from the reasoner on a per-envelope basis, with the labelling given under the
lowest numbered box in the envelope. 10 The high visibility of the ball in box 5
increases its detected probability according to the classifier, and this supports
its identification by the reasoner as being one of the objects in the envelope
consisting of boxes 3 and 5. Moreover, because the reasoner enforces spatio-
temporal continuity this also supports assignment of the ball label to box 3 at
the earlier frame 609. In frame 619, box 5 no longer overlaps with box 3 and
so is in an envelope on its own. Now it is well separated from other objects,
the classifier correctly identifies the presence of the ball with high probability.
Subsequently, in frames 622 and 630, box 5 overlaps and then merges with
box 1. Thus, the detection of the ball in the earlier frames reinforces the
assignment of the ball to box 1 in frame 630, in the maximally supported
globally consistent model computed by the reasoning algorithm.

Comparing the output of the consistency reasoning algorithm with the raw
output of the object recogniser is somewhat problematic, because the raw
output does not give any indication of the number of objects that are in each
box. The statistics given are just ranked probabilities of individual object
being present. However, for purposes of comparison we must treat this data
as somehow identifying a definite set of labels. To do this we use a rather rough
heuristic: we say that the assignment includes any label which has the highest
(or joint highest) probability of all those listed in the output, and also any
other label identified with probability higher than 0.5. Figures computed from
the resulting box-label assignments are given in the “Raw + HON” column of
our tables of statistics (HON stands for heuristic occupancy number).

Another way of interpreting the raw output is to assume that the number
of objects occupying each tracked box is somehow known by an independent
procedure or oracle. Under this assumption one could use the ground-truth
occupancy number, GON, to determine how many labels from the ranked la-
bel list output by the classifier should be assigned to each box. The “Raw +
GON” column shows these figures. Here, when evaluating a box which we know

10 Subsequently, the per-envelope labellings are converted into a per-box labelling,
but (to avoid excessive clutter) this is not shown in the figure.
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(from human annotated ground-truth data) contains n objects, we take the n
labels that are assigned the highest probabilities in the raw tracker/recogniser
output. 11 Although there seems to be no obvious way this occupancy informa-
tion could be obtained in practice, the statistics derived under this assumption
may be useful for comparison. They show that the improvement gained by the
reasoner goes well beyond that which could be obtained by simply being able
to determine occupancy.

The table in figure 8 compares the accuracy of assignments obtained using
the “Raw+HON” and “Raw+GON” interpretations of the tracker/recogniser
output with the optimal spatio-temporally consistent box labellings given by
the model generation algorithm. The “Objects detected” gives the percentage
of those objects present in a box that are correctly labelled. The “Labels
correct” gives the percentage of assigned labels that are correct.

More precisely: let G be the set of tuples 〈f, b, l〉, such that f is a frame number
of the video input, b is the ID number of a box in the tracker output at frame
f , and l is a label denoting an an object actually present in that box at that
frame (according to our ground-truth annotation); Let Lλ be the set of tuples
〈f, b, l〉, such that f is a frame number, b an ID number of a tracker box at
frame f , and l is a label assigned to that box at that frame by the labelling
algorithm λ (which may be Raw+HON, Raw+GON or the Reasoner); let
Tλ = G ∩ Lλ — this is the set of correct labels generated by λ. Then, the
objects detected percentage for algorithm λ is equal to (|Tλ|/|G|) · 100, and
the labels correct percentage is given by (|Tλ|/|Lλ|) · 100.

Figure 8 also indicates the percentage of all boxes (in all frames) that were
assigned the correct occupancy (i.e. the correct number of labels) as well as
the percentage of boxes for which the set of labels given by the algorithm was
exactly the same as the ground-truth labelling.

Raw+ HON Raw+GON Reasoner

Objects detected 44.0% 62.1% 82.1%

Labels correct 64.5% 62.9% 82.4%

Occupancy number correct 62.6% 98.4% 84.8%

Labels all correct 40.2% 45.4% 69.1%

Fig. 8. Accuracy statistics for all sampled boxes.

Notice that the object detection rate for “Raw+HON” is much lower than
the percentage of correct labels. This is because, for multiply occupied boxes,

11 For multiple occupancy boxes the raw output may occasionally give fewer labels
than there are objects in the box (because it discards labels below a certain minimal
threshold of probability). In this case we just take all labels in the raw output.
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it very often assigns fewer labels than the actual number of objects present.
The third row shows the percentage with which boxes are assigned the correct
number of objects. This figure is not very informative for “Raw+HON” (which
nearly always returns a single assignment) or for “Raw+GON” (which nearly
always gives the correct occupancy 12 ). However, it does show how good the
spatio-temporal reasoner is at working out box occupancy. The final row gives
the percentage of all compared boxes, where the label assignment exactly
matched the ground truth data. This is perhaps the most intuitive and best
overall performance metric.

These figures show that use of the spatio-temporal consistency algorithm re-
sults in a significant improvement in the object recognition accuracy of the
tracker. However, enhancement obtained by this method is fully effective in the
case of multiply occupied boxes. Hence it is useful to divide up the statistics
into single and multiple box cases. Of the 612 boxes compared, 377 contained
a single object (i.e. a person or the ball) and 235 contained multiple objects.
The single occupancy box statistics are as follows:

Raw+HON Raw+GON Reasoner

Objects detected 64.3% 64.3% 83.3%

Labels correct 64.3% 64.3% 74.6%

Labels all correct 64.3% 64.3% 74.2%

Fig. 9. Accuracy statistics for boxes containing one object (in ground truth)

This table is somewhat degenerate. This is because both raw data interpre-
tations almost invariably assign a single label to single occupancy boxes. The
reasoner is considerably more accurate, although it sometimes assigns more
than one label to a single occupancy box.

The multiple box statistics give a much more informative comparison. It will
be seen in particular that the exact match score for the spatio-temporal consis-
tency algorithm is over 60%; whereas, even when magically given the ground
occupancy, the raw output of the recogniser rarely gives a completely cor-
rect labelling. Without being given the occupancy our heuristic interpretation
didn’t give a single completely correct assignment for any multiply occupied
box.

12 The reason this is less than 100% is that the ranked list of likely objects returned
by the classifier only contains those detected with ≥ 1% probability, and occasionally
this means that the list contains fewer labels than the ground-truth occupancy
number of the box.
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Raw+HON Raw+GON Reasoner

Objects detected 28.9% 60.4% 81.2%

Labels correct 64.8% 61.8% 89.5%

Labels all correct 0% 13.8% 60.4%

Fig. 10. Accuracy statistics for boxes with more than one object (in ground truth)

7 Discussion and Future Work

The results presented in the previous section show the substantial improve-
ment in labelling performance that can be achieved by applying our two sim-
ple spatio-temporal consistency rules and using voting over spatio-temporally
equivalent regions. The framework presented in this paper is a simple, yet
efficient, method of applying these constraints. The performance increase is
especially evident in the labelling of multiple occupancy blobs. This is as to
be expected as the classifiers were only trained on well separated objects and
there is often significant occlusion. The constraints detect the inconsistencies
caused by such errors and so can fix qualitatively localised errors.

A possible extension to the system is to the use of multiple cameras. Each
(rectangular) blob represents a quadrilateral area when projected to a ground-
plane. This area must contain the set of objects relating to the set of labels
assigned to the blob. If there are multiple cameras the intersections of these
quadrilaterals must contain the intersection of the two label sets. This is a
highly efficient way of performing multiple camera integration and occlusion
reasoning.

The underpinning theoretical framework could also be usefully generalised in
various ways. In particular we would like to remove the assumption that we
are dealing with a fixed finite number of labels each of which refers to a unique
object. More generally we would like a system which handled classifiers that
could apply to multiple objects (for example, to identify team membership in
a sports game, or types of animal amongst a mixed herd). In such a setting
we need to drop the ‘exclusivity’ constraint employed by our system; and so
allow the same label to be simultaneously applied to several envelopes (in fact
we would need also to allow multiple instances of a label to be associated
with a single envelope). This would obviously weaken the constraints that
our system uses and is likely to make our system less accurate. However,
the continuity constraint would still be in force, and would still provide a
significant mechanism for enhancing the labelling.

The restriction to the case of a fixed number of objects could also be removed
by modification of our algorithm. Instead of considering all assignments from
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a fixed set of objects, we could initially construct only models with a minimal
number of objects — i.e. one object in each initial envelope. If an an envelope
splits, we will then be forced to recognise that it contains at least two objects.
One solution would then be to simply re-generate all possible models from
the beginning, but raising the number of objects in the models by one. This
would work in off-line mode but is very inefficient. A preferable alternative
would be to somehow revise the models already generated in order to add
an extra object. For instance, one could consider all possible classifications of
the new object and propagate these back along possible paths of the existing
envelope sequence in order to generate an set of augmented models including
the extra object. This idea introduces some subtleties and is a subject for
future work.

A final and more radical enhancement would be to follow up the suggestion
made in section 2, which was to implement some kind of feedback between
the continuity reasoner and the tracking and classifying modules. In the case
of tracking, we have seen that certain tracking errors can be circumvented
by the construction of spatio-temporally consistent models. For instance, we
can enforce the requirement that objects cannot spontaneously appear or dis-
appear. In the current implementation we just take the tracker’s output and
attempt to clean up any discontinuities; but it could clearly be useful to signal
these back to the tracker so it could modify its processing. For example, the
reasoner could flag a tracked box as being almost certainly a phantom, or it
could help it keep tabs on objects that remain stationary for long periods of
time.

It is less obvious how to achieve feedback between the consistency checking
algorithm and the classifier; however, this may also be a very fruitful line
of research. The observation that a certain combination of visual properties
forms a coherent entity that moves continuously in space is good evidence that
those properties serve to identify a particular object. Thus, spatio-temporal
continuity can be used as a criterion for validating a classifier: good object
classifiers ought to pick out spatio-temporally continuous regions in a video
sequence. Hence, one can envisage that spatio-temporal reasoning may play a
very important role in the automated learning of object classifiers.
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