

This is a repository copy of *Limit Cycles and Bifurcation in Piecewise-Analytic Systems: 1. General Theory.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/78223/

Monograph:

Banks, S.P. and Khathur, Saadi. A. (1989) Limit Cycles and Bifurcation in Piecewise-Analytic Systems: 1. General Theory. Research Report. Acse Report 372 . Dept of Automatic Control and System Engineering. University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

YO8 MA9

Limit Cycles and Bifurcation in Piecewise-Linear and Piecewise-Analytic Systems:

I. General Theory.

S. P. Banks and

Saadi A. Khathur

Department of Control Engineering, University of Sheffield, Mappin Street, SHEFFIELD S1 3JD.

August 1989

Research No. 372

Abstract

The existence of limit cycles and periodic doubling bifurcations in piecewise-linear and piecewise-analytic systems is studied. Some theoretical sufficient conditions are obtained directly in terms of the right hand sides of the system.

1 introduction

In this paper we shall consider some theoretical aspects of limit cycles and bifurcation in piecewise-linear and piecewise-analytic systems. There is of course a vast literature on limit cycles and bifurcation in the general case(see, for instance, Guckenheimer and Holmes 1983, Iooss and Joseph 1980) and some more detailed investigation into piecewise-linear systems(Banks and Khathur 1989; Chua, Komuro and Matsumoto 1986). However, there does not seems to be many attempts at direct sufficient conditions for general systems of this form. In the case of piecewise-linear systems our approach will be to obtain an expression for the solution of the system by using the Campbell-Hausdorff formula. For piecewise-analytic systems we shall use a generalized Lie series for the system solution and obtain analytic series

1

槽

representations. The conditions will then be specified directly in terms of the right hand sides of the equations.

We shall be concerned solely here with the theoretical approach to the problem . In a forthcoming companion paper we shall seek efficient numerical procedures to implement the results presented here.

2 Existence of Limit Cycles in Piecewise-

Linear Systems

In this section we shall consider the piecewise-linear system defined by the equations

$$\dot{x} = A_1 x \quad x \in P_1$$

$$\dot{x} = A_2 x \quad x \in P_2$$

$$\vdots \qquad \vdots$$

$$\dot{x} = A_m x \quad x \in P_m$$
(2.1)

where the P_i are polytopes (not necessarily bounded !) of dimension n such that

(i).
$$\overline{P}_1 \cup \ldots \cup \overline{P}_m = \mathbb{R}^n$$

(ii). $\overline{P}_i \cap \overline{P}_j$ is a polytope of dimension $< n$, if $i \neq j$

It will be assumed that the system (2.1) has a unique solution for each initial condition $x_0 \in \mathbb{R}^n$ and that each matrix A_i is nonsingular (this will guarantee a single equilibrium point). We shall also assume that no trajectories of the system lie on a boundary $\overline{P}_i \cap \overline{P}_j$.

Let $x_0 \in P_i$, $1 \le i \le m$ and suppose that, on some time interval [0,t]the solution trajectory of (2.1) starting at x_0 passes through the sequence of polytopes $P_{i_1}, P_{i_2}, \ldots, P_{i_k}$ where $P_{i_1} = P_i$. Then the solution of (2.1) through x_0 is given by

$$x(t) = e^{A_{i_k}\tau} \dots e^{A_{i_2}\tau_{i_2}} e^{A_{i_1}\tau_{i_1}} x_0$$
(2.2)

where τ_{i_j} is the time the trajectory remains in P_{i_j} and

$$\tau = t - \sum_{j=1}^{k-1} \tau_{i_j}.$$

Of course, each τ_{i_j} depends on x_0 and this valid for $\tau \ge 0$ i.e.

$$t \ge \sum_{j=1}^{k-1} \tau_{i_j}$$

Now suppose that a trajectory starts on a boundary, say $x_0 \in \partial P_1$ and passes through a number of polytopes once in some order. For simplicity (by renumbering) we may assume that these are P_1, P_2, \ldots, P_k .

If $x_0 \in \overline{P}_1 \cap \overline{P}_k$, then by (2.2) we have

$$x(t) = e^{A_k \tau_k} \dots e^{A_1 \tau_1} x_0 \quad \in \overline{P}_1 \cap \overline{P}_k. \quad \left(t = \sum_{i=1}^k \tau_i\right)$$
(2.3)

For a limit cycle, we require

$$e^{A_k\tau_k}\ldots e^{A_1\tau_1}x_0=x_0$$

i.e. the matrix $e^{A_k \tau_k} \dots e^{A_1 \tau_1}$ has an an eigenvalue 1. Before considering the general case it is instructive to determine conditions when the A_i 's all

commute. In this case we have

$$e^{A_k\tau_k}\ldots e^{A_1\tau_1}=e^{\sum_{i=1}^k A_i\tau_i}$$

and so we can state

. 7

Proposition 2.1 Given the system (2.1), if a trajectory passes through the polytopes $P_1, P_2, \ldots, P_k, P_1$, then a limit cycle exist if the times τ_1, \ldots, τ_k as defined above satisfy the condition:

$$-2\pi j \quad or \quad 2\pi j \in \sigma(A_1\tau_1 + A_2\tau_2 + \ldots + A_k\tau_k)$$

where $\sigma(A)$ is the spectrum of A.

Proof. This follows from the spectral mapping theorem which states that

$$exp(\sigma(A)) = \sigma(exp(A))$$
 . \Box

Since the A_i 's commute we can find a common diagonalizing transformation matrix T so that

$$T \quad A_i \quad T^{-1} = \begin{pmatrix} \lambda_{i_1} & 0 \\ & \ddots & \\ 0 & & \lambda_{i_n} \end{pmatrix}$$

where λ_{i_j} is the j^{th} eigenvalue of A_i . Hence we have

Corollary 2.1 Under the condition of proposition 2.1, $x_0 \in \overline{P}_1 \cap \overline{P}_k$ lies on a limit cycle if there exist $1 \leq l \leq n$ such that

$$\sum_{i=1}^k \lambda_{il} \tau_i = \pm 2\pi j. \qquad \Box$$

This result can be interpreted in the following way: for each l we define the map

$$f_l : \overline{P}_1 \cap \overline{P}_k \longrightarrow C$$

by

$$f_l(x_0) = \sum_{i=1}^k \lambda_{il} \tau_i(x_0).$$

Then the requirement is that, for some l,

$$f_l(x_0) = \pm 2\pi j.$$

The times $\tau_i(x_0)$ are determined as follows. First let $\overline{P}_i \cap \overline{P}_j$ lie in the hyperplane H_{ij} given by

$$\langle w_{ij}, x \rangle = c_{ij} \tag{2.4}$$

for some constant c_{ij} . Then if $x_0 \in H_{12}, \tau_1(x_0)$ is given implicitly by

$$\langle w_{12}, e^{A_1 \tau_1(x_0)} x_0 \rangle = c_{12}$$
 (2.5)

Similarly, $\tau_l(x_0)$ is given implicitly by

$$< w_{l,l+1} , e^{A_l \tau_l(x_0)} e^{A_{l-1} \tau_{l-1}(x_0)} \dots e^{A_1 \tau_1(x_0)} x_0 > = c_{l,l+1}.$$
 (2.6)

and so the τ 's can be determined recursively. Note, however, that we can only write these implicit relations and so the conditions in corollary 2.1 must be checked numerically.

We shall consider next the case where the A_i matrices do not commute. For this we shall require the Campbell-Hausdorff formula given by the following result(Varadarajan 1974):

Lemma 2.1 If $A, B \in \mathbb{R}^n$, then we have

$$exp A exp B = exp C(A:B)$$
,

where

+ 1

$$C(A:B) = \sum_{n=1}^{\infty} c_n(A:B) \quad ,$$

and c_n is given recursively by

$$c_{0}(A:B) = 0$$

$$c_{1}(A:B) = A+B ,$$

$$(m+1)c_{m+1}(A:B) = \frac{1}{2}[A-B, c_{m}(A:B)]$$

$$+ \sum_{p \ge 1, 2p \le m} K_{2p} \sum_{\substack{k_{1}, \dots, k_{2p} > 0 \\ k_{1} + \dots + k_{2p} = m}} [c_{k_{1}}(A:B), [\dots [c_{k_{2p}}(A:B), A+B] \dots]] (2.7)$$

Here the coefficients K_{2p} are defined by the power series expansion

$$\frac{z}{1 - e^{-z}} - \frac{1}{2}z = 1 + \sum_{p=1}^{\infty} K_{2p} z^{2p} \qquad \Box$$

It will be convenient to write $c_n(A:B)$ in a different form as follows. Note that $c_n(A:B)$ is a linear combination of n^{th} order Lie monomials where the multiplication is Lie bracket multiplication A.B = [A, B]. (This multiplication is neither associative nor commutative.) We can therefore write

$$c_n(A:B) = \sum_{i+j=n} p_{n,i,j}(A,B)$$
, $n \ge 2$ (2.8)

where $p_{n,i,j}(A, B)$ is a homogeneous Lie polynomial of order n which has i A factors and j B factors. Of course,

$$p_{n,n,0}(A,B) = p_{n,0,n}(A,B) = 0.$$

Thus, by lemma 2.1 we have, for example,

$$c_{2}(A:B) = p_{2,2,0}(A,B) + p_{2,1,1}(A,B) + p_{2,0,2}(A,B)$$
$$= [A,A] + \frac{1}{2}[A,B] + [B,B]$$
$$= \frac{1}{2}[A,B] ,$$

and

$$c_{3}(A:B) = \frac{1}{12}[A, [A, B]] - \frac{1}{12}[B, [A, B]]$$
$$= p_{3,2,1}(A, B) + p_{3,1,2}(A, B).$$

In general, we have

Lemma 2.2 If $A_1, \ldots, A_m \in \mathbb{R}^{n^2}$, then we have

$$\prod_{i=1}^{m} (exp A_i) = exp C(A_1 : A_2 : \ldots : A_m)$$

where

$$C(A_1:A_2:\ldots:A_m)=\sum_{n=1}^{\infty}c_n(A_1:\ldots:A_m)$$

and

$$c_n(A_1:\ldots:A_m)=\sum_{i_1+\ldots+i_m=n}p_{n,i_1,\ldots,i_m}(A_1,\ldots,A_m)$$

Here $p_{n,i_1,\ldots,i_m}(A_1,\ldots,A_m)$ is a homogeneous Lie polynomial of order n.

In the general non-commutative case, therefore, the solution (2.3) of our piecewise-linear system becomes

$$\begin{aligned} x(t) &= e^{A_k \tau_k} \dots e^{A_1 \tau_1} x_0 \\ &= exp\left(C\left(\tau_k A_k : \dots : \tau_1 A_1\right)\right) x_0 \end{aligned}$$

and we have the following generalization of proposition 2.1

Theorem 2.1 A limit cycle will exist in system (2.1) in the sequence of polytopes $P_1, P_2, \ldots, P_k, P_1$ if the times τ_1, \ldots, τ_k and the matrices A_1, \ldots, A_k satisfies the condition

$$-2\pi j \quad or \quad 2\pi j \in \sigma \left(C \left(\tau_k A_k : \ldots : \tau_1 A_1 \right) \right). \quad \Box$$

Note that

$$C(\tau_k A_k : \dots : \tau_1 A_1) = \tau_1 A_1 + \dots + \tau_k A_k + \sum_{n=2}^{\infty} \sum_{i_1 + \dots + i_k = n} \tau_1^{i_1} \dots \tau_k^{i_k} p_{n, i_1, \dots, i_k} (A_1, \dots, A_k)$$

since $p_{n,i_1,...,i_k}$ is a homogeneous Lie polynomial.

Corollary 2.2 Let $\mathcal{L} = \mathcal{L}(A_1, \ldots, A_k)$ denote the Lie algebra generated by A_1, \ldots, A_k . If \mathcal{L} is nilpotent with class of nilpotency N then a limit cycle exists if

$$-2\pi j \text{ or } 2\pi j \in \sigma \left(\tau_1 A_1 + \ldots + \tau_k A_k + \sum_{n=2}^N \sum_{i_1 + \ldots + i_k = n} \tau_1^{i_1} \ldots \tau_k^{i_k} p_{n, i_1, \ldots, i_k} \left(A_1, \ldots, A_k\right)\right) \square$$

3 Bifurcation conditions

Consider next the system

$$\dot{x} = A_1(\mu)x \qquad , \quad x \in P_1$$

$$\vdots \qquad (3.1)$$

$$\dot{x} = A_m(\mu)x \qquad , \quad x \in P_m$$

which is similar to that given by (2.1) except that A_1, \ldots, A_m now depend on a parameter μ . We shall consider the problem of bifurcation from a periodic orbit. Again we shall begin by assuming that the matrices $A_i(\mu)$, $1 \le i \le m$ all commute in order to see clearly the nature of the bifurcation conditions. Let the solution of (3.1) with initial value x_0 be written

$$x(t) = \phi_t(x_0, \mu)$$

Then a periodic point x_0 satisfies

$$x_0 = \phi_t(x_0, \mu). \tag{3.2}$$

A bifurcation can occur at a value μ where the equation (3.2) has multiple solutions. Thus, a bifurcation can occur if

$$det\left[I - \frac{\partial}{\partial x_0}\phi_t(x_0, \mu)\right] = 0.$$
(3.3)

If the matrices $A_i(\mu)$, $1 \le i \le m$ and the initial point x_0 satisfy the conditions of corollary 2.1 then x_0 will lie on a periodic orbit. Condition (3.3) for a bifurcation becomes

$$det\left[I - \frac{\partial}{\partial x_0} exp\left[\sum_{i=1}^k A_i(\mu)\tau_i\right]x_0\right] = 0$$

Now,

$$\frac{\partial}{\partial x_0} exp\left[\sum_{i=1}^k A_i(\mu)\tau_i\right] x_0 = exp\left[\sum_{i=1}^k A_i(\mu)\tau_i\right] \\ + \sum_{i=1}^k exp\left[\sum_{l=1}^k A_l(\mu)\tau_l\right] A_i(\mu)x_0\frac{\partial \tau_i}{\partial x_0}$$

Hence we have the following result:

Lemma 3.1 If x_0 is a periodic point for the system (3.1) (with a given parameter μ), then it is also a bifurcation point for the existence of new periodic orbits if, for the same parameter μ , we have

$$0 \in \sigma \left(I - exp\left[\sum_{i=1}^{k} A_i(\mu)\tau_i\right] - \sum_{i=1}^{k} exp\left[\sum_{l=1}^{k} A_l(\mu)\tau_l\right] A_i(\mu)x_0 \frac{\partial \tau_i}{\partial x_0} \right) \quad \Box \quad (3.4)$$

If x_0 is a periodic point and we consider the map which follows the periodic trajectory for two orbits then we obtain the solution

$$x_0 = exp\left(2\sum_{i=1}^k A_i(\mu)\tau_i\right)x_0$$

(assuming again that the A_i 's commute). In order for this 'trivial' doubly periodic orbit to bifurcate into other periodic doubling maps we require, as in lemma 3.1, the condition

$$0 \in \sigma \left(I - exp \left[2\sum_{i=1}^{k} A_i(\mu)\tau_i \right] - 2\sum_{i=1}^{k} exp \left[2\sum_{l=1}^{k} A_l(\mu)\tau_l \right] A_i(\mu)x_0 \frac{\partial \tau_i}{\partial x_0} \right)$$
(3.5)

This is the condition for a periodic doubling bifurcation. Higher order bifurcation can be determined similarly.

For the noncommutative case we require the well-known formula(Miller 1972)

$$\frac{d}{dt}exp\left(A(t)\right) = exp\left(A(t)\right)f\left(Ad\ A(t)\right)\left(\dot{A}(t)\right)$$
(3.6)

where

. 3

$$f(z) = \frac{1 - e^{-z}}{z} = 1 - \frac{z}{2!} + \frac{z^2}{3!} + \dots$$

and

$$(Ad A)B = [A, B]$$

In section 2 it was shown that the solution of system (2.3) is given by

$$x(t) = exp(C(\tau_k A_k : \ldots : \tau_1 A_1)) x_0 , t = \sum_{i=1}^k \tau_i$$

Put

$$g(\tau_k,\ldots,\tau_1)=C(\tau_kA_k:\ldots:\tau_1A_1).$$

Then

$$x(t) = exp(g) x_0 ,$$

where we shall omit explicit reference to τ_k, \ldots, τ_1 . Thus,

$$\frac{\partial x(t)}{\partial x_{0j}} = (exp(g))_j + exp(g) \left\{ f(Ad \ g) \sum_{l=1}^k \frac{\partial g}{\partial \tau_l} \frac{\partial \tau_l}{\partial x_{0j}} \right\} x_0$$

by (3.6) where $(B)_j$ denotes the j^{th} column of the matrix B. Generalizing (3.4) and (3.5) we therefore have

Theorem 3.1 If x_0 is a periodic point for the system (3.1) for the parameter μ , then it is also a bifurcation point for that μ if

$$0 \in \sigma \left(I - exp(g) - \sum_{l=1}^{k} exp(g) \left\{ f(Ad \ g) \frac{\partial g}{\partial \tau_l} \frac{\partial \tau_l}{\partial x_0} \right\} x_0 \right)$$
(3.7)

Similarly, μ is a periodic doubling bifurcation point if

$$0 \in \left(I - exp(g_2) - \sum_{l=1}^{k} exp(g_2) \left\{ f(Ad \ g_2) \frac{\partial g_2}{\partial \tau_l} \frac{\partial \tau_l}{\partial x_0} \right\} x_0 \right) , \qquad (3.8)$$

where

$$g_2(t_{2k},\ldots,t_{k+1},t_k,\ldots,t_1) = C(t_{2k}A_k:\ldots:t_{k+1}A_1:t_kA_k:\ldots:t_1A_1)$$

and g_2 is evaluated at $(t_{2k}, ..., t_{k+1}, t_k, ..., t_1) = (\tau_k, ..., \tau_1, \tau_k, ..., \tau_1)$ in (3.8). \Box

Recall that

$$g(\tau_k, \dots, \tau_1) = \tau_1 A_1 + \dots + \tau_k A_k + \sum_{n=2}^{\infty} \sum_{i_1 + \dots + i_k = n} \tau_1^{i_1} \dots \tau_k^{i_k} p_{n, i_1, \dots, i_k} (A_1, \dots, A_k)$$

and so

$$\frac{\partial g}{\partial \tau_l} = A_l + \sum_{n=2}^{\infty} \sum_{i_1+\ldots+i_k+n} i_l \tau_1^{i_1} \ldots \tau_l^{i_l-1} \ldots \tau_k^{i_k} p_{n,i_1,\ldots,i_k}(A_1,\ldots,A_k).$$

The derivatives $\partial \tau_l / \partial x_0$ can be found in the following way.

Consider first τ_1 , and suppose that $\partial P_1 \cap \partial P_2$ lies in the hyperplane H_1 defined by the equation

$$w_{12} x = c_{12}$$

for some row vector w_{12} and a constant c_{12} . Then

$$w_{12} e^{A_1 \tau_1} x_0 = c_{12}$$

by definition of τ_1 and so

$$w_{12}A_1\frac{\partial \tau_1}{\partial x_{0i}} e^{A_1\tau_1} x_0 + (w_{12} e^{A_1\tau_1})_i = 0$$

Hence,

$$\frac{\partial \tau_1}{\partial x_{0i}} = -\left(w_{12} \ e^{A_1 \tau_1}\right)_i / w_{12} A_1 \ e^{A_1 \tau_1} \ x_0 \ .$$

Note that

$$w_{12}A_1 e^{A_1\tau_1} x_0 = w_{12} \dot{x}(\tau_1)$$

and $\dot{x}(\tau_1)$ is not parallel to H_1 , so that $w_{12}A_1e^{A_1\tau_1}x_0 \neq 0$.

Similarly, we have

$$w_{12} e^{A_2 \tau_2} e^{A_1 \tau_1} x_0 = c_{12}$$

where $\partial P_2 \cap \partial P_3$ lies in the hyperplane H_2 defined by

$$w_{23} \ x = c_{23}$$

Thus,

$$\frac{\partial \tau_2}{\partial x_{0i}} = \frac{\left\{-w_{23}e^{A_2\tau_2}A_1\frac{\partial \tau_1}{\partial x_{0i}}e^{A_1\tau_1}x_0 - \left(w_{23}e^{A_2\tau_2}e^{A_1\tau_1}\right)_i\right\}}{w_{23}A_2e^{A_2\tau_2}e^{A_1\tau_1}x_0}$$

In general, $\partial au_k / \partial x_{0i}$ can be obtained from the equation

$$w_{k,k+1} e^{A_k \tau_k} \dots e^{A_1 \tau_1} x_0 = c_{k,k+1}$$

where $H_k: w_{k,k+1} x = c_{k,k+1}$ contains $\partial p_k \cap \partial p_{k+1}$ (where $p_{k+1} = p_1$ if k = m).

4 Limit Cycles and Bifurcation in Piecewise-

Analytic Systems

In this section we shall consider systems defined by piecewise-analytic equations of the form

$$\dot{x} = f_1(x) , \quad x \in D_1$$

$$\vdots \qquad (4.1)$$

$$\dot{x} = f_m(x) , \quad x \in D_m$$

where

. .

The functions $f_i(x)$ and the boundaries ∂D_i are assumed to be analytic. Consider first the case m=1, so that we have a single equation

$$\dot{x} = f(x) \quad , \qquad x(0) = x_0 \tag{4.2}$$

the existence of limit cycles by a global linearization technique has been studied by Banks (1988). Here we shall use a similar technique, based on the Lie series (Banks 1989).

Equation (4.2) has solution given by(see Steinberg 1984)

$$x(t) = exp\left[t\sum_{i=1}^{n} f_i(x_0)\frac{\partial}{\partial x_{0i}}\right] x_0$$
(4.3)

In order to evaluate the solution (4.3) explicitly we must rewrite each term of the form

$$\left(f_1(x_0)\frac{\partial}{\partial x_{01}} + \ldots + f_n(x_0)\frac{\partial}{\partial x_{0n}}\right)^k \tag{4.4}$$

so that the derivations all appear on the right of the of the f's in an expansion of (4.4). We start with

Lemma 4.1 Let X be some set and let R be a ring of operators on X such that $X \in R$ and R is generated by X and $\{b_1, \ldots, b_n\}$, where $b_i \neq X$, $1 \leq i \leq n$. Suppose that for $x \in X$ and $c \in R$ we have

$$b_i(x \ c) = (b_i \ x)c + x(b_i \ c) \ , \tag{4.5}$$

where $(b_i x) \in X$.

Then any element $r \in R$ of the form

$$r_k = a_{i_k} b_{i_k} a_{i_{k-1}} b_{i_{k-1}} \dots a_{i_2} b_{i_2} a_{i_1} b_{i_1}$$

can be written

$$r_{k} = a_{i_{k}}[b_{i_{k}}, a_{i_{k-1}}[b_{i_{k-1}}, a_{i_{k-2}}[\dots [b_{i_{2}}, a_{i_{1}}] \dots]]]b_{i_{1}} + r'_{k}$$

where r'_k consists of terms with at least two b_{il} 's on the right, and

$$[b_k, a_k] = b_k a_k - a_k b_k \in X \qquad \Box$$

Proof. By induction. The result is true for k = 1. For k = l we have

$$\begin{aligned} r_l &= a_{i_l}[b_{i_l}, a_{i_{l-1}}[b_{i_{l-1}}, a_{i_{l-2}}[\dots [b_{i_2}, a_{i_1}] \dots]]]b_{i_1} + r'_l \\ &= a'b_{i_1} + r'_l , \text{ say,} \end{aligned}$$

and so, for k = l + 1, we have

$$r_{l+1} = a_{i_{l+1}} b_{i_{l+1}} r_l$$

$$= a_{i_{l+1}} b_{i_{l+1}} (a' b_{i_1}) + a_{i_{l+1}} b_{i_{l+1}} r'_l$$

$$= a_{i_{l+1}} (b_{i_{l+1}} a') b_{i_1} + a_{i_{l+1}} a' b_{i_{l+1}} b_{i_1} + a_{i_{l+1}} b_{i_{l+1}} r'_l$$

$$= a_{i_{l+1}} [b_{i_{l+1}}, a'] b_{i_1} + r'_{l+1} ,$$

by (4.5). The result now follows.

Let $X = \mathcal{O}(x)$ be the local ring of analytic functions on \mathbb{R}^n and let R be the ring of operators generated by $\mathcal{O}(x)$ and $\{\partial/\partial x_1, \ldots, \partial/\partial x_n\}$. Then we can have

Lemma 4.2 If $a_1, \ldots, a_n \in \mathcal{O}(x)$, then any element of R of the form

$$r_{k} = a_{i_{k}} \frac{\partial}{\partial x_{i_{k}}} a_{i_{k-1}} \frac{\partial}{\partial x_{i_{k-1}}} \dots a_{i_{2}} \frac{\partial}{\partial x_{i_{2}}} a_{i_{1}} \frac{\partial}{\partial x_{i_{1}}}$$

can be written in the form

$$r_{k} = a_{i_{k}} \frac{\partial}{\partial x_{i_{k}}} \left(a_{i_{k-1}} \frac{\partial}{\partial x_{i_{k-1}}} \left(a_{i_{k-2}} \frac{\partial}{\partial x_{i_{k-2}}} \left(\dots \frac{\partial}{\partial x_{i_{2}}} a_{i_{1}} \right) \dots \right) \right) \frac{\partial}{\partial x_{i_{1}}} + r'_{k}$$

where r'_k contains terms with derivation of order at least 2.

Proof. This follows directly from lemma 4.1 since

$$b_k a_k = [b_k, a_k] + a_k b_k$$

and if $b_k = \partial/\partial x_k$, we have

$$[b_k, a_k] = \frac{\partial a_k}{\partial x_k} \qquad \Box$$

Lemma 4.3 The solution (4.3) of the system (4.2) is given explicitly by

$$x(t) = x_0 + \sum_{k=1}^{\infty} \frac{t^k}{k!} \left\{ \sum_{i_k=1}^n \dots \sum_{i_1=1}^n f_{i_k} \frac{\partial}{\partial x_{i_k}} \left(f_{i_{k-1}} \frac{\partial}{\partial x_{i_{k-1}}} \left(\dots \frac{\partial f_{i_1}}{\partial x_{i_2}} \right) \dots \right) (\delta_{i_1 j}) \right\} |_{x=x_0}$$

$$(4.6)$$

$$where (\delta_{i_1 j}) \text{ is the vector } (0, \dots, 0, \stackrel{i_1}{1}, \dots, 0) \qquad \Box$$

<u>**Remark**</u>. The terms of the form

$$\xi_k \triangleq \sum_{i_k=1}^n \dots \sum_{i_1=1}^n f_{i_k} \frac{\partial}{\partial x_{i_k}} \left(f_{i_{k-1}} \frac{\partial}{\partial x_{i_{k-1}}} \left(\dots \frac{\partial f_{i_1}}{\partial x_{i_2}} \right) \dots \right) (\delta_{i_1 j}) \mid_{x=x_0}$$

in (4.6) can be obtained recursively by

$$\xi_1 = \sum_{i_1=1}^n f_{i_1}(x_0) (\delta_{i_1 j_1})$$

$$\xi_{k+1} = \sum_{i_{k+1}=1}^n f_{i_{k+1}}(x_0) \frac{\partial}{\partial x_{i_{k+1}}} \xi_k |_{x=x_0} ,$$

and then

$$x(t) = x_0 + \sum_{k=1}^n \frac{t^k}{k!} \xi_k \qquad \Box$$

Define

$$\mathcal{G}_{f}^{l}(x_{0},t) = \sum_{k=1}^{l} \frac{t^{k}}{k!} \left\{ \sum_{i_{k}=1}^{n} \dots \sum_{i_{1}=1}^{n} f_{i_{k}} \frac{\partial}{\partial x_{i_{k}}} \left(f_{i_{k-1}} \frac{\partial}{\partial x_{i_{k-1}}} \left(\dots \frac{\partial f_{i_{1}}}{\partial x_{i_{2}}} \right) \dots \right) (\delta_{i_{1}j}) \right\} |_{x=x_{0}}$$

and put

$$\mathcal{G}_f(x_0,t) = \mathcal{G}_f^\infty(x_0,t) \; .$$

Then, by (4.6),

$$x(t) = x_0 + \mathcal{G}_f(x_0, t) .$$
(4.7)

Note that if f is a polynomial function, then $\mathcal{G}_{f}^{l}(x_{0})$ is a polynomial in x_{0} and t of order at most l(m-1) + 1 where m is that maximum of the order of f_{1}, \ldots, f_{n} (in x_{1}, \ldots, x_{n}). From (4.7) we have

Theorem 4.1 The equation (4.2) has a limit cycle if there exists a vector x_0 and a number $\tau > 0$ such that

$$\mathcal{G}_f(x_0,\tau) = 0 \qquad \Box$$

Corollary 4.1 The equation (4.2) has a limit cycle if there exist sequences $x_0(i) \in C^n, \ \tau_i \in \mathbb{R}$ such that

$$x_0(i) \longrightarrow x_0 \in \mathbb{R}^n$$
, $\tau_i \longrightarrow \tau > 0$ and
 $\mathcal{G}^i_f(x_0(i), \tau_i) = 0$,
 $\mathcal{G}_f(x_0, \tau) = 0$

Proof. This follows from the analyticity of the solutions of (4.2). \Box **Remark**. Corollary 4.1 suggests a numerical procedure for finding limit cycles. For example, if n = 2 and we set $x_0(i) = (x_{01}(i), 0)$, then we solve the pair of polynomial equations (in the case where f is polynomial)

$$\mathcal{G}_{f}^{i}((x_{01}(i),0),\tau_{i})=0$$

of order at most i(m-1) + 1. Note that $x_0 + \mathcal{G}_f((x_{01}, 0), \tau)$ is the Poincaré' return map for the x_1 axis. \Box

Once a limit cycle with parameters x_0 and τ has been determined, bifurcation from this limit cycle are determined as before. Thus we have **Theorem 4.2** The equation (4.2) is critical for bifurcation to a double period oscillation if it has a limit cycle with parameter x_0 and τ and

$$det\left(\frac{\partial}{\partial x_0}\mathcal{G}_f(x_0,\tau)\right) = 0 \qquad \Box \qquad (4.8)$$

Note that $\frac{\partial}{\partial x_0} \mathcal{G}_f(x_0, \tau)$ has $(i, j)^{th}$ element

1

$$\sum_{k=1}^{\infty} \frac{t^k}{k!} \left\{ \sum_{i_k=1}^n \dots \sum_{i_1=1}^n \frac{\partial}{\partial x_i} \left(f_{i_k} \frac{\partial}{\partial x_{i_k}} \left(f_{i_{k-1}} \frac{\partial}{\partial x_{i_{k-1}}} \left(\dots \frac{\partial f_{i_1}}{\partial x_{i_2}} \right) \dots \right) \right) (\delta_{i_1 j}) \right\} |_{x=x_0}$$

Again the condition (4.7) may be replaced by the condition

$$\lim_{k\to\infty} det \left(\frac{\partial}{\partial x_0}\mathcal{G}_f^{\infty}(x_0,\tau)\right) = 0.$$

Consider finally the general piecewise-analytic system (4.1). For simplicity we shall suppose m = 2, i.e. there are just two regions, the general case is dealt with similarity. We have seen that the solution of (4.1) with $x_0 \in \partial D_1 \cap \partial D_2$ such that the solution remains in D_1 for time τ_1 and in D_2 for time τ_2 is given by

$$x(t) = x_0 + \mathcal{G}_{f_1}(x_0, \tau_1) + \mathcal{G}_{f_2}(x_0 + \mathcal{G}_{f_1}(x_0, \tau_1), \tau_2)$$

Hence a limit cycle is given by the condition

$$\mathcal{G}_{f_1}(x_0,\tau_1) + \mathcal{G}_{f_2}(x_0 + \mathcal{G}_{f_1}(x_0,\tau_1),\tau_2) = 0$$

If this equation has a nontrivial solution (x_0, τ_1, τ_2) then the condition for a periodic doubling bifurcation is

$$det\left[\frac{\partial}{\partial x_0}\mathcal{G}_{f_1}(x_0,\tau_1)+\frac{\partial}{\partial x_0}\mathcal{G}_{f_2}(x_0+\mathcal{G}_{f_1}(x_0,\tau_1),\tau_2)\right]=0$$

i.e.

$$det[\partial_1 \mathcal{G}_{f_1}(x_0,\tau_1) + \frac{\partial}{\partial \tau_1} \mathcal{G}_{f_1}(x_0,\tau_1) \frac{\partial \tau_1}{\partial x_0} + \partial_1 \mathcal{G}_{f_2}(x_0 + \mathcal{G}_{f_1}(x_0,\tau_1),\tau_2)(I + \partial_1 \mathcal{G}_{f_1}(x_0,\tau_1) + \partial_2 \mathcal{G}_{f_1}(x_0,\tau_1) \frac{\partial \tau_1}{\partial x_0}) + \partial_2 \mathcal{G}_{f_2}(x_0 + \mathcal{G}_{f_1}(x_0,\tau_1),\tau_2) \frac{\partial \tau_2}{\partial x_0}] = 0$$

where ∂_1, ∂_2 denote partial derivatives with respect to the first and second variables. This derivatives in this equation can be evaluated explicitly from the expression for \mathcal{G}_f above.

5 Conclusions

In this paper we have developed some explicit relations for the existence of limit cycles and periodic doubling bifurcation in piecewise-linear and piecewiseanalytic systems. The expressions have been obtained by Lie series methods and result in complex equations which can only be applied numerically. In a companion paper(Banks and Khathur 1989), to appear shortly, we shall examine some efficient computational algorithms for solving these equations.

6 References

S. P. Banks, 1988. Mathematical Theories of Nonlinear Systems, Printice-Hall.

S. P. Banks, 1989. 'Global Linear Representation of Nonlinear Systems and Adjoint Map'to appear in Int. J. of Control.

S. P. Banks and S. A. Khathur, 1989. 'On the structure and Control of Piecewise-Linear Systems'to appear in Int. J. Control.

S. P. Banks and S. A. Khathur, 1989. 'Limit Cycles and Bifurcation in Piecewise-Linear and Piecewise-Analytic Systems: II.Numerical Algorithms'to appear.

J. Guckenheimer and P. Holmes, 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer-Verlag.

G. Iooss and D. D. Joseph, 1980. Elementary Stability and Bifurcation Theory, Springer-Verlag.

L. O. Chua, M. Komuro and T. Matsumoto, 1986. 'The Double Scroll Fam-

ily'IEEE Trans. on Cct. Sys., Vol. CAS, No.11, Nov. 1983.

W. Miller, Jr., 1972. Symmetry Groups and their Applications, Academic Press.

S. Steinberg 1984. 'Lie Series and Nonlinear Differential Equations' J. Math. Anal. Apps, 101, 39-63, 1984.

V. S. Varadarajan, 1974. Lie Groups, Lie Algebras and their Representations, Printice-Hall.