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Abstract We present the first study of global seasonal distributions of whitecap fraction,W , obtained

from satellite-based radiometric observations. Satellite-basedW incorporates variability from forcings other

than wind speed and can capture differences inW in initial and late lifetime stages. The satellite-basedW is

more uniform latitudinally than predictions from a widely used wind speed-dependent parameterization,

W(U10), formulated from in situ observations, being on average higher than theW(U10) predictions at low

latitudes and lower at middle and high latitudes. This difference provides an explanation for the consistent

geographical biases in sea spray aerosol concentration found in a number of large-scale models. Satellite

estimates ofW would benefit air-sea interaction and remote sensing applications that use parameterizations

in terms ofW such as sea spray flux, gas transfer, and surface winds.

1. Introduction

Whitecaps are the surface manifestation of bubble plumes, created when surface gravity waves break and

entrain air into the water column. They enhance air-sea exchange, introducing physical processes differ-

ent from those operating at the bubble-free water surface. Their surface extent provides a proxy measure

for physical and chemical processes that are dependent upon wave breaking and bubbles, such as gas

exchange [Monahan and Spillane, 1984; Asher et al., 1996;Woolf, 2005; Zhang, 2012], and sea spray aerosol

production [Blanchard, 1963; de Leeuw et al., 2011].

The presence of whitecaps must be accounted for in models of the global radiation budget [Frouin et al.,

2001] because it increases ocean albedo [Koepke, 1984], in optical ocean color retrievals because it masks

water-leaving radiance [Gordon and Wang, 1994], and in surface reflection corrections for aerosol opti-

cal depth retrievals [Sayer et al., 2010]. At microwave frequencies, whitecaps have higher surface emission

and brightness temperature than water [Wentz, 1997; Smith, 1988; Rose et al., 2002]; this has implications

for remote sensing of geophysical variables, such as the ocean surface wind vector, from satellite-borne

polarimetric microwave radiometers [Wentz, 1997; Yueh, 1997; Bettenhausen et al., 2006].

Wave breaking and whitecap formation are controlled to first order by the wind, and the whitecap frac-

tionW is commonly parameterized as a function of local wind speed at a 10 m reference height, U10. This

approach ignores the known variability inW resulting from the influence of secondary factors such as the

wave state, sea surface temperature (SST), and atmospheric stability [Monahan and O’Muircheartaigh, 1986;

Anguelova and Webster, 2006; de Leeuw et al., 2011; Salisbury et al., 2013]. Varying wind speed exponents in

differentW(U10) parameterizations may reflect variability due to secondary forcings as they can be derived

under conditions of different secondary factors at the same wind speed and thus show different wind speed

dependencies. However, they are often extrapolated to wind speeds far beyond those they were derived

from, and since they are highly nonlinear functions, this may result in significant mean biases in regions

where high winds are common, such as at high latitudes, particularly for U10 ≳ 25 m s−1 [Holthuijsen et al.,

2012] where there are few measurements.

To date, studies of global and seasonal distributions of whitecaps have been possible only by drivingW(U10)

parameterizations with global wind distributions. Blanchard [1963] showed the latitudinal variation ofW

by estimated zonal means for June–August and December–February; these varied from a minimum of

∼2% in the tropics to ∼9% at 45◦S during June–August. The seasonal contrast was highly asymmetric. In

the Southern Hemisphere, zonal means ofW in summer were roughly 2% lower than winter values across

the hemisphere withW peaking at around 45◦S for both seasons. In the Northern Hemisphere, there was

a strong seasonal cycle;W peaked just above 8% at 55◦N in winter but had a near-uniform value of about
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2% across the entire hemisphere in summer. It is worth noting that these results are derived from aW(U10)

parameterization based on an extremely limited data set of just five aerial photographs of the sea surface in

the Caribbean, at winds between 4 and 20 m s−1.

A monthly global climatology ofW was presented by Spillane et al. [1986], based on a rate of wind work

parameterization ofW and ship observations of surface wind speed and stability dependent drag coeffi-

cient. HighestW (3–4%) occurred in the North Atlantic in winter. The relatively lower values (1.5–2%) for the

Southern Ocean, even during the austral winter, were attributed to undersampling of high wind conditions

by the ships. At low to middle latitudes (up to 40◦N and 40◦S)W never exceeds 1%.

Erickson III et al. [1986] used theW(U10) function ofMonahan and O’Muircheartaigh [1980, hereinafter MM80]

and global monthly mean winds at 5◦ resolution. They found a similar general seasonal distribution and also

highlighted geographic regions of persistently high whitecap fraction over periods of months, such as the

Indian Ocean during the monsoon season and high-latitude storm tracks.

Here we use a full year of satellite estimates of whitecap fraction to assess the spatial distribution and

seasonal dependence ofW . We compare this global distribution with that derived from the MM80 parame-

terization and discuss implications for models and retrieval algorithms.

2. Method
2.1. Data

We draw on a database of satellite-based W estimates [Salisbury et al., 2013], composed of gridded

(0.5◦ × 0.5◦), global estimates ofW at two microwave frequencies, 10 GHz and 37 GHz (W10 andW37). Data

for all of 2006 are used in daily format. The frequency dependence of satellite-basedW estimates is useful

asW10 andW37 reflect different lifetime stages of the whitecaps [Salisbury et al., 2013]. It has been shown

[Anguelova and Gaiser, 2011] that decaying foam as thin as ∼1 mm can be detected at 37 GHz, while 10 GHz

primarily quantifies thicker foam (≳4 mm), i.e., newly formed whitecaps associated with actively breaking

waves. As such, individualW37 estimates are higher than correspondingW10 estimates.

The database includes U10 estimates from the SeaWinds microwave scatterometer on board the QuikSCAT

satellite and—when a SeaWinds matchup is not available—model output from the Global Data Assimila-

tion System. Salisbury et al. [2013] describe the matchup procedure and the blending of satellite and model

winds. We limit the wind speeds in the analysis to U10 < 30 m s−1, so as to avoid the most extreme condi-

tions, where the satellite retrieval is poorly defined. Such cases are, however, few in number (< 0.003% of

estimates) and omitting them does not affect our conclusions.

2.2. Analyses

For a given grid cell, the number of estimates ofW10 andW37 varies with the number of matchups between

different source measurements; for calculation of seasonal means, this number ranges from 1 to 130, with

an average of 34–40 depending on the season. Latitudinal variations are presented with zonal mean profiles

of whitecap fraction. Zonal means were obtained by averaging all values within each 0.5◦ latitude band.

Seasons are defined as Northern Hemisphere spring (March–May, hereafter MAM), summer (June–August,

JJA), autumn (September–November, SON), and winter (December–February, DJF).

We compare satellite-based W estimates with those predicted by the W(U10) relationship of MM80,

formulated from in situ measurements ofW and U10:

W(U10) = 3.84 × 10−4U3.41
10

, (1)

whereW is in percent. The highest wind speed recorded in their source data is 16.6 m s−1, and so the param-

eterization is strictly valid only for wind speeds below this, but it is often extrapolated to much higher wind

speeds. This parameterization is largely based on whitecap data sets collected in low-latitude trade wind

regions; weaker wind speed dependencies (exponents slightly greater than 2) were found for high-latitude

data sets [Monahan and O’Muircheartaigh, 1986]. We use (1) with U10 values fromW database to obtain

WMM80 values matched to eachW10 andW37 estimate; these were similarly averaged.

The MM80 parameterization is chosen because it is widely used, forming part of theMonahan et al. [1986]

sea spray source function and several others adapted from it, including those of Gong [2003] and

Mårtensson et al. [2003], which are used to calculate sea spray aerosol source fluxes in many aerosol and
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climate models [Spracklen et al., 2005; Textor et al., 2006]. MM80 or similar formulations are also used

in sea surface reflectance models for aerosol [Sayer et al., 2010] and wind speed [Harmel and Chami,

2012] retrievals.

A comparison is also made between values predicted by MM80 and parameterized satellite-based W

estimates obtained from theW(U10) relationships presented in Salisbury et al. [2013]:

W10 = 4.60 × 10−3 × U2.26
10

; 2 < U10 ≤ 20m s−1,

W37 = 3.97 × 10−2 × U1.59
10

; 2 < U10 ≤ 20m s−1,
(2)

whereW is expressed in percent. These functions were obtained by fitting a power law to wind speed

binnedW means and are valid up to a maximum wind speed of 20 m s−1. Note that although these parame-

terizations are in terms of U10 alone, the wind exponents carry information for the geographical variations of

whitecap fraction because equations (2) are based onW data covering meteorological and environmental

conditions over the entire globe over a full year.

3. Results andDiscussion
3.1. Spatial Distribution and Seasonal Changes

The seasonal global distributions ofW10 andW37 (Figure 1) follow similar patterns, withW37 always higher,

as expected. Highest seasonalW occurs in bands centered around 50◦N and 50◦S, where mean wind speeds

are highest [Sayer et al., 2010]. The Southern Hemisphere band is persistent, withW10 > 1.5% andW37 > 2%

over much of the Southern Ocean throughout the year. This feature was apparent in the monthly maps of

W presented in Spillane et al. [1986]. Over much of the low-latitude ocean (equatorward of 30◦N and 30◦S),

seasonal means ofW10 are usually <0.5%, whileW37 seasonal means are typically above 0.5%. Like Erickson

III et al. [1986], we find enhancedW in the Arabian Sea during summer, with meanW10 ≈1.5% and mean

W37 ≈ 2%.

The latitudinal variation ofW10 andW37 for the four seasons is shown in Figure 2, along with that forWMM80.

Values ofW10 andW37 follow roughly the same latitudinal trends, with zonal means ofW37 larger than those

forW10 by a factor of 1.5–2. In the equatorial region,W10 is consistently around 0.3%, withW37 at ∼0.6%.

There is a general trend of increasingW from the equator to high latitudes, and a consistent asymmetry

between the two hemispheres. Interseasonal variations are much stronger in the Northern Hemisphere; at

50–60◦N, whereW peaks,W10 is a factor of 3 andW37 a factor of approximately 2 higher in DJF than in JJA.

In the Southern Hemisphere,W peaks around 50◦S; hereW10 varies less than 30% andW37 less than 20%

over the year. This result is in agreement with the findings of Blanchard [1963] and Erickson III et al. [1986].

The asymmetric distribution in meanW is a consequence of the larger seasonal variations of temperature

and winds in the Northern Hemisphere (driven by the stronger response of land surface temperature) and

persistent high winds and long fetches in the Southern Ocean, both of which result from the asymmetric

distribution of land masses between the hemispheres.

3.2. Comparison With In SituW(U10) Parameterization

Latitudinal variations of W10 are in close agreement with WMM80 at low latitudes (Figure 2). At higher

latitudes (poleward of 40◦N and 40◦S),WMM80 is much larger thanW10, particularly so in the winter. Large dif-

ferences here are driven primarily by the difference in wind speed dependence between satellite estimates

(U 2.26
10

and U 1.59
10

forW10 andW37, respectively [Salisbury et al., 2013]) and MM80 (U 3.41
10

). The extrapolation

of MM80 to wind speeds beyond those from which it was formulated is likely the source of significant high

bias in the resultingW estimates. Only during Northern Hemisphere summer are seasonal means ofW10 and

WMM80 in agreement at high latitudes. Zonal means ofW37 are higher thanWMM80 over much of the global

ocean; the reverse is true during DJF in the high northern latitudes and in JJA around 50◦S.

Aggregating individualW estimates over the full year, we compute the mean difference (MD) between

WMM80 and bothW10 andW37, MD = W − WMM80, together with the normalized mean difference (NMD),

NMD = 100 ×MD∕WMM80.

The MD betweenWMM80 and bothW10 andW37 are shown in Figures 3a and 3b. Over much of the middle

and lower latitudes (between 30◦N and 30◦S), MD is close to zero forW10; forW37, MD is positive and reaches

0.8% in low wind speed regions. At higher latitudes, MD increases in magnitude, reaching −2.4% in regions

of the Southern Ocean forW10. These are high wind speed regions, whereWMM80 is consistently higher than

W10. In these regions, MD forW37 is generally not as large becauseW37 estimates are higher thanW10.
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Figure 1. Seasonal means of (left)W10 and (right)W37 .

Figures 3c and 3d show normalized mean differences betweenWMM80 andW10 andW37, respectively. NMD

forW10 lies between −50% and 50% over much of the oceans. A somewhat different behavior is seen for

W37; in equatorial regions and low latitudes, NMD can be as large as 240%, reflecting the large relative

difference betweenW37 andWMM80. The difference between the two frequencies results from the physi-

cally different nature of the properties they respond to: the foam in actively breaking waves and the slowly

decaying surface foam. This imposes both a large difference in meanW and differences in response to

environmental conditions.

In the same manner, we compareW estimates predicted by MM80 with parameterized satellite-based esti-

mates (equation (2)), rather than true satelliteW estimates. The resulting MD and NMD maps (Figure S1 in

the supporting information) show that the effect of using parameterized satellite-based values is small, with

the ranges and spatial distributions of MD and NMD almost equivalent to those shown in Figure 3. The small

differences suggest that parameterized satellite-based values of whitecap fraction differ from MM80 predic-

tions in the same way as the direct satellite observations ofW . In other words, the wind exponents in the

W(U10) parameterizations (2) capture well the geographical variability ofW carried by the direct satellite

observations ofW .

SALISBURY ET AL. ©2014. The Authors. 4
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Figure 2. Latitudinal variation of seasonal means of W10 , W37 , and WMM80 . Shaded areas represent standard deviation

on means.

3.3. Implications

In models and remote sensing applications,W is specified through use ofW(U10) parameterizations. How-

ever, these parameterizations are based on limited in situ data sets and are known to miss contributions to

variability inW resulting from second-order forcings [Salisbury et al., 2013].

An important application is the use ofW to estimate the sea spray aerosol (SSA) source flux in aerosol and

climate models. Generally, the SSA source flux is prescribed through application of the whitecap method,

scaling an estimate of the production flux per unit area whitecap, often derived from laboratory measure-

ments, byW , or by scaling a time average of this production flux byW∕� [Monahan et al., 1986], where � is a

characteristic e-folding whitecap decay time. As such, any uncertainty inW transfers directly to the flux esti-

mates. Many of the resulting sea spray source functions (SSSF) use MM80 (1), resulting in fluxes with a U 3.41
10

dependence. Such a dependence yields large source fluxes at high winds, resulting in modeled sea salt num-

ber and mass concentrations typically higher than those measured [de Leeuw et al., 2011; Ovadnevaite et al.,

2012]. Tsyro et al. [2011] found that model estimates based on the SSSFs ofMårtensson et al. [2003] and Gong

[2003] overestimate atmospheric concentrations of Na by as much as 46% compared to observations. Simi-

larly, through a comparison of modeled and ship measured sea salt mass concentrations,Witek et al. [2007]

found that modeled concentrations were biased high—increasingly so with U10. Jaeglé et al. [2011] found

Figure 3. Mean difference (MD = W − WMM80) and normalized mean difference (NMD = 100 × MD∕WMM80) between

WMM80 and (a and c)W10 and (b and d) W37 .

SALISBURY ET AL. ©2014. The Authors. 5
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that the GEOS-Chemmodel consistently underestimates SSA concentrations in the tropics (SST > 25◦C) and

overestimates at higher latitudes (SST < 10◦C).

That the uncertainty of the SSA flux drives substantial geographical biases has also been noted in model

estimates of derived quantities. Using a lower limit for sea salt concentrations, Haywood et al. [1999] could

not reconcile modeled and measured values of solar irradiance. Use of higher sea salt concentrations

brought balance over much of the globe but overestimation at high latitudes. Such overestimation at high

latitudes for aerosol optical depth (AOD), accompanied with underestimation at low latitudes, persisted in

models in which the SSSF uses the MM80W(U10) parametrization [Chin et al., 2002]. Smirnov et al. [2011]

found that modeled AODs south of 40◦S are consistently higher than Sun photometer measurements; many

of the models compared use MM80W(U10) parametrization as well.

Such biases in modeled sea salt concentrations and derived quantities cannot be solely attributed to biases

in SSA source flux estimates; transport and removal processes also play a role, as does the quality of the

wind speed data driving the parameterization. However, the geographical biases outlined above are con-

sistent with our findings regarding the differences between MM80 and satellite retrievals ofW (section 3.2).

In high-latitude regions such as the North Atlantic and Southern Ocean, where mean wind speed is high-

est, meanW10 is up to 60% lower than meanWMM80, while meanW37 is up to 40% lower. In low-latitude

regions where wind speeds are consistently low, the 1 year mean ofW10 is up to 50% larger thanWMM80,

whereas meanW37 can be as much as 240% higher. As modeled SSA source fluxes scale linearly withW , use

of satellite-basedW estimates (either directly measured or parameterized) instead of MM80 in a SSSF would

result, on average, in larger SSA fluxes in low wind speed regimes and smaller fluxes in high winds, by the

factors shown in Figure 3. BecauseW10 andW37 capture the natural variability of whitecap formation and

lifetime, our results imply that discrepancies between modeled and measured quantities can be, at least

partially, reconciled with the use of satellite-based estimates ofW .

With regard to the use of satellite-based estimates for obtaining SSA emissions using the whitecap method,

we are not yet able to say whetherW10,W37, or indeed some combination of both, is the most appropriate

measure. One might presumeW37 is a preferable measure, as it quantifies both active and residual whitecap

stages, both of which involve bubble bursting and SSA production. However, a number of caveats hamper

reliable characterization of SSA production. The relative contribution of active and residual whitecaps to

total SSA production should be weighted by their respective decay times usingW∕� [Monahan et al., 1982,

1986], but more measurements are necessary to quantify the decay times. Different production fluxes per

unit area of whitecap in active and decaying phases are expected to be necessary, since the bubble size dis-

tributions and rate of bursting will be different in each; these have not been characterized. In laboratory

studies,Woolf et al. [1987] observed aerosol production to continue after the decay of a visible whitecap sig-

nature. This is likely the result of a small flux of bubbles small enough to remain in the water column for an

extended period and which burst too rapidly at the surface for a foam layer to be maintained. Their concen-

tration and size distribution ought, however, to be related to their rate of production and hence whitecap

formation andW10. Furthermore, the production flux per unit area whitecap is expected to change with the

scale of individual breaking waves; recently, Norris et al. [2013] showed a sizeable wind speed dependence

of the production flux per unit area whitecap for small particles but no distinguishable change for large par-

ticles over individual whitecaps. It is also possible that the relevance ofW10 andW37 could vary with emitted

SSA particle size: smaller particles (produced by film droplets) are associated with the bursting of larger bub-

bles which rise to the surface rapidly and are thus more concentrated in recent/active breakers; on the other

hand, larger particles (produced by jet droplets) are associated with smaller bubbles which can stay mixed in

surface layer much longer and may reach the surface over a longer period. Thus,W10 may be more relevant

to the production of smaller particles, whileW37 could be better related to production of larger particles.

Finally, the stabilization of bubbles by biological surfactants is a factor known to influence foam in its decay-

ing stage [Callaghan et al., 2013] and so can be expected to affectW37 estimates and their SSA production

rate more than theW10 estimates.

At this stage—based on an assumption that the currently used production rates are more likely representa-

tive of thicker active whitecaps (as quantified byW10), and the closer agreement between the wind speed

dependence ofW10 and traditional parameterizations—we suggest that use ofW10 is preferable toW37.

Our discussion so far has focused on the utility of satellite-basedW estimates for aerosol, climate, and chem-

ical transport models which need to predict the SSA source flux. Satellite-based estimates ofW would
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also benefit modeling of other air-sea interaction processes associated with whitecaps. These include gas

exchange, storm intensification, global radiation budget, and ocean albedo. It would also improve the accu-

racy of remote sensing retrievals of geophysical variables such as wind vector, sea surface salinity, and ocean

color. Routine availability of satellite-basedW estimates can facilitate further evaluation of such benefits.

Thus efforts improving satellite observations of oceanic whitecaps are encouraged.

4. Conclusions

The global distribution and seasonal dependence of whitecap fraction at two microwave frequencies (W10

andW37) have been described. Seasonal means of the two estimates have similar geographical distribu-

tions, withW37 seasonal means a factor 1.5–2 higher than those forW10. At low latitudes (equatorward of

30◦N and S), seasonal means rarely reach 1% forW10 and 1.5% forW37. Seasonal changes in middle to high

latitudes are stronger in the Northern Hemisphere than in the Southern Hemisphere; this reflects the effects

of the asymmetry in distribution of continental land masses between the hemispheres. Highest seasonalW

occurs in DJF in the North Atlantic and JJA Southern Ocean.

Differences between satellite-based estimates ofW and those obtained from the widely used W(U10)

relationship of Monahan and O’Muircheartaigh [1980] are driven primarily by their differing wind speed

dependence, which is weaker for the satellite-based estimates. This results in satellite estimates higher than

those obtained from MM80 in the tropics but lower than MM80 in high latitudes where mean wind speeds

are higher. Overestimation of MM80 due to extrapolation beyond its range of validity is likely a key bias at

high wind speeds. These differences are robust if a comparison is made between MM80W estimates and

parameterized satellite-based estimates. The satellite-based parameterizations (2) are derived fromW esti-

mates on a global scale and so their wind speed dependence will in part reflect the influence of factors

other than wind speed which covary with the wind geographically; for example SST, biological surfactant

concentration, and fetch-dependent wave state. As the data set of satellite-basedW estimates is not yet

freely available for use, the satellite-basedW(U10) parameterizations can be used in lieu of observedW10 and

W37 estimates.

The use ofW(U10) parameterizations based on limited in situ data can lead to biases in the global distri-

bution ofW . This in turn leads to biases in predictions of SSA source fluxes. Such biases are consistent

with recent results showing both general overestimation of modeled SSA concentrations in high latitudes

and underestimation in the tropics. These biases can be reduced with use of satellite-based estimates

ofW to estimate SSA source fluxes. An improved representation of the spatial and temporal distribution

of W will also benefit parameterizations of air-sea interaction processes and accuracy of remote sens-

ing retrievals. Routine satellite observations of whitecap fraction can provide such improved spatial and

temporal distribution ofW .

References

Anguelova, M. D., and P. W. Gaiser (2011), Skin depth at microwave frequencies of sea foam layers with vertical profile of void fraction, J.

Geophys. Res., 116, C11002, doi:10.1029/2011JC007372.

Anguelova, M. D., and F. Webster (2006), Whitecap coverage from satellite measurements: A first step toward modeling the variability of

oceanic whitecaps, J. Geophys. Res., 111, C03017, doi:10.1029/2005JC003158.

Asher, W. E., L. M. Karle, B. J. Higgins, P. J. Farley, E. C. Monahan, and I. S. Leifer (1996), The influence of bubble plumes on air-seawater

gas transfer velocities, J. Geophys. Res., 101(C5), 12,027–12,041, doi:10.1029/96JC00121.

Bettenhausen, M., C. Smith, R. Bevilacqua, N. Wang, P. Gaiser, and S. Cox (2006), A nonlinear optimization algorithm for WindSat wind

vector retrievals, IEEE Trans. Geosci. Remote Sens., 44(3), 597–610, doi:10.1109/TGRS.2005.862504.

Blanchard, D. (1963), The electrification of the atmosphere by particles from bubbles in the sea, Prog. Oceanogr., 1, 73–112.

Callaghan, A. H., G. B. Deane, and D. M. Stokes (2013), Two regimes of laboratory whitecap foam decay: Bubble-plume controlled and

surfactant stabilized, J. Phys. Oceanogr., 43, 1114–1126, doi:10.1175/JPO-D-12-0148.1.

Chin, M., et al. (2002), Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun

photometer measurements, J. Atmos. Sci., 59(3), 461–483, doi:10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2.

de Leeuw, G., E. L. Andreas, M. D. Anguelova, C. W. Fairall, E. R. Lewis, C. O’Dowd, M. Schulz, and S. E. Schwartz (2011), Production flux of

sea spray aerosol, Rev. Geophys., 49, RG2001, doi:10.1029/2010RG000349.

Erickson III, D. J., J. T. Merrill, and R. A. Duce (1986), Seasonal estimates of global oceanic whitecap coverage, J. Geophys. Res., 91(C11),

12,975–12,977, doi:10.1029/JC091iC11p12975.

Frouin, R., S. F. Iacobellis, and P. Y. Deschamps (2001), Influence of oceanic whitecaps on the global radiation budget, Geophys. Res. Lett.,

28(8), 1523–1526, doi:10.1029/2000GL012657.

Gong, S. L. (2003), A parameterization of sea-salt aerosol source function for sub- and super-micron particles, Global Biogeochem. Cycles,

17(4), 1097, doi:10.1029/2003GB002079.

Gordon, H. R., and M. Wang (1994), Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors, Appl. Opt., 33(33),

7754–7763, doi:10.1364/AO.33.007754.

Acknowledgments

We express our thanks to two anony-

mous reviewers for helpful comments

and suggestions and to the WindSat

team at the Naval Research Laboratory,

Washington DC. D.S. and I.M.B.

are supported by NERC grant

NE/H004238/1. M.D.A. is supported by

the Office of Naval Research, NRL Pro-

gram element 61153N, work units WU

8967 and WU 4500.

The Editor thanks two anonymous

reviewers for their assistance in

evaluating this paper.

SALISBURY ET AL. ©2014. The Authors. 7

http://dx.doi.org/10.1002/2014GL059246
http://dx.doi.org/10.1029/2011JC007372
http://dx.doi.org/10.1029/2005JC003158
http://dx.doi.org/10.1029/96JC00121
http://dx.doi.org/10.1109/TGRS.2005.862504
http://dx.doi.org/10.1175/JPO-D-12-0148.1
http://dx.doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2
http://dx.doi.org/10.1029/2010RG000349
http://dx.doi.org/10.1029/JC091iC11p12975
http://dx.doi.org/10.1029/2000GL012657
http://dx.doi.org/10.1029/2003GB002079
http://dx.doi.org/10.1364/AO.33.007754


Geophysical Research Letters 10.1002/2014GL059246

Harmel, T., and M. Chami (2012), Determination of sea surface wind speed using the polarimetric and multidirectional properties of

satellite measurements in visible bands, Geophys. Res. Lett., 39, L19611, doi:10.1029/2012GL053508.

Haywood, J. M., V. Ramaswamy, and B. J. Soden (1999), Tropospheric aerosol climate forcing in clear-sky satellite observations over the

oceans, Science, 283(5406), 1299–1303, doi:10.1126/science.283.5406.1299.

Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak (2012), Wind and waves in extreme hurricanes, J. Geophys. Res., 117, C09003,

doi:10.1029/2012JC007983.

Jaeglé, L., P. K. Quinn, T. S. Bates, B. Alexander, and J.-T. Lin (2011), Global distribution of sea salt aerosols: New constraints from in situ

and remote sensing observations, Atmos. Chem. Phys., 11(7), 3137–3157, doi:10.5194/acp-11-3137-2011.

Koepke, P. (1984), Effective reflectance of oceanic whitecaps, Appl. Opt., 23(11), 1816–1824, doi:10.1364/AO.23.001816.

Mårtensson, E. M., E. D. Nilsson, G. de Leeuw, L. H. Cohen, and H.-C. Hansson (2003), Laboratory simulations and parameterization of the

primary marine aerosol production, J. Geophys. Res., 108(D9), 4297, doi:10.1029/2002JD002263.

Monahan, E. C., and I. G. O’Muircheartaigh (1980), Optimal power-law description of oceanic whitecap coverage dependence on wind

speed, J. Phys. Oceanogr., 10, 2094–2099, doi:10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2.

Monahan, E. C., and I. G. O’Muircheartaigh (1986), Whitecaps and the passive remote sensing of the ocean surface, Int. J. Remote Sens.,

7(5), 627–642, doi:10.1080/01431168608954716.

Monahan, E. C., and M. C. Spillane (1984), The role of oceanic whitecaps in air-sea gas exchange, in Gas Transfer at Water Surfaces, edited

by W. Brutsaert and G. H. Jirka, pp. 495–503, D. Reidel Publishing Company, Dordrecht, Netherlands.

Monahan, E. C., K. L. Davidson, and D. E. Spiel (1982), Whitecap aerosol productivity deduced from simulation tank measurements, J.

Geophys. Res., 87(C11), 8898–8904, doi:10.1029/JC087iC11p08898.

Monahan, E. C., D. E. Spiel, and K. L. Davidson (1986), A model of marine aerosol generation via whitecaps and wave disruption, in

Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, edited by E. C. Monahan and G. Niocaill, pp. 167–174, D. Reidel

Publishing Company, Dordrecht, Netherlands.

Norris, S., I. M. Brooks, B. I. Moat, M. J. Yelland, G. de Leeuw, R. W. Pascal, and B. Brooks (2013), Near-surface measurements of sea spray

aerosol production over whitecaps in the open ocean, Ocean Sci., 9(1), 133–145, doi:10.5194/os-9-133-2013.

Ovadnevaite, J., D. Ceburnis, M. Canagaratna, H. Berresheim, J. Bialek, G. Martucci, D. R. Worsnop, and C. O’Dowd (2012), On the effect of

wind speed on submicron sea salt mass concentrations and source fluxes, J. Geophys. Res., 117, D16201, doi:10.1029/2011JD017379.

Rose, L. A., W. E. Asher, S. C. Reising, P. W. Gaiser, K. M. St Germain, D. J. Dowgiallo, K. A. Horgan, G. Farquharson, and E. J. Knapp

(2002), Radiometric measurements of the microwave emissivity of foam, IEEE Trans. Geosci. Remote Sens., 40(12), 2619–2625,

doi:10.1109/TGRS.2002.807006.

Salisbury, D. J., M. D. Anguelova, and I. M. Brooks (2013), On the variability of whitecap fraction using satellite-based observations, J.

Geophys. Res. Oceans, 118, 6201–6222, doi:10.1002/2013JC008797.

Sayer, A. M., G. E. Thomas, and R. G. Grainger (2010), A sea surface reflectance model for (A)TSR, and application to aerosol retrievals,

Atmos. Meas. Tech., 3(2), 1023–1098, doi:10.5194/amt-3-813-2010.

Smirnov, A., et al. (2011), Maritime aerosol network as a component of AERONET—First results and comparison with global aerosol

models and satellite retrievals, Atmos. Meas. Tech., 4, 1–32, doi:10.5194/amt-4-583-2011.

Smith, P. (1988), The emissivity of sea foam at 19 and 37 GHz, IEEE Trans. Geosci. Remote Sens., 26(5), 541–547, doi:10.1109/36.7679.

Spillane, M. C., E. C. Monahan, P. A. Bowyer, D. M. Doyle, and P. J. Stabeno (1986), Whitecaps and global fluxes, in Oceanic Whitecaps and

Their Role in Air-Sea Exchange Processes, edited by E. Monahan and G. Niocaill, pp. 209–218, D. Reidel Publishing Company, Dordrecht,

Netherlands.

Spracklen, D. V., K. J. Pringle, K. S. Carslaw, M. P. Chipperfield, and G. W. Mann (2005), A global off-line model of size-resolved

aerosol microphysics: I. Model development and prediction of aerosol properties, Atmos. Chem. Phys., 5(1), 179–215,

doi:10.5194/acp-5-2227-2005.

Textor, C., et al. (2006), Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6(7),

1777–1813, doi:10.5194/acp-6-1777-2006.

Tsyro, S., W. Aas, J. Soares, M. Sofiev, H. Berge, and G. Spindler (2011), Modelling of sea salt concentrations over Europe: Key uncertainties

and comparison with observations, Atmos. Chem. Phys., 11(20), 10,367–10,388, doi:10.5194/acp-11-10367-2011.

Wentz, F. (1997), A well-calibrated ocean algorithm for special sensor microwave/imager, J. Geophys. Res., 102, 8703–8718,

doi:10.1029/96JC01751.

Witek, M. L., P. J. Flatau, P. K. Quinn, and D. L. Westphal (2007), Global sea-salt modeling: Results and validation against multicampaign

shipboard measurements, J. Geophys. Res., 112, D08215, doi:10.1029/2006JD007779.

Woolf, D. K. (2005), Parametrization of gas transfer velocities and sea-state-dependent wave breaking, Tellus B, 57(2), 87–94,

doi:10.1111/j.1600-0889.2005.00139.x.

Woolf, D. K., P. A. Bowyer, and E. C. Monahan (1987), Discriminating between the film drops and jet drops produced by a simulated

whitecap, J. Geophys. Res., 92(C5), 5142–5150, doi:10.1029/JC092iC05p05142.

Yueh, S. (1997), Modeling of wind direction signals in polarimetric sea surface brightness temperatures, IEEE Trans. Geosci. Remote Sens.,

35(6), 1400–1418, doi:10.1109/36.649793.

Zhang, X. (2012), Contribution to the global air–sea CO2 exchange budget from asymmetric bubble-mediated gas transfer, Tellus B, 64,

17,260, doi:10.3402/tellusb.v64i0.17260.

SALISBURY ET AL. ©2014. The Authors. 8

http://dx.doi.org/10.1002/2014GL059246
http://dx.doi.org/10.1029/2012GL053508
http://dx.doi.org/10.1126/science.283.5406.1299
http://dx.doi.org/10.1029/2012JC007983
http://dx.doi.org/10.5194/acp-11-3137-2011
http://dx.doi.org/10.1364/AO.23.001816
http://dx.doi.org/10.1029/2002JD002263
http://dx.doi.org/10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2
http://dx.doi.org/10.1080/01431168608954716
http://dx.doi.org/10.1029/JC087iC11p08898
http://dx.doi.org/10.5194/os-9-133-2013
http://dx.doi.org/10.1029/2011JD017379
http://dx.doi.org/10.1109/TGRS.2002.807006
http://dx.doi.org/10.1002/2013JC008797
http://dx.doi.org/10.5194/amt-3-813-2010
http://dx.doi.org/10.5194/amt-4-583-2011
http://dx.doi.org/10.1109/36.7679
http://dx.doi.org/10.5194/acp-5-2227-2005
http://dx.doi.org/10.5194/acp-6-1777-2006
http://dx.doi.org/10.5194/acp-11-10367-2011
http://dx.doi.org/10.1029/96JC01751
http://dx.doi.org/10.1029/2006JD007779
http://dx.doi.org/10.1111/j.1600-0889.2005.00139.x
http://dx.doi.org/10.1029/JC092iC05p05142
http://dx.doi.org/10.1109/36.649793
http://dx.doi.org/10.3402/tellusb.v64i0.17260

	Global distribution and seasonal dependence of satellite-based whitecap fraction
	Abstract
	Introduction
	Method
	Data
	Analyses

	Results and Discussion
	Spatial Distribution and Seasonal Changes
	Comparison With In Situ W(U10) Parameterization
	Implications

	Conclusions
	References


