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A SUBMODULAR OPTIMIZATION APPROACH TO BICRITERIA
SCHEDULING PROBLEMS WITH CONTROLLABLE PROCESSING

TIMES ON PARALLEL MACHINES∗

AKIYOSHI SHIOURA† , NATALIA V. SHAKHLEVICH‡ , AND VITALY A. STRUSEVICH§

Abstract. In this paper, we present a general methodology for designing polynomial-time
algorithms for bicriteria scheduling problems on parallel machines with controllable processing times.
For each considered problem, the two criteria are the makespan and the total compression cost, and
the solution is delivered in the form of the break points of the efficient frontier. We reformulate the
scheduling problems in terms of optimization over submodular polyhedra and give efficient procedures
for computing the corresponding rank functions. As a result, for two of the considered problems we
obtain the first polynomial-time algorithms, while for the third problem we considerably improve the
known running time.
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1. Introduction. In this paper, we study preemptive scheduling problems on
parallel machines with controllable processing times. In the model under consider-
ation, the jobs of set N = {1, 2, . . . , n} have to be processed on parallel machines
M1,M2, . . . ,Mm, where m ≥ 2. Throughout this paper, it is assumed that n ≥ m.
For a job j ∈ N , its processing time p(j) is not given in advance but has to be chosen
by the decision maker from a given interval [l(j), u(j)]. That selection process can
be seen as either compressing (also known as crashing) the longest processing time
u(j) down to p(j) or decompressing the shortest processing time l(j) up to p(j). In
the former case, the value x(j) = u(j)− p(j) is called the compression amount of job
j. Compression may decrease the completion time of job j but incurs additional cost
w(j)x(j), where w(j) is a given nonnegative unit compression cost. The total cost
associated with a choice of the actual processing times is represented by the linear
function W =

∑
j∈N w(j)x(j).

Each job j ∈ N can be given a release date r(j), before which it is not available.
In the processing of any job, preemption and migration are allowed, so that the
processing can be interrupted on any machine at any time and resumed later on,
possibly on another machine. It is not allowed to process a job on more than one
machine at a time, and a machine processes at most one job at a time.
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Given a schedule, let C(j) denote the completion time of job j, i.e., the time at
which the last portion of job j is finished on the corresponding machine. A schedule
is called feasible if the processing of a job j ∈ N takes place no earlier than its release
date r(j). The value Cmax = max{C(j)|j ∈ N} determines the maximum completion
time of all jobs and is called the makespan.

The machines can be either identical, i.e., they have the same speed, or uniform,
i.e., machine Mv has speed sv, 1 ≤ v ≤ m. Without loss of generality, throughout
this paper we assume that the uniform machines are numbered in nonincreasing order
of their speeds, i.e.,

(1) s1 ≥ s2 ≥ · · · ≥ sm.

For some schedule, denote the total time during which a job j ∈ N is processed
on machine Mv, 1 ≤ v ≤ m, by qv(j). Taking into account the speed of the machine,
we call the quantity svq

v(j) the processing amount of job j on machine Mv. It follows
that

p(j) =

m∑
v=1

svq
v(j).

Scheduling problems with controllable processing times have received consider-
able attention since the 1980s; see, e.g., surveys by Nowicki and Zdrza�lka [9] and by
Shabtay and Steiner [13]. The models with controllable processing times have found
applications in supply chain management and scheduling, imprecise computation,
make-or-buy decision making, etc.

Traditionally, in this area two functions determine the quality of a schedule:
(a) total compression cost W given by a linear function

∑
w(j)x(j), and (b) a func-

tion F of the job completion times. The following four types of models are mainly
considered in the literature:

Π1: to minimize W , subject to a bounded value of F ;
Π2: to minimize F , subject to a bounded value of W ;
Π3: to minimize some aggregated function, e.g., a linear combination of W and

F ;
Π4: to minimize both functions W and F , i.e., to determine the set of the Pareto-

optimal solutions.
The problems considered in this paper fall in the category Π4. We need to find the

set of Pareto-optimal solutions defined by the break points of the so-called efficiency
frontier; see [18] for definitions and a state-of-the-art survey of multicriteria schedul-
ing. Recall that a schedule S′ is called Pareto-optimal if there exists no schedule S′′

such that Cmax(S′′) ≤ Cmax(S′) and W (S′′) ≤ W (S′), where at least one of these
inequalities is strict.

Adapting standard notation for scheduling problems by Lawler et al. [7], we
denote a bicriteria problem in the most general setting by Q|r(j), p(j) = u(j) −
x(j), pmtn|(Cmax,W ). Here, in the first field we write Q to define a processing envi-
ronment that consists of m ≥ 2 uniform parallel machines; this parameter is replaced
by P if the machines are identical. In the middle field, the item r(j) implies that the
jobs have individual release dates; this parameter is omitted if the release dates are
equal. We write p(j) = u(j) − x(j) to indicate that the processing times are control-
lable and x(j) is the compression amount of job j to be found. The abbreviation pmtn
is used to point out that preemption is allowed. Finally, in the third field we write
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(Cmax,W ), which means that we are searching for a set of Pareto-optimal solutions
with respect to the two given criteria.

Notice that the bicriteria models are most general and if we know how to solve
the Π4 version of a scheduling model, then we can deduce a solution to any other
single-criterion counterpart, Π1–Π3. The bicriteria models are also most important
since a solution delivers to a decision maker the whole range of options to choose from.
Although the first studies on the Π4 problems date to as early as 1982 [21], positive
results for these problems are still quite rare, as admitted in the survey [13]. Besides,
attempts to handle the bicriteria problems lack a general methodology.

Below we mainly review the previously known results on the bicriteria scheduling
problems (model Π4), as most relevant to this study.

Van Wassenhove and Baker [21], Tuzikov [19], and Hoogeveen and Woeginger [5]
consider various versions of a bicriteria single machine problem with a function F rep-
resenting the maximum completion penalty. The break points of the efficiency frontier
are found by tracking the changes in the structure of a schedule as the processing times
of the jobs change.

A similar method is applied to problem P |u(j)−x(j), pmtn|(Cmax,W ) with iden-
tical parallel machines by Nowicki and Zdrza�lka [10], who obtain an O(n2)-time algo-
rithm.

For problem Q|u(j)−x(j), pmtn|(Cmax,W ) with uniform machines, Nowicki and
Zdrza�lka in [9] describe an approach that allows finding an ε-approximation of the
efficiency frontier in pseudopolynomial O(nm(d − d)/ε) time, where d and d are the
optimal makespan values if all jobs are fully decompressed and fully compressed,
respectively.

A systematic development of a general framework for solving scheduling problems
with controllable processing times via submodular methods has been initiated by
Shakhlevich and Strusevich [14, 15] and further advanced by Shakhlevich, Shioura,
and Strusevich [16] and Shioura, Shakhlevich, and Strusevich [17]. This paper makes
an additional contribution to the development of this approach.

In [14, 15] a number of scheduling problems with controllable processing times
have been formulated in terms of maximization linear programming problems defined
over special polyhedra with submodular constraints. For several models, including
those studied in this paper, the corresponding rank functions of submodular polyhe-
dra have been developed. Still, at that stage, the solution methods developed in those
papers have mainly remained schedule-based and implemented the greedy procedures
of compression or decompression of the processing times of the jobs. The only advan-
tage of the submodular reformulations has been that of an easy justification of the
greedy approach for the whole range of related problems. Prior to [14, 15], researchers
justified the greedy reasoning from the first principles and in a problem-dependent
way. As far as the bicriteria problems are concerned, Shakhlevich and Strusevich [14]
combine submodular and scheduling reasoning to develop an O(n log n) time algo-
rithm for problem P |u(j) − x(j), pmtn|(Cmax,W ), while in [15] they design the first
polynomial-time algorithm for problem Q|u(j)− x(j), pmtn|(Cmax,W ), that requires
O(n log n+nm4) time. While submodular reasoning has been crucial in deriving those
results, its potential was not explored in [14, 15] in depth.

Further advantages of applications of submodular optimization have been demon-
strated in [16]. For the bicriteria problem of minimizing the total compression cost
and the maximum completion penalty F a fast algorithm based on a reformulation in
terms of a maximization linear programming problem over a (parametric) submod-
ular polyhedron intersected with a box has been designed. An important statement
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Table 1

Time complexity of the algorithms.

Machines Release dates Previously known This paper
Identical parallel Zero O(n logn) [14] N/A
Identical parallel Different N/A O(n2 logm)
Uniform parallel Zero O(n logn+ nm4) [15] O(nm logm)
Uniform parallel Different N/A O(n2m)

contained in that paper has become one of the essential tools that is used in all our
subsequent papers, including this study. This statement, quoted below as Theorem 1,
states that a linear programming problem over a submodular polyhedron intersected
with a box can be reduced to a problem defined over a better structured polyhedron,
a so-called base polyhedron with a modified rank function. It is well known that
the resulting problem admits a greedy solution algorithm with the optimal decision
variables written in closed form; see Theorem 2 in section 2.

For the single criterion counterparts (model Π1) of the models considered in this
paper, Shioura, Shakhlevich, and Strusevich [17] develop the fastest known algorithms
based on a submodular reformulation and decomposition. These results are yet to
appear in the form of a journal publication.

In this paper, we continue the line of research that links scheduling with submodu-
lar optimization and present fast algorithms that solve bicriteria problems P |r(j), u(j)−
x(j), pmtn|(Cmax,W ), Q|u(j) − x(j), pmtn|(Cmax,W ), and Q|r(j), u(j) − x(j),
pmtn|(Cmax,W ). Our reasoning is schedule-free and is based on reformulation of
the corresponding problems as optimization problems with submodular constraints.
For each of these problems we develop an appropriate routine for computing the cor-
responding rank functions as piecewise-linear functions followed by computing their
sum, with several stages of the solution process being problem-independent, either
technically or at least ideologically.

The summary of the results relevant to this paper is given in Table 1. Notice
that here we do not consider problem P |u(j) − x(j), pmtn|(Cmax,W ), because the
algorithm from [14] has the running time of O(n log n), leaving no room for further
improvements, since solving any bicriteria problem under consideration requires the
sorting of the jobs with respect to their unit compression costs. Observe that for
problem Q|r(j), u(j) − x(j), pmtn|(Cmax,W ) no polynomial-time algorithm has been
previously known, even for its special case with identical machines, i.e., problem
P |r(j), u(j) − x(j), pmtn|(Cmax,W ).

The remainder of this paper is organized as follows. Section 2 gives a brief review
of the necessary facts on submodular optimization, demonstrates how the schedul-
ing problems under consideration can be formulated in terms of maximization linear
programming problems with submodular constraints, and provides the explicit expres-
sions for the corresponding rank functions. The key new outcome of that section is a
collection of general principles that are applicable to solving any bicriteria scheduling
problem under consideration. Those principles are aimed at obtaining an expression
for the cost function as a piecewise linear function of makespan. Sections 3 through 5
consider each of the three problems individually and contain algorithms for computing
the corresponding rank functions and for finding the cost functions in the piecewise
linear form. Some concluding remarks are given in section 6.

2. General principles. In this section, we describe algorithms for finding the
set of Pareto-optimal solutions to the bicriteria problems Q|u(j)− x(j), pmtn|(Cmax,
W ), Q|r(j), u(j) − x(j), pmtn|(Cmax,W ), and P |r(j), u(j) − x(j), pmtn|(Cmax,W ).
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We start with the features that are common to all problems. Let S(d) denote a
feasible preemptive schedule in which all jobs are completed by time d. The task of
checking whether such a schedule exists for a given d can be formulated in terms of
submodular optimization.

For completeness, we introduce the necessary definitions. For a set N = {1, 2, . . . ,
n}, let 2N denote the family of all subsets of N . For a subset X ⊆ N , let R

X denote
the set of all vectors p with real components p(j), where j ∈ X . For a vector p ∈ R

N ,
define p(X) =

∑
j∈X p(j) for every nonempty set X ∈ 2N and define p(∅) = 0.

A set function ϕ : 2N → R is called submodular if the inequality

(2) ϕ(X ∪ Y ) + ϕ(X ∩ Y ) ≤ ϕ(X) + ϕ(Y )

holds for all sets X,Y ∈ 2N . For a submodular function ϕ defined on 2N such that
ϕ(∅) = 0, the pair (2N , ϕ) is called a submodular system on N , while ϕ is referred to
as the rank function of that system.

For a submodular system (2N , ϕ), define two polyhedra

P (ϕ) = {p ∈ R
N | p(X) ≤ ϕ(X), X ∈ 2N},(3)

B(ϕ) = {p ∈ R
N | p ∈ P (ϕ), p(N) = ϕ(N)},(4)

called a submodular polyhedron and a base polyhedron, respectively, associated with
the submodular system. Notice that B(ϕ) represents the set of all maximal vectors
in P (ϕ).

For a scheduling problem under consideration, below we explain that the set of
feasible schedules S(d) can be described as a polyhedron of the form

(5) P (ϕ)ul = {p ∈ R
N | p(X) ≤ ϕ(X), X ∈ 2N ; l(j) ≤ p(j) ≤ u(j), j ∈ N},

where ϕ : 2N → R is a set function and l,u ∈ R
N are vectors of lower and upper

bounds on the processing times, respectively. For a set of jobs X ⊆ N the value p(X)
is the total processing requirement for the jobs of set X with respect to their actual
processing times, while function ϕ(X) represents the total largest processing capacity
available for these jobs. Notice that if function ϕ is submodular, then the polyhedron
P (ϕ)ul is a submodular polyhedron P (ϕ) of the form (3) intersected with a box.

All problems under consideration share the same necessary and sufficient con-
ditions for the existence of a feasible schedule with a given common deadline d, as
formulated, e.g., in [1]. Informally, these conditions state that for a given deadline d
a feasible schedule exists if and only if

(i) for each v, 1 ≤ v ≤ m − 1, v longest jobs can be processed on v fastest
machines by time d, and

(ii) all n jobs can be completed on all m machines by time d.
Thus, for a problem at hand, we need to find an expression for the largest process-

ing capacity available to process any subset X of jobs. Such expressions are presented
below in the form of a set function ϕ(X), which in all cases appears to be submodular.
As a result, checking the existence of a feasible schedule S(d) reduces to determining
a feasible point in the polyhedron P (ϕ)ul associated with the relevant rank function ϕ.

Consider problem Q|u(j)−x(j), pmtn|(Cmax,W ) in which all jobs are simultane-
ously available at time zero, i.e., r(j) = 0. The machines are numbered in accordance
with (1). Define

(6) S0 = 0, Sv =

v∑
i=1

si, 1 ≤ v ≤ m,

where Sv is the total speed of v fastest machines.
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To complete before time d, for any set that contains more than m jobs, including
the whole set of jobs N , the total processing capacity dSm should be enough, while for
any set X with less than m jobs it should be sufficient to use the |X | fastest machines
during the time interval [0, d]. Therefore, problem Q|u(j) − x(j), pmtn|(Cmax,W ) is
associated with the polyhedron P (ϕ)ul with the rank function ϕ of the form

(7) ϕ(X) =

{
dS|X| if |X | ≤ m− 1,

dSm otherwise.

The conditions p(X) ≤ ϕ(X), X ∈ 2N , for the function ϕ(X) of the form (7) cor-
respond to conditions (i) and (ii) above. As proved in [15], function ϕ is submodular.

Consider now problem Q|r(j), u(j)−x(j), pmtn|(Cmax,W ) in which the jobs have
individual release dates. To derive the rank function for the polyhedron P (ϕ)ul associ-
ated with checking the existence of a feasible schedule S(d) observe the following. For
a feasible solution vector p, the following conditions should be satisfied: any job can
be completed by time d if it is processed by the fastest machine, any pair of jobs can
be completed by d if they are processed on the two fastest machines, etc., any subset
of at most m− 1 jobs can be completed by d on m− 1 fastest machines, and finally,
all jobs can be completed by d on all m machines. In order to take into account the
release dates, assume that the jobs are numbered in such a way that

(8) r(1) ≤ r(2) ≤ · · · ≤ r(n),

and for a setX ∈ 2N define ri(X) as the ith smallest release date in setX , 1 ≤ i ≤ |X |.
Similarly to the piece of notation p(X), we denote the sum of the release dates of the
jobs of set X by r(X).

For a nonempty set X of jobs, the largest processing capacity available on the
fastest machine M1 is s1(d− r1(X)), the total largest processing capacity on the two
fastest machines M1 and M2 is equal to s1(d− r1(X)) + s2(d− r2(X)), etc. Thus, we
deduce that

(9) ϕ(X) =

{
dS|X| −

∑|X|
i=1 siri(X) if |X | ≤ m− 1,

dSm −∑m
i=1 siri(X) otherwise.

This formula is shown in [8, 15] in a different (but equivalent) form. Function ϕ(X)
can be proved to be submodular as in [15].

If the machines are identical, then for the resulting problem P |r(j), u(j) − x(j),
pmtn| (Cmax,W ) function (9) can be simplified. For a set of jobs X ⊆ N , let R(X)
denote the sum of min{|X |,m} smallest release dates for the jobs of set X . Notice
that if |X | ≤ m− 1, then R(X) = r(X). For completeness, define R(∅) = 0. Then

(10) ϕ(X) =

{
dS|X| − r(X) if |X | ≤ m− 1,

dSm −R(X) otherwise.

This formula is also shown in [17], where the roles of the release dates and the deadlines
are exchanged. Observe that S|X| = |X | and Sm = m for identical machines, assuming
that the speed of any machine is 1.

In our previous work [16], we demonstrated that a linear programming problem
over P (ϕ)ul can be reduced to optimization over a simpler structure, namely, over
a base polyhedron. In fact, we have shown that a problem of maximizing a linear



192 A. SHIOURA, N. V. SHAKHLEVICH, AND V. A. STRUSEVICH

function over the intersection of a submodular polyhedron and a box is equivalent
to maximizing the same objective function over a base polyhedron associated with
another rank function.

Theorem 1 (cf. [16]). Polyhedron P (ϕ)ul is nonempty if and only if l ∈ P (ϕ)
and l ≤ u. If P (ϕ)ul is nonempty, then the set of maximal vectors in P (ϕ)ul is a base
polyhedron B(ψ) associated with the submodular system (2N , ψ), where the submodular
rank function ψ : 2N → R is given by

(11) ψ(X) = min
Y ∈2N

{ϕ(Y ) + u(X \ Y ) − l(Y \X)}, X ∈ 2N .

A detailed proof of Theorem 1 is given in [16]. Notice that Theorem 1 can also
be derived from Proposition II.2.11 of [2], which addresses the truncation operation
for generalized polymatroids.

Since u(X \ Y ) = u(X)− u(X ∩ Y ) for X,Y ⊆ N , we may rewrite (11) to obtain

(12) ψ(X) = u(X) + min
Y ∈2N

{ϕ(Y ) − u(X ∩ Y ) − l(Y \X)} .

For the problems under consideration, finding a schedule with the makespan
Cmax = d and the minimum total compression cost W reduces to the problem of
maximizing the function

∑
j∈N w(j)p(j) over P (ϕ)ul . In turn, due to Theorem 1, the

latter problem reduces to

Maximize
∑
j∈N

w(j)p(j)(13)

subject to p ∈ B(ψ).

The benefit gained by such a reduction is the possibility of using the most well-
known result of submodular optimization that guarantees that a solution to the
problem of maximizing a linear function over a base polyhedron can be found by
a greedy algorithm. Informally, to determine an optimal vector p∗ such an algorithm
starts with p∗ = l and considers the components of the current p∗ in the sequence
σ = (σ(1), σ(2), . . . , σ(n)) such that

(14) w(σ(1)) ≥ w(σ(2)) ≥ · · · ≥ w(σ(n)),

giving the current component the largest possible increment that keeps the vector
feasible.

Another advantage of the reduction to a problem of the form (13) is that the
solution vector p∗ can be obtained essentially in a closed form, as stated in the
theorem below. Define

(15) Nt(σ) = {σ(1), . . . , σ(t)} , 1 ≤ t ≤ n;

for completeness, define N0(σ) = ∅.
Theorem 2 (cf. [3]). Given an LP problem of the form (13), let σ = (σ(1), σ(2),

. . . , σ(n)) be an ordering of elements in N that satisfies (14). Then, vector p∗ ∈ R
N

given by

p∗(σ(t)) = ψ (Nt(σ)) − ψ (Nt−1(σ)) , t = 1, 2, . . . , n,

is an optimal solution to problem (13).
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Theorem 2 provides the foundation for our new approach that finds the efficiency
frontier of the bicriteria scheduling problems in a closed form.

Let S∗(d) denote a schedule with a makespan Cmax = d that minimizes the total
compression cost. The solution to a bicriteria problem will be delivered as a collection
of break points of the efficiency frontier (d,W (d)), where d is a value of the makespan
of schedule S∗(d) and W (d) is a (piecewise-linear in d) function that represents the
total optimal compression cost. Let also p∗(j, d) denote the optimal value of the actual
processing time of job j in schedule S∗(d). It follows that

(16) W (d) =

n∑
t=1

w (σ(t)) p∗ (σ(t), d) .

For the problems under consideration, due to (7), (9), and (10), the rank function
ϕ(X) as well as the function ψ(X) are functions of d; therefore in this paper we may
write ϕ(X, d) and ψ(X, d) whenever we want to stress that dependence.

Given a value of d such that all jobs can be completed by time d, define a function

(17) ψt(d) = ψ(Nt(σ), d), 1 ≤ t ≤ n,

computed for this value of d. By (12),

ψt(d) = u(Nt(σ)) + min
Y ∈2N

{ϕ(Y ) − u(Nt(σ) ∩ Y ) − l(Y \Nt(σ))} .

For all scheduling problems under consideration, due to (7), (9), and (10), there are
m expressions for ϕ(Y ), depending on |Y | ∈ {1, 2, . . . ,m−1} or |Y | ≥ m. As we show
in the following sections, finding the minimum in the above formula results in ψt(d)
represented as a piecewise-linear function of the form of an envelope

(18) ψt(d) = u(Nt(σ)) +

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dSm +Am
t for d < d ≤ dmt ,

dSm−1 +Am−1
t for dmt < d ≤ dm−1

t ,
...
dS1 +A1

t for d2t < d ≤ d1t ,
0 for d1t < d < +∞,

where d denotes the smallest deadline d for which there exists a feasible schedule S(d),
while the values Av

t , 1 ≤ v ≤ m, are appropriately determined problem-dependent
constants. Their calculation will be explained in the subsequent sections. Notice that
if for some i, 0 ≤ i ≤ m−1, the function u(Nt(σ))+dSm−i+A

m−i
t does not contribute

into ψt(d) as a piece, the break point dm−i
t is set equal dm−i−1

t .
The value of d can be found for each problem in advance, since it is equal to

the minimum makespan, provided that the processing times are equal to their lower
bounds l(j). For the model with uniform machines this takes O(n + m logm) time
if the release dates are equal [4] and O(n log n + nm) time if the release dates are
different [12]. For the model with identical machines and different release dates we
can use the algorithm from [11] that requires O(n logm) time, provided that the jobs
are numbered in accordance with (8).

Recall that by Theorem 2

W (d) =

n∑
t=1

w (σ(t)) p∗ (σ(t), d) =

n∑
t=1

w (σ(t)) (ψt(d) − ψt−1(d)) .
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For completeness, define w(σ(n + 1)) = 0 and rewrite

(19) W (d) =

n∑
t=1

w (σ(t)) (ψt(d) − ψt−1(d)) =

n∑
t=1

(w (σ(t)) − w (σ(t+ 1)))ψt(d).

Thus, in order to be able to compute the function W (d), we first have to compute
the functions ψt(d), t = 1, 2, . . . , n, for all relevant values of d and then compute
their weighted sum by (19). This function fully defines the efficiency frontier for the
corresponding bicriteria scheduling problem.

Theorem 2 implies that we need a procedure that computes the value of a sub-
modular function ψ(X) for a given X ∈ 2N . In the following sections, we explain how
to compute function ψ(X) for the scheduling problems under consideration and how
to adapt the corresponding procedures for computing the functions ψt(d) of the form
(18).

Another feature of our approach that is common for all scheduling problems under
consideration is related to computing function W (d). Assume that for a scheduling
problem piecewise-linear functions ψt(d) of the form (18) are found. We can organize
the break points of these functions as an n×m matrix

(20) D =

⎛
⎜⎜⎜⎝

dm1 dm−1
1 · · · d11

dm2 dm−1
2 · · · d12

...
. . .

...
dmn dm−1

n · · · d1n

⎞
⎟⎟⎟⎠ ,

where each row is a nondecreasing array. Then, the weighted sum W (d) given by (19)
can be found by merging the arrays of the break points, obtaining a nondecreasing
sequence of O(nm) potential break points of function W (d). It is straightforward to
compute the value of W (d) between any two consecutive break points.

It is well known that merging k sorted arrays of l elements each into a single
sorted array requires O(kl log k) time; see, e.g., section 5.4.1 of [6]. Merging k = n
rows of l = m elements of matrix D would take O(nm log n) time. Thus, having found
the functions ψt(d), 1 ≤ t ≤ n, the function W (d) of the form (19) can be computed
in O(nm logn) time.

On the other hand, if the columns of matrix D are known to be sorted, then the
list of the break points of W (d) can be obtained in O(nm logm) time by merging
k = m columns of l = n elements each, which is an improvement over O(nm log n)
for n ≥ m.

Below we present a sufficient condition for the columns of matrix D to be ordered.
The following lemma holds for all scheduling problems under consideration, provided
the rank functions ψt(d) satisfy (18).

Lemma 1. Let D be the matrix of the break points of the piecewise-linear functions
ψt(d), 1 ≤ t ≤ n, of the form (18). Then, for i, 1 ≤ i ≤ m, and t, 1 ≤ t ≤ n− 1, the
inequality

(21) Ai−1
t −Ai

t ≤ Ai−1
t+1 − Ai

t+1

implies that

(22) dit ≤ dit+1.
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Proof. For simplicity, we present the proof assuming that the intervals (di−1
t , dit]

and (di−1
t+1, d

i
t+1] are both nonempty. The proof can be appropriately adjusted to

handle the case that at least one of these intervals is empty.
The break point dit is the solution of the equation

u(Nt(σ)) + dSi−1 +Ai−1
t = u(Nt(σ)) + dSi +Ai

t,

i.e., dit = (Ai−1
t −Ai

t)/(Si − Si−1) = (Ai−1
t −Ai

t)/si, where si is the speed of machine
Mi. Similarly, dit+1 = (Ai−1

t+1 −Ai
t+1)/si. Then (21) implies (22), as required.

As discussed in section 3, for one of the scheduling problems due to its spe-
cial structure the running time for computing function W (d) can be reduced to
O(nm logm). For the other problems, such a reduction, even if possible, will not
reduce the overall running time; see sections 4 and 5.

For all scheduling problems studied below, the corresponding rank functions ϕ(X)
given by (7), (9), and (10) depend on the cardinality of set X . This is why in the
subsequent consideration it is convenient to use the sets

(23) Yv = {Y ∈ 2N | |Y | = v}, 1 ≤ v ≤ n,

which contain all subsets of the ground set with exactly v elements; for completeness
we define Y0 = {∅}.

3. Uniform machines, common release date: Rank function computa-
tion. In this section, we consider problem Q|u(j)−x(j), pmtn|(Cmax,W ) and present
a procedure for computing the rank function ψ(X) for a given deadline d and set
X ⊆ N . Then we show how that procedure can be adapted for finding all functions
ψt(d) = ψ(Nt(σ), d) for all t ∈ N as piecewise-linear functions of d.

We assume that the machines are numbered in accordance with (1) and the values
S0, S1, . . . , Sm are defined by (6).

For given d and setX , due to (7) and (12) we may write ψ(X) = min{ψ′(X), ψ′′(X)},
where

ψ′(X) = u(X) + min
0≤v≤m−1

{
dSv − max

Y ∈Yv

{u(X ∩ Y ) + l (Y \X)}
}

;(24)

ψ′′(X) = u(X) + dSm − max
v≥m

{
max
Y ∈Yv

{u(X ∩ Y ) + l (Y \X)}
}

;(25)

recall the definition of Yv in (23).
Lemma 2. For problem Q|u(j)−x(j), pmtn|(Cmax,W ), given a deadline d and a

set X, define U to be a list of values (u(j)|j ∈ X) and define L to be a list of values
(l(j)|j ∈ N\X); let βz denote the zth largest element in the merger of these lists.
Then

ψ′(X) = u(X) + min
0≤v≤m−1

⎧⎨
⎩dSv −

v∑
j=1

βj

⎫⎬
⎭ ,(26)

ψ′′(X) = dSm − l(N\X).(27)

Proof. Observe that for each v, 0 ≤ v ≤ m− 1, the equality

max
Y ∈Yv

{u(X ∩ Y ) + l(Y \X)} =
v∑

j=1

βj

holds, and (26) immediately follows from (24).
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To compute ψ′′(X), we need to determine maxY ∈Yv ,v≥m{u(X ∩ Y ) + l(Y \X)}.
Since each job in Y contributes either the lower bound or the upper bound on its
processing time, it follows that

max
Y ∈Yv ,v≥m

{u(X ∩ Y ) + l(Y \X)} = u(X) + l (N\X) ,

so that (25) becomes ψ′′(X) = u(X) + dSm − u(X)− l(N\X) and (27) is valid.
The value ψ(X) can be found by the procedure below.
Procedure PsiCompQr0.

Input: An instance of problem Q|u(j) − x(j), pmtn|(Cmax,W ), a deadline d, and a
set X ⊆ N
Output: The value ψ(X)
Step 1. Determine a list U of values (u(j)|j ∈ X) and a listL of values (l(j)|j ∈

N\X). Determine the values β1, β2, . . . , βm−1, where βz is the zth largest
element in the merger of the lists U and L.

Step 2. Compute ψ′(X) and ψ′′(X) by (26) and (27), respectively.
Step 3. Output ψ(X) = min{ψ′(X), ψ′′(X)}.

The most time-consuming part is Step 1, where choosing them−1 largest elements
in the merger of the lists U and L can be done in O(n) time by using the median
finding technique, and sorting the m− 1 largest elements can be done in O(m logm)
time. Hence, Procedure PsiCompQr0 requires O(n+m logm) time.

Procedure PsiCompQr0 will be the basis of our algorithm for solving the bicriteria
problem Q|u(j)− x(j), pmtn|(Cmax,W ) presented below. Recall that we need to find
the functions ψt(d) = ψ(Nt(σ), d) computed for all values of d and all t ∈ N , where the
sets Nt(σ) are defined by (15). As mentioned in section 2, the value of d, the smallest
deadline d for which a feasible schedule exists, can be found in O(n +m logm) time
by an algorithm from [4].

Given a t, 1 ≤ t ≤ n, define βt,z, 1 ≤ z ≤ m − 1, as the zth largest element
in the merger of the lists Ut of the values (u(j)|j ∈ Nt(σ)) and Lt of the values
(l(j)|j ∈ N\Nt(σ)). It follows from Lemma 2 that

(28) ψt(d) = u(Nt(σ)) + min
0≤v≤m

{dSv +Av
t } ,

where

(29) Av
t =

⎧⎨
⎩

0 for v = 0,
−∑v

z=1 βt,z for 1 ≤ v ≤ m− 1,
−l(N\Nt(σ)) − u(Nt(σ)) for v = m.

Notice that once all values Av
t are found for some t, 1 ≤ t ≤ n, determining ψt(d)

in the form (18) or (28) is equivalent to the problem of finding the lower envelope of
m linear functions given in increasing order of their slopes Sv. Exactly this problem
has been studied in [20] and has been shown to be solvable in O(m) time. We use
that method as part of our algorithm presented below. Our algorithm is based on
Procedure PsiCompQr0 applied to X = Nt(σ) for all t = 1, . . . , n. For each t, 0 ≤ t ≤
n, it maintains a sorted list Vt of m−1 largest values among {u(j) | j ∈ Nt(σ)}∪{l(j) |
j ∈ N\Nt(σ)}.
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Algorithm AllPsiQr0.
Input: An instance of problem Q|u(j) − x(j), pmtn|(Cmax,W )
Output: A collection of functions ψt(d), 1 ≤ t ≤ n, each in a piecewise-linear form
Step 1. Find a sequence σ defined by (14). If required, renumber the machines so

that (1) holds and compute the values Sv, 1 ≤ v ≤ m, by (6). Compute d by
running an algorithm from [4] applied to p(j) = l(j), j ∈ N .

Step 2. Create list V0 that contains m−1 largest values l(j), j ∈ N , sorted in nonin-
creasing order. Define N0(σ) := ∅ and set u(N0(σ)) := 0 and l(N\N0(σ)) :=
l(N).

Step 3. For t from 1 to n do:
(a) Set Nt(σ) := Nt−1(σ) ∪ {σ(t)}, u(Nt(σ)) := u(Nt−1(σ)) + u(σ(t)), and

l(N\Nt(σ)) := l(N\Nt−1(σ)) − l(σ(t)).
If u(σ(t)) is less than the smallest element of Vt−1, rename Vt−1 as Vt
without updating it and go to Step 3(b).
Else delete from Vt−1 the element l(σ(t)), if it belongs to Vt−1, or its
smallest element, otherwise. Insert u(σ(t)) in that list keeping the re-
sulting list in nonincreasing order. Call the resulting list Vt.

(b) Taking the elements in list Vt in the order of appearance, rename them
by βt,z, 1 ≤ z ≤ m − 1. Scanning the values βt,z in the order of their
numbering, compute the sums

∑v
z=1 βt,z, 1 ≤ v ≤ m − 1, and thereby

find the values Av
t by (29).

(c) Compute Am
t := −l(N\Nt(σ)) − u(Nt(σ)).

(d) Use the algorithm from [20] to determine function ψt(d) in the form (18),
as a lower envelope given by its break points d ≤ dmt ≤ dm−1

t ≤ · · · ≤ d1t .
Let us estimate the running time of Algorithm AllPsiQr0. Step 1 is the preprocess-

ing stage that requires O(n logn) time. Step 2 can be implemented in O(n+m logm)
time, since choosing the m − 1 largest values takes O(n) time and sorting them re-
quires O(m logm) time. For a typical iteration t of the loop in Step 3 the updates
in Step 3(a) require O(m) time. Since the list Vt is kept sorted, the values βt,z,
1 ≤ z ≤ m−1, and all their partial sums can be found in O(m) time. Thus, all values
Av

t , 1 ≤ v ≤ m, can be found in O(m) time. The algorithm from [20] employed in
Step 3(d) also needs O(m) time. Thus, the following statement holds.

Lemma 3. For problem Q|u(j) − x(j), pmtn|(Cmax,W ) the functions ψt(d) for
all t, 1 ≤ t ≤ n, can be computed in O(n log n+ nm) time.

As mentioned in section 2, computing function W (d) of the form (19) that deter-
mines the efficiency frontier for the original bicriteria scheduling problem additionally
requires O(nm log n) time. However, for the problem under consideration this running
time can be reduced due to the following statement.

Lemma 4. Let D be the matrix of the break points of the piecewise-linear functions
ψt(d), 1 ≤ t ≤ n, of the form (18) computed for problem Q|u(j)−x(j), pmtn|(Cmax,W ).
Then, for all i, 1 ≤ i ≤ m and all t, 1 ≤ t ≤ n− 1, the inequality (21) holds.

Proof. Take an arbitrary t, 1 ≤ t ≤ n − 1. First, consider the case that 1 ≤ i ≤
m− 1, so that in accordance with (29)

Ai−1
t = −

i−1∑
z=1

βt,z, A
i
t = −

i∑
z=1

βt,z,

and Ai−1
t − Ai

t = βt,i, where βt,i is the ith largest element in list Vt. Similarly,
Ai−1

t+1 − Ai
t+1 = βt+1,i. Recall that list Vt+1 either coincides with Vt or is obtained
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from list Vt by replacing an element x of list Vt by u(σ(t+ 1)), where

(30) l (σ (t+ 1)) ≤ x ≤ u (σ (t+ 1)) ;

see Step 3(a) of Algorithm AllPsiQr0. As the result, the ith largest element in list
Vt+1 is no smaller than in list Vt, i.e.,

Ai−1
t −Ai

t = βt,i ≤ βt+1,i = Ai−1
t+1 −Ai

t+1,

and (21) holds.
Now we look at the case i = m. It follows from (29) that

Am−1
t = −

m−1∑
z=1

βt,z, A
m−1
t+1 = −

m−1∑
z=1

βt+1,z.

Also (29) implies that

Am
t+1 = −l(N\Nt+1(σ)) − u(Nt+1(σ))

= −l(N\Nt(σ)) + l (σ (t+ 1)) − u(Nt(σ)) − u (σ (t+ 1))

= Am
t + l (σ (t+ 1)) − u (σ (t+ 1)) ≤ Am

t .

If the lists Vt and Vt+1 coincide, then Am−1
t = Am−1

t+1 = −∑m−1
z=1 βt,z and

Am−1
t −Am

t = Am−1
t+1 −Am

t ≤ Am−1
t+1 −Am

t+1,

as required.
If the two lists are different, then, as explained above, this is due to the fact that

in Step 3(a) of Algorithm AllPsiQr0 an element x of list Vt is replaced by u(σ(t+ 1)),
so that (30) holds. This implies that

Am−1
t+1 −Am

t+1 =

(
−

m−1∑
z=1

βt,z + x− u (σ (t+ 1))

)
− (Am

t + l (σ (t+ 1)) − u (σ (t+ 1)))

= Am−1
t −Am

t + x− l (σ (t+ 1)) ≥ Am−1
t −Am

t ,

which completes the proof.
Lemma 4 allows us to give the following estimate of the running time required to

solve problem Q|u(j) − x(j), pmtn|(Cmax,W ).
Theorem 3. Problem Q|u(j)−x(j), pmtn|(Cmax,W ) is solvable in O(nm logm)

time.

4. Uniform machines, different release dates: Rank function computa-
tion. In this section, we consider problem Q|r(j), u(j) − x(j), pmtn|(Cmax,W ) and
present a procedure for computing the rank function ψ(X) for a given deadline d
and set X ⊆ N . Then we show how that procedure can be adapted for finding all
functions ψt(d) = ψ(Nt(σ), d) for all t ∈ N as piecewise-linear functions of d.

We assume that the jobs are numbered in nondecreasing order of the release dates,
i.e., in accordance with (8). As above, the machines are numbered in accordance with
(1), and the values S0, S1, . . . , Sm are defined by (6). As in section 2, let ri(X) denote
the ith smallest release date for the jobs of set X .
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Due to (9) and (12) we represent the function ψ(X) as ψ(X) = min{ψ′(X), ψ′′(X)},
where

ψ′(X) = u(X)(31)

+ min
0≤v≤m−1

{
dSv − max

Y ∈Yv

{
v∑

i=1

siri(Y ) + u(X ∩ Y ) + l (Y \X)

}}
,

ψ′′(X) = u(X) + dSm − max
Y ∈Yv,v≥m

{
m∑
i=1

siri(Y ) + u(X ∩ Y ) + l (Y \X)

}
.(32)

We describe a dynamic programming procedure that computes the function ψ(X)
for given d and X . To compute ψ′(X) we define

(33) λ(j) =

{
u(j) if j ∈ X,
l(j) if j /∈ X

and introduce

zv(Y ) =
v∑

i=1

siri(Y ) + λ(Y ),

so that (31) can be rewritten as

ψ′(X) = u(X) + min
0≤v≤m−1

{
dSv − max

Y ∈Yv

{zv(Y )}
}
.

For some v, 1 ≤ v ≤ m − 1, consider job k, v ≤ k ≤ n, and the subsets in Yv that
contain no jobs j > k. Denote the set of such subsets by Yv[k]. Let zv[k] be a real
number given by

zv[k] = max {zv(Y ) | Y ∈ Yv [k]} .

We note that Yv[n] = Yv, and therefore in order to compute ψ′(X) we need to
determine the value

zv[n] = max {zv(Y ) | Y ∈ Yv} .

The lemma below shows that the values zv[j] can be computed by a dynamic
programming approach.

Lemma 5. For each v = 1, 2, . . . ,m− 1, we have

zv[v] = zv−1[v − 1] + svr(v) + λ(v),(34)

zv[j] = max{zv[j − 1], zv−1[j − 1] + svr(j) + λ(j)} for j = v + 1, . . . , n,(35)

where it is assumed that z0[j] = 0 for j = 0, 1, 2, . . . , n.
Proof. For each v = 1, 2, . . . ,m − 1, the set family Yv[v] contains only one set

{1, 2, . . . , v}. Therefore, we obtain (34) as follows:

zv[v] = zv({1, 2, . . . , v}) =

v∑
j=1

{sjr(j) + λ(j)} = zv−1[v − 1] + svr(v) + λ(v).
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We then suppose that 1 ≤ v ≤ m− 1 and 2 ≤ j ≤ n. We have

Yv[j] = Yv[j − 1] ∪ {Y ∪ {j} | Y ∈ Yv−1[j − 1]}.

For Y ∈ Yv−1[j − 1], the equality zv(Y ∪ {j}) = zv−1(Y ) + svr(j) + λ(j) holds, since
the jobs are numbered in nondecreasing order of the release dates. Hence, (35) can
be obtained as follows:

max{zv(Y ) | Y ∈ Yv[j]}
= max {max{zv(Y ) | Y ∈ Yv[j − 1]},max{zv(Y ∪ {j}) | Y ∈ Yv−1[j − 1]}}
= max{zv[j − 1], zv−1[j − 1] + svr(j) + λ(j)}.

We now explain how to compute function ψ′′(X). Suppose that we know the set
Y ′′ such that |Y ′′| ≥ m and

(36)

m∑
i=1

siri(Y
′′) + λ(Y ′′) = max

{
m∑
i=1

siri(Y ) + λ(Y )

∣∣∣∣Y ∈ Yv, v ≥ m

}
.

Let k ∈ N be the job such that the set {j ∈ Y ′′ | j ≤ k} contains exactly m
elements. It should be noted that k itself need not be an element of Y ′′. Since the
jobs are numbered in nondecreasing order of the release dates, it follows that the jobs
of set Y ′′ with m smallest release dates are contained in the set Y ′′

1 = {j ∈ Y ′′ | j ≤ k},
so that

m∑
i=1

siri(Y
′′) =

m∑
i=1

siri(Y
′′
1 ).

Denote Y ′′
2 = {j ∈ Y ′′ | j > k}, so that Y ′′ = Y ′′

1 ∪ Y ′′
2 . Since

m∑
i=1

siri(Y
′′) + λ(Y ′′) =

m∑
i=1

siri(Y
′′
1 ) + λ(Y ′′

1 ) + λ(Y ′′
2 ),

we may include all jobs j > k into set Y ′′
2 to achieve the maximum in (36). Thus, for

a chosen k, we define Y ′′
2 = {k + 1, k + 2, . . . , n}.

In order to find set Y ′′, it suffices to determine set Y ′′
1 , which can be done by

performing a systematic search among all m-element subsets of jobs from N . In
our computation of ψ′(X) we use the values zv[k] and the sets Yv[k] defined for
1 ≤ v ≤ m− 1 and v ≤ k ≤ n. We now extend our definitions to the case of v = m.
In other words,

(37) zm[k] = max
Y ∈Ym[k]

{
m∑
i=1

siri(Y ) + λ(Y )

}
,

where Ym[k] denotes the set of all m-element subsets with no jobs j > k. For finding
the values zm[k], we simply extend the procedure outlined in Lemma 5 for v = m.
Let Y1[k] be a set in Ym[k] such that

m∑
i=1

siri(Y1[k]) + λ(Y1[k]) = zm[k].
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We also define

Y2[k] = {j ∈ N | j > k}.
Then, ψ′′(X) can be represented as

ψ′′(X) = u(X) + dSm − max
m≤k≤n

{
m∑
i=1

siri(Y1[k]) + λ(Y1[k]) + λ(Y2[k])

}

= u(X) + dSm − max
m≤k≤n

⎧⎨
⎩zm[k] +

n∑
j=k+1

λ(j)

⎫⎬
⎭ .

The value ψ(X) can be found by the procedure below.
Procedure PsiCompQrj.

Input: An instance of problem Q|r(j), u(j) − x(j), pmtn|(Cmax,W ), a deadline d,
and a set X ⊆ N
Output: The value ψ(X)
Step 1. For k = 0, 1, 2, . . . , n, set z0[k] = 0. For v = 1, 2, . . . ,m and k = v, v +

1, . . . , n, compute the value zv[k] by using the recursive formulas (34) and
(35). Compute Λ(k) =

∑n
j=k+1 λ(j) for k ∈ N .

Step 2. Compute

ψ′(X) = u(X) + min
0≤v≤m−1

{dSv − zv[n]},
ψ′′(X) = u(X) + dSm − max

m≤k≤n
{zm[k] + Λ(k)}.(38)

Step 3 Output ψ(X) = min{ψ′(X), ψ′′(X)}.
The dynamic programming computation in Step 1 requires O(nm) time, and

Step 2 can be done in O(m+n) time. Thus, the overall time complexity of Procedure
PsiCompQrj is O(nm).

In order to obtain the functions ψt(d) of the form (18), we run Procedure
PsiCompQrj for X = N(σ(t)), 1 ≤ t ≤ n, and define

(39) Av
t =

⎧⎨
⎩

0 for v = 0,
−zv[n] for 1 ≤ v ≤ m− 1,
−maxm≤k≤n{zm[k] + Λ(k)} for v = m.

Having found these values we find the representation of the function ψt(d) in the
form of a lower envelope, as in Step 3(d) of Algorithm AllPsiQr0.

As the preprocessing stage, we need to determine the value of d and the sequence
σ, which takes no more than O(n logn + nm) time. All functions ψt(d) for all t,
1 ≤ t ≤ n, will be found in O(n2m) time. As mentioned in section 2, computing
function W (d) of the form (19) that determines the efficiency frontier for the origi-
nal bicriteria scheduling problem additionally requires O(nm logn) time. Thus, the
following statement holds.

Theorem 4. For problem Q|u(j) − x(j), pmtn|(Cmax,W ), finding the functions
ψt(d) for all t, 1 ≤ t ≤ n, followed by the computation of function W (d) requires
O(n2m) time.

5. Identical machines, different release dates: Rank function compu-
tation. The approach from the previous section is of course applicable to problem
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P |r(j), u(j) − x(j), pmtn|(Cmax,W ) with identical parallel machines. However, for
the latter problem a more efficient procedure for computing the rank function ψ(X)
for a given deadline d and set X ⊆ N can be developed. We present such a pro-
cedure below and show how that procedure can be adapted for finding all functions
ψt(d) = ψ(Nt(σ), d) for all t ∈ N as piecewise-linear functions of d.

As above, we assume that the jobs are numbered in nondecreasing order of the
release dates, i.e., in accordance with (8). As in section 2, for the jobs of set X, let
R(X) denote the sum of m smallest release dates (provided that |X | ≥ m), while
r(X) denotes the sum of all release dates.

We have ψ(X) = min{ψ′(X), ψ′′(X)}, where ψ′(X) and ψ′′(X) are given by (31)
and (32), respectively. Since we consider identical parallel machines, (31) can be
simplified as

ψ′(X) = u(X) + min
0≤v≤m−1

{
dSv − max

Y ∈Yv

{r(Y ) + u(X ∩ Y ) + l (Y \X)}
}

= u(X) + min
0≤v≤m−1

{
dSv − max

Y ∈Yv

{ũ(X ∩ Y ) + l̃(Y \X)}
}
,

where ũ(j) = r(j) + u(j) for j ∈ X and l̃(j) = r(j) + l(j) for j ∈ N \X . This formula
is the same as formula (24) in section 3, except that u(j) and l(j) in (24) are replaced
with ũ(j) and l̃(j), respectively. Therefore, for a given set X and a deadline d, the
value ψ′(X) can be computed by a slight modification of Procedure PsiCompQr0,
which requires O(n+m logm) time.

We now show that the computation of ψ′′(X) in Procedure PsiCompQrj of sec-
tion 4 can be made faster. The most time-consuming part in Procedure PsiCompQrj
is to compute the values zm[m], zm[m + 1], . . . , zm[n] in formula (38), and below we
show that this can be done more efficiently in O(n logm) time, instead of O(nm)
time.

For j ∈ N , define λ(j) by (33). The values zm[k] defined by (37) can be computed
as described in the procedure below.

Procedure Psi2CompPrj.
Input: An instance of problem P |r(j), u(j) − x(j), pmtn|(Cmax,W ), a deadline d,
and a set X ⊆ N
Output: The value ψ′′(X)
Step 1. Define the values γ(j) := r(j) + λ(j) for j ∈ N .
Step 2. Define Q := {γ(1), . . . , γ(m)} and zm[m] :=

∑
j∈Q γ(j).

Step 3. For j from m+ 1 to n do:
Find γ(z), the smallest value in Q. If γ(z) ≥ γ(j), define zm[j] :=
zm[j − 1]; otherwise define

Q := (Q \ {γ(z)}) ∪ {γ(j)}, zm[j] := zm[j − 1] − γ(z) + γ(j).

Step 4. Compute ψ′′(X) by (38).
Notice that in each iteration j of the loop in Step 3 of Procedure Psi2CompPrj,

set Q consists of m largest values in {γ(i) | i = 1, 2, . . . , j}. Since we need to get
access to the smallest element in Q, we implement Q as a heap.

Step 1 takes O(n) time. Forming a heap for set Q in Step 2 requires O(m logm)
time. For each j in the loop in Step 3 the required updates can be done in O(logm)
time. Step 4 needs O(n) time. Thus, the overall time complexity for computing
ψ′′(X) is O(n logm).
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Algorithm AllPsiQr0 can be modified in order to obtain the functions ψt(d) of
the form (18). In particular, the values Av

t for t = 1, 2, . . . , n and v = 0, 1, . . . ,m− 1
can be computed quite similarly to Algorithm AllPsiQr0 in O(n log n + nm) time.
The most time-consuming part is to compute the value Am

t for t = 1, 2, . . . , n, each of
which can be computed in O(n logm) time by Procedure Psi2CompPrj. Thus, finding
all functions ψt(d), 1 ≤ t ≤ n, takes O(n2 logm) time. As mentioned in section 2,
computing function W (d) of the form (19) that determines the efficiency frontier for
the original bicriteria scheduling problem additionally requires O(nm log n) time. It
can be verified that the function n/ logn is nondecreasing as long as n ≥ e. Thus, the
inequality n logm ≥ m logn holds for all m ≤ n, except for n = 3 and m = 2. This
implies that for all nontrivial values of n and m the equality O(n(n logm+m logn)) =
O(n2 logm) is valid. Thus, the following statement holds.

Theorem 5. For problem P |r(j), u(j)− x(j), pmtn|(Cmax,W ), finding the func-
tions ψt(d) for all t, 1 ≤ t ≤ n, followed by the computation of function W (d) requires
O(n2 logm) time.

6. Conclusion. The main contribution of this paper is a new methodology for
solving bicriteria scheduling problems with controllable processing times. It is based
on the reduction to optimization problems over submodular polyhedra and base poly-
hedra. The main stages of the new approach can be described as follows.

Stage 1. Derive an algorithm to compute a submodular rank function ψ(X) of
the form (11) for an arbitrary set X .

Stage 2. For each subset of jobs Nt(σ), 1 ≤ t ≤ n, defined by (15), compute
parametric functions ψt(d) of the form (17). Each ψt(d) is a function of the parameter
d which represents the range of makespan values. Being a piecewise-linear function of
the form (18), ψt(d) is given by the set of its break points, slope values, and intercepts.

Stage 3. Find the efficiency frontier in the space of the makespan Cmax and
compression cost W . The cost function W (d) is defined by Theorem 2, in accordance
with either (16) or (19), as a parametric function of makespan values d.

Stage 1 is problem-specific. It is implemented by Procedures PsiCompQr0 and
PsiCompQrj for problems Q|u(j) − x(j), pmtn|(Cmax,W ) and Q|r(j), u(j) − x(j),
pmtn|(Cmax,W ), respectively, while Procedure Psi2CompPrj is used for problem
P |r(j), u(j) − x(j), pmtn|(Cmax,W ).

Stage 2 is problem-independent, but its efficient implementation may use specific
features of function ψ(X). For problem Q|u(j) − x(j), pmtn|(Cmax,W ), this stage is
implemented as Algorithm AllPsiQr0 in section 3, and that algorithm can be easily
modified for the other two problems, as described in sections 4 and 5.

Stage 3 is common for all problems and can be done in a straightforward manner,
as described in section 2.

Our approach to bicriteria preemptive scheduling problems with controllable pro-
cessing times is essentially different from earlier used approaches based on finding the
break points of the efficiency frontier by tracking the changes in a schedule. Due to
the close link with a problem formulation, any intermediate solution generated by
traditional nonsubmodular approaches can easily be visualized in the form of a Gantt
chart and its feasibility can easily be verified. Despite this minor advantage, early re-
search in the area shows that the methods of such nature are not always effective and
their justification may be overcomplicated. By contrast, our new methodology deals
with optimization over various polyhedra defined by submodular constraints, and the
actual meaning of an intermediate solution may be difficult to interpret in scheduling
terms. However, due to the powerful techniques of submodular optimization, the so-
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lution vector can be obtained essentially in a closed form and the efficiency frontier
can be found directly as a parametric function. As a result, the new algorithms either
are faster in comparison with the known methods or solve problems with no prior
history of study.
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