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We investigate the effect of substrate thickness on the transmission bandwidth of on-chip terahertz-

frequency-range planar Goubau lines both experimentally and theoretically.  The bandwidth and 

frequency resolution are improved through substrate thinning and geometry modifications (reducing 

reflections arising from the THz photoconductive generators and detectors).  We demonstrate that the 10 

enhanced bandwidth (2 THz) and resolution (3.75 GHz) allows this type of on-chip waveguide to be used 

for spectroscopic measurements of polycrystalline materials from cryogenic (4 K) to room temperature 

(292 K) by recording vibrational absorption spectra from overlaid samples of lactose monohydrate.

Introduction 

 Free-space terahertz frequency time-domain spectroscopy 15 

(THz-TDS) has been widely used for the spectroscopic study of 

polycrystalline materials in the frequency range 0.3 – 10 THz, 

with fingerprint spectra being used to detect and identify different 

explosives,1 drugs of abuse,1 and pharmaceutical compounds,2 as 

well as study polymorphic changes in crystalline structures.2, 3  20 

 However, free space THz-TDS suffers from a diffraction-

limited spatial resolution.  It also has a limited frequency 

resolution (typically tens of GHz, set by reflections in the 

emitter/detector crystals),4 and generally requires a purged 

environment to remove atmospheric water vapour from the THz 25 

beam-path, which otherwise absorbs strongly.5  On-chip systems 

have been developed to address these issues (i.e. removing the 

need for purging, providing an improved frequency resolution 

and, by confining the evanescent field to a defined area, 

improving the spatial resolution). 30 

 Of the three more commonly used on-chip geometries 

(microstrip-line (MSL),6 coplanar waveguide (CPW)7 and planar 

Goubau lines (PGL)), the greater evanescent field extent8 of 

PGLs make them better suited for spectroscopic applications 

owing to stronger interaction with overlaid materials. However, 35 

PGLs have so far been limited to a maximum operational 

frequency of < 800 GHz for a 1-mm-long transmission line.9  As 

few spectral resonances are known to occur within this frequency 

range, these devices have limited application for spectroscopy.  

Conversely, the increased bandwidth of MSL and CPW devices 40 

(~ 1.2 THz and ~ 2 THz, respectively) 6,7 is offset by the limited 

extent of the associated evanescent field. 

 Notwithstanding the bandwidth limitations in previous PGL 

structures, the extensive evanescent field has been used for 

probing overlaid polycrystalline material and liquid samples 45 

guided over the PGL using microfluidics.10  Similar to CPWs and 

 
Fig. 1 (a) Cross section of the PGL; the radial electric field pattern is 

highlighted by vector arrows whose lengths correspond to r of equation 2. 

(b) Electric field pattern along the long axis of the PGL (electric field 50 

vectors denoted by arrows; areas of highest electric field magnitude are 

denoted by the grey cloud).  The field lines emerge and terminate on the 

centre conductor.  Substrate thicknesses (A) and (B) correspond to before 

and after substrate thinning, respectively.  

MSLs, PGL devices are compact, enabling them to be cooled 55 

conveniently to cryogenic temperatures for narrow line-width 

spectroscopic measurements.11, 12 

 In this letter, we demonstrate how substrate thinning and 

optimisation of the device geometry can enhance significantly the 

PGL bandwidth and frequency resolution, allowing this type of 60 

on-chip PGL waveguide to be used for practical spectroscopic 

applications over a wide temperature range (4 – 292 K). 

Theory 

 The propagation of THz radiation along a typical PGL (length 

1.5 mm, conductor width 5 µm and 0.5 µm thickness) was 65 

simulated using a numerical Maxwell-solver (Ansoft HFSS).  

This allows the electric field distribution around the waveguide to 

be calculated, which is necessary to optimise the geometry for 

spectroscopic applications. The mesh size was set for a 

convergence frequency of 1.05 THz (the mean mesh element size 70 

corresponded to 0.063 × wavelength (λ), where corresponds to 

1.05 THz), which allows the frequency range 100 GHz – 1 THz  
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Fig. 2 Main figure: A comparison of the effective permittivity of an 

unloaded PGL on a quartz substrate as a function of thickness, calculated 

using HFSS (dashed line) and equation 1 (solid line).  Inset: Schematic 

plan view of the geometry of the active region of the device used, with 5 

white areas representing metallization (20/200 nm, Ti/Au) on the (black) 

quartz substrate; grey areas represent the 350-nm-thick LT-GaAs PC 

switches; the centre conductor was 1.5 mm long between the PC switches 

(pair on right labelled) and 5 μm wide (marked w) in the PGL section.  

One of the six 25-mm-long probe arms is indicated. 10 

to be modelled.  The instantaneous electric field lines were found 

to be radial along the transmission line (Fig. 1(a)), with the field 

lines emerging and terminating along the long axis of the PGL 

conductor (Fig. 1(b)).  The magnetic field lines were found to be 

distributed circularly around the PGL. 15 

 A simple analytical model of the effect of substrate thickness 

can be obtained by assuming that the field lines are perfectly 

radial, with half of the field lines located above the substrate 

surface and the remainder below the surface (noting that this 

assumption is very close to the more precise HFSS simulation 20 

results).  This allows the effective permittivity of the transmission 

line to be calculated by taking the average relative permittivity of 

the area enclosed by the electric field: 

       
  (       ( ))   (       ( ))

   
  (1) 

where 25 

          (
 

 
) (2) 

ε1 is the relative permittivity of the superstrate, ε2 is the relative 

permittivity of the substrate (for quartz ε2 = 3.78), h is the 

thickness of the substrate, and r is the radius of the evanescent 

field.  The radius r can be taken as the effective extent of the 30 

evanescent field in air, which has been found experimentally to 

be ~ 100 μm through load testing of quarter wavelength stub 

filters on PGLs.9  In Fig. 2, we compare the results obtained by 

this simple treatment with the more exact numerical simulation 

results obtained using HFSS.  Both sets of results show the 35 

expected reduction in effective permittivity of the PGL for 

substrates thinner than 100 µm (i.e. the expected extent of the 

evanescent field).  The small discrepancy between the two results 

is likely to be caused by a scaling error introduced by the 

assumption of a uniform field in the analytical calculation. 40 

 

 
Fig. 3 Main figure: Frequency spectra of unloaded PGLs for two different 

substrate thicknesses (dotted = 500 μm; solid = 85 μm) showing the 

increase in bandwidth for thinner substrates. Inset: Magnified schematic 45 

plan view of the PC switches and CPW – PGL transition. White areas 

represent the metallization on the (black) quartz and the (grey) LT-GaAs. 

The probe arms are labelled a and b. Input pulse measurements are 

performed by generating with a and detecting with b. 

Experimental  50 

 Experimental results were obtained on identical geometry 

PGLs.  Devices were fabricated on 500-μm-thick, double-side 

polished quartz, to which a 350-nm-thick low-temperature-grown 

(LT) GaAs layer was attached using van der Waals bonding.13  

Specifically, LT-GaAs was grown by molecular beam epitaxy at 55 

200 °C, with a 15 minute ex situ anneal at 500 °C to increase the 

device resistivity, and minimise the photocarrier lifetime.14  The 

LT-GaAs layer was formed on top of a 100-nm-thick release 

layer of AlAs, itself grown on a GaAs substrate.  Following 

growth, the LT-GaAs layer, supported by wax, was released from 60 

the GaAs substrate by selective etching of the AlAs using dilute 

(10%) HF acid.  The LT-GaAs was then transferred from the 

etchant solution to the polished surface of a quartz chip using the 

wax support.  The LT-GaAs was left on the substrate for one 

week to allow van der Waals bonding to attach the LT-GaAs to 65 

the substrate (no weight was used to compress the LT-GaAs on 

the quartz during this process, since previously this was found to 

lower the device yield by inducing micro-cracking of the LT-

GaAs film).  The wax was then removed in trichloroethylene, and 

the LT-GaAs/quartz bond further enhanced in a vacuum oven (15 70 

hours, 30 mbar, 250 ºC).  Two 70 μm x 70 μm squares were 

etched from the LT-GaAs using a H2SO4:H2O2:H2O solution 

(1:8:950 by volume) to define the base material for the THz pulse 

generation and detection photoconductive (PC) switches (see 

Fig. 2 inset); the dilute solution produces a sloped side-wall 75 

profile in the LT-GaAs, which ensured continuity of metal over-

laying the PC switches (formed from 20/200 nm Ti/Au).  The 

PGL geometry consisted of a 1.5-mm-long and 5-μm-wide PGL, 

with ~ 25-mm-long CPW parasitic arms to remove reflections 

between the PC switches and the bond-wire contact points. The 80 

launch and detection switches were located within the CPW 

parasitic regions (10 μm gap, 30 μm centre conductor).  At the 

CPW / PGL interface, the CPW centre conductor was tapered 
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Fig. 4 Main figure: The effective permittivity of the transmission line (left 

axis) and the time between the main pulse and the reflected pulse arising 

from etalon effects between the PC switches (right axis) as a function of 

the substrate thickness, calculated using the time difference between 5 

peaks A and B in the time-domain traces (inset).  Inset: The normalised 

amplitude time-domain spectra of the transmitted pulse (with successively 

thinner substrates being offset vertically by 0.5 units); a main pulse (A: 0 

ps) and reflected pulse between the switches (B: 14 – 16 ps) are seen.  

The main pulse shows a progressive reduction in FWHM with substrate 10 

thinning, whilst the separation between peaks A and B reduces, reflecting 

a reduced effective permittivity and an increased propagation velocity. 

down to match the 5 μm wide PGL waveguide, and the ground  

planes on either side diverged away from the PGL to excite the 

correct transverse magnetic (TM) mode (inset to Fig. 3). This 15 

method of exciting the PGLs with CPWs was originally designed 

for use with VNAs.15  The devices were then mounted onto a 

printed circuit board (PCB) using wax to allow easy removal of 

the device during subsequent substrate thinning procedures.  

 For measurement, pulses from a Ti:sapphire laser (100 fs 20 

duration, 790 nm centre wavelength, 80 MHz repetition rate and 

10 mW average power) were focused onto a 30 V biased PC 

switch.  The generated THz pulse propagated along the PGL to a 

PC switch located within the second CPW region, onto which an 

optically delayed and chopped (for lock-in detection) Ti:sapphire 25 

laser pulse (average power 10 mW) was focussed, allowing the 

transmitted ‘output’ THz pulse to be measured.  By varying the 

optical path length of the delayed Ti:sapphire pulse using a 

retroflector mounted onto a translation stage, and monitoring the 

transient current at the second PC switch using lock-in detection, 30 

a time-resolved THz pulse signal was recorded.  The input pulse 

generated by the first PC switch was measured by monitoring the 

adjacent region of the PC switch on the opposite side of the 

centre conductor, within the same CPW region (see inset Fig. 3).  

The devices were later removed from the PCB (wax dissolved 35 

using trichloroethylene) and mounted onto a lapping chuck, 

before being thinned using SiC grinding paper (125 μm grit size, 

Buehler).  Each thickness of substrate obtained was measured 

using a micrometer after lapping, before the substrates were 

remounted onto the PCB.  Repeat measurements of the input and 40 

output pulses were thus obtained for a range of substrate 

thicknesses: 500, 250, 195, 180, 110, and 85 μm.   

 The results show that, as the substrate is thinned, the FWHM 

of the input pulse remains unchanged at 1.1 ps, but the amount of 

dispersion in the transmitted pulse decreases, producing a shorter 45 

duration output pulse.  We attribute this to the reduction of the 

Fig. 5 Main figure: Time domain spectra of the input pulse optically 

excited from the top of the substrate where the PGL is located (dotted) 

and through the backside of the substrate (solid line). Inset: Schematic 

plan view of the geometry of the active region of the PGL device without 50 

CPW regions.  White areas represent metallization (20/200 nm, Ti/Au), 

and grey areas representing 350-nm-thick LT-GaAs PC switches; the 

centre conductor was 1mm long between the PC switches and 30 μm wide 

(marked w) in the PGL section.  The device has 11 mm long parasitic 

probe arms similar to that used in the device shown in the inset of Fig. 2. 55 

mismatch of propagation group velocities above and below the 

transmission line.  The initial substrate thickness (500 μm) 

produced a FWHM of 1.8 ps, whereas an 85 μm thickness gave 

1.1 ps, corresponding to a significant increase in bandwidth of the 

output pulse from 600 GHz to 1.5 THz, as shown in Fig. 3 (the 60 

bandwidth is taken as the point at which the amplitude falls by 

98 % in the frequency domain).  The corresponding time-domain 

data shows a secondary peak arising from an etalon effect 

between the two PC switches (inset to Fig. 4; marked B).  If 

included in the Fourier transform of the time-domain data, the 65 

secondary peak introduces etalon oscillations, which interfere 

with the identification of important spectral features.  Therefore, 

all data was truncated before this secondary peak and then 

extended with a zero-pad to give a time-domain spectrum made 

up of 16,384 data points before the Fourier transform was 70 

performed.16 The reflection occurs progressively earlier as the 

substrate is thinned, owing to the increased group velocity of the 

pulse, resulting from a reduction in the effective permittivity of 

the transmission line.  This allows the effective permittivity of the 

transmission line to be calculated using: 75 

      (
  

 
)
 
 (3) 

where c is the speed of light in vacuum, d is the distance travelled 

by the reflected pulse (3 mm for the 1.5-mm-long PGL), and t is 

the time for the pulse to travel distance, d.  The variation of 

effective permittivity with substrate thickness is shown in Fig. 4.  80 

 In order to enhance the frequency resolution of the spectra, the 

CPW regions were removed, and the PGL conductor width made 

continuous (30 µm), eliminating transmission line impedance 

mismatches between the PC switches (see Fig. 5 inset).  The 

resulting, 1-mm-long, PGL device supports only the TM PGL 85 

mode.  The PGL was fabricated on a 500-µm-thick double side 

polished quartz substrate which was then mechanically thinned 

using a Logitech PM5 precision polishing and lapping system to a 
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Fig. 6 Main figure: Spectra (21 GHz resolution) of polycrystalline lactose 

monohydrate at 4 K (solid line) and 292 K (dot) obtained using the PGL, 

plotted against a reciprocal scale (1/amplitude) for clarity.  The same 

lactose monohydrate sample measured using free space spectroscopy at 

room temperature is plotted for comparison (dash) on a logarithmic scale. 5 

All plots are offset for clarity.  Inset: Time-domain data for the 

transmitted pulse at 4 K with overlaid lactose monohydrate.  The vertical 

line marks the truncation point. 

thickness of 50 µm.  The polished surface finish on the thinned 

device facilitates back-side optical excitation of the PC switches, 10 

allowing measured samples to cover the PC switches without 

interfering with THz generation and detection.  A comparison 

between topside and through-substrate laser excitation revealed 

identical pulse shapes, although the latter excitation technique 

resulted in higher THz pulse amplitudes (Fig. 5).  This amplitude 15 

difference is attributed to the gold metallization screening some 

of the laser power when excited from the PGL side, thus reducing 

the photocarrier density.  

 The 50-µm-thick substrate increased further the bandwidth of 

the PGL device to ~2 THz, and the relative amplitude (per unit 20 

length) of the pulse reflection from the PC switches is reduced 

from 4.56 %/mm to 2.35 %/mm.  The reflections arising from the 

PC switches now have negligible influence on the FFT and hence 

do not need to be excluded from the time window, in principal 

increasing the resolution of the spectra to 3.75 GHz.  For a noise 25 

free spectra (such as that shown in Fig. 6 and Fig. 7), however, 

the data does need to be truncated (40 ps after the main pulse) to 

remove transmission line reflections due to corners (radius = 

400 µm) and the short probe arms (11 mm), resulting in an 

overall 21 GHz resolution limit.  These issues can be resolved in 30 

future devices through using longer probe arms and increasing 

the corner radii throughout the device geometry. Nevertheless, 

these observed reflections due to the probe arms do emphasize 

that the transmission has small attenuation and dispersion. 

 Having obtained an increase in bandwidth (to 2 THz) by 35 

substrate thinning and an improved resolution (3.75 GHz through 

a geometry change), the PGL was next used for spectroscopic 

measurements of overlaid polycrystalline materials. A 

comparison between free space THz-TDS and PGL on-chip 

spectroscopy was made using lactose monohydrate; 40 mg of 40 

lactose monohydrate (Fluka) was pressed into a 0.55-mm-thick 

pellet (a thickness greater than the extent of the evanescent field 

above the PGL, to ensure maximum interaction), with a diameter 

of 8 mm, supported by a copper ring.  The sample was measured 

first using a free space THz-TDS arrangement, in which a  45 

Fig. 7 Spectra (21 GHz resolution) of the peak at ~1.4 THz of 

polycrystalline lactose monohydrate at four discrete temperatures; 4 K 

(solid), 100 K (dot), 200 K (dash) and 292 K (dot-dash).  

Ti:sapphire laser (100 fs duration, 790 nm centre wavelength, 

80 MHz repetition rate and 650 mW average power) was used to 50 

excite a photoconductive switch comprising semi-insulating 

GaAs onto which a bowtie antenna was fabricated and biased 

with a 45 V square-wave modulated signal at a frequency of 

10 kHz to allow lock-in detection.  The emitted THz radiation 

was focused by parabolic mirrors onto the pellet.  The radiation 55 

transmitted through the pellet was collected and focused onto a 2-

mm-thick zinc telluride crystal together with a 50 mW optically 

delayed Ti:sapphire laser probe beam for electro-optic detection.1  

The resulting spectrum is shown in Fig. 6 (dashed line).  

 The pressed pellet was then removed from the copper ring and 60 

diced into 1 mm2 samples. The samples were placed securely in 

contact with the PGL, between the PC switches, by placing the 

sample onto the transmission line and pipetting a DI water droplet 

onto sample. The water is absorbed by the sample then 

evaporates away under ambient room conditions leaving the 65 

sample firmly attached to the PGL and ensures that the sample is 

fully in contact.  The PC switches, now obstructed by the analyte, 

were optically excited through the back of the quartz substrate.  

The PGL was then mounted on the cold finger of a 4 K 

continuous flow He cryostat with quartz windows for optical 70 

access.17  

 The PGL and sample were next cooled to 4 K and 

spectroscopic measurements were taken after allowing 30 

minutes for the temperature to equilibrate.  The transmitted pulses 

were recorded in 10 K increments from 10 K to 100 K, and then 75 

in 25 K increments up to room temperature (292 K).  The setup 

was allowed to stabilize for 1.5 hours at each temperature before 

measurements were recorded.  Three scans at each temperature 

were recorded, truncated and zero padded, before a Fourier 

transform was performed and the spectra averaged to improve the 80 

SNR.18  The truncated and zero padded data were compared to 

that of unmodified TDS averaged FFT spectra (3.75 GHz 

resolution) to reveal low amplitude, high frequency noise with the 

same strong spectral peaks.  The resulting spectra were analyzed 

by fitting a single Gaussian to each peak in the 3.75 GHz 85 

resolution spectra of lactose monohydrate; the data here is fitted 

without removing a reference signal from the sample signal. 
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Fig. 8 Peak center position (PCP) as a function of temperature (T) for the 

(a) 0.5 THz and the (b) 1.4 THz peaks of lactose monohydrate with a line 

of fit (1.4 THz only, dotted line) using the fit derived from ref 
19

.  FWHM 

(determined by Gaussian fit) of the (c) 0.5 THz and (d) 1.4 THz peaks as 5 

a function of temperature (T), each with a linear fit and their 

corresponding R value. 

 PGL spectroscopy at 292 K of lactose monohydrate reveals 

two distinct peaks at 0.531 THz and 1.373 THz (Fig. 6).  These 

features correspond well to both experimental (free space and 10 

waveguide spectroscopy) and theoretical work.11, 20, 21  At lower 

temperatures, the SNR of the TDS spectra increases compared to 

the room temperature measurements, which we attribute to a 

reduction in dark current in the PC switches.  As the sample is 

cooled there are also a series of progressive changes in the 15 

spectral features as well as a demonstration of the PGLs ability to 

resolve narrow line-width features (< 10 GHz). 

 The first peak, centered at 0.531 THz shows no appreciable 

shift in frequency (Fig 8a) as a function of temperature, whereas 
the second peak shifts from 1.417 THz (at 4 K) to 1.373 THz (at 20 

292 K) as the temperature is increased (Fig 7 and Fig. 8b), a total 

change of 34 GHz.  This agrees with previous spectroscopic 

results obtained from polycrystalline materials (fitting parameters 

from ref. 19; v0 (peak resonance at 0 K) = 1.418 THz, Tc 

(characteristic temperature) = 140 K, A (equation 25 

constant) = 0.15 GHz/K).   

  ( )        ( 
   ⁄   )⁄  (4) 

 The second peak’s center frequencies correspond well to 

previous experimental work at both temperatures.21  Both peaks 

do, however, exhibit the expected peak broadening with 30 

increasing temperature, with the first peak broadening by 

0.059 GHz/K and the second peak by 0.18 GHz/K  (Figs. 8c, d).  

Conclusion 

 In conclusion, we have shown both theoretically and 

experimentally that lowering the effective permittivity of a PGL, 35 

by reducing the substrate thickness, can enhance significantly the 

bandwidth of the waveguide, owing to a reduction in both the 

attenuation and dispersion of the pulsed signal.  The resolution of 

the spectra was also enhanced by using a geometry which 

allowed direct excitation of the PGL TM mode.  These changes 40 

have increased successfully the PGL bandwidth to 2 THz, with a 

corresponding spectral resolution of 3.75 GHz, making the PGL a 

useful spectroscopic tool in the THz regime.  This enabled the 

PGL geometry to be used for variable temperature measurements, 

which allowed the 0.531 THz peak in polycrystalline lactose-45 

monohydrate to be resolved into a 10 GHz wide peak, 

demonstrating the PGL’s ability to resolve the line-shape and 

precise frequency of spectral features in overlaid polycrystalline 

samples.  Furthermore, the PGL sensor has allowed tracking of 

spectral changes (peak position and shape) of a polycrystalline 50 

sample as a function of temperature. 
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