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Abstract.

Many modelling studies examine the impacts of climate change on crop yield, but few explore either

the underlying bio–physical processes, or the uncertainty inherent in the parameterisation of crop growth

and development. We used a perturbed–parameter crop modelling method together with a regional climate

model (PRECIS) driven by the 2071–2100 SRES A2 emissions scenario in order to examine processes and

uncertainties in yield simulation. Crop simulations used the groundnut (i.e. peanut; Arachis hypogaea L.)

version of the General Large–Area Model for annual crops (GLAM). Two sets of GLAM simulations were

carried out: control simulations and fixed–duration simulations, where the impact of mean temperature on

crop development rate was removed. Model results were compared to sensitivity tests using two other crop

models of differing levels of complexity: CROPGRO, and the groundnut model of Hammer et al. (1995).

GLAM simulations were particularly sensitive to two processes. First, elevated vapour pressure deficit

(VPD) consistently reduced yield. The same result was seen in some simulations using both other crop

models. Second, GLAM crop duration was longer, and yield greater, when the optimal temperature for

the rate of development was exceeded. Yield increases were also seen in one other crop model. Overall, the

models differed in their response to super–optimal temperatures, and that difference increased with mean

temperature; percentage changes in yield between current and future climates were as diverse as -50% and

over +30% for the same input data. The first process has been observed in many crop experiments, whilst

the second has not. Thus, we conclude that there is a need for: (i) more process–based modelling studies

of the impact of VPD on assimilation, and (ii) more experimental studies at super–optimal temperatures.

Using the GLAM results, central values and uncertainty ranges were projected for mean 2071–2100 crop

yields in India. In the fixed–duration simulations, ensemble mean yields mostly rose by 10 to 30%. The full

ensemble range was greater than this mean change (20–60% over most of India). In the control simulations,

yield stimulation by elevated CO2 was more than offset by other processes — principally accelerated

crop development rates at elevated, but sub–optimal, mean temperatures. Hence the quantification of

uncertainty can facilitate relatively robust indications of the likely sign of crop yield changes in future

climates.

c© 2007 . Printed in the U.K..

Challinor2007-revised.tex; 31/07/2007; 12:08; p.1



2 Challinor and Wheeler

Keywords: Crop model, climate change, quantifying uncertainty, development rate, transpiration effi-

ciency, vapour pressure deficit

1. Introduction

Climate change has direct and indirect impacts on crop growth and development. Higher

atmospheric concentrations of CO2 have a direct impact on C3 crops by increasing pho-

tosynthesis and the efficiency of water use. This effect is potentially significant, although

only relatively recently (1999 onwards; see Luo and Lin, 1999) has parameterisation of this

effect become common in crop model assessments of climate change. Indirect effects result

from changes in weather and climate that result from higher levels of greenhouse gases, for

example changes in the mean and variability of temperature or rainfall. Mean temperatures

affects crop duration (e.g. Challinor et al., 2005c), whilst temperature extremes during

flowering can reduce the grain or seed number (Wheeler et al., 2000). Changes in tem-

perature will also affect the potential evapotranspiration, with actual evapotranspiration

determined by any concurrent changes in water availability and radiation.

Both the direct (Long et al., 2006) and the indirect (Mearns et al., 1999) effect of climate

change on crops are significant sources of uncertainty in impacts assessments. This study

builds on previous work which used a range of crop and/or climate model parameters to

quantify the uncertainty in the response of crops to mean temperature (Challinor et al.,

2005a, 2007a) and elevated CO2 (Challinor and Wheeler, 2007). The principal crop model

used is the General Large–Area Model for annual crops (GLAM; Challinor et al., 2004).

In order to focus more clearly on the response of the crop to climate change, only a single

climate change scenario is considered (a regional climate model scenario for 2071–2100).

This choice is further justified by examining only mean yields (i.e. averages over the period

2071–2100), since for mean yield the relative contribution of crop simulation uncertainty

to that of uncertainty in climate is large. The same is not true of yield variability, where

climate uncertainty dominates (Challinor et al., 2005a).

A simple, though not necessarily intelligent, adaptation is also considered: by fixing the

timing of the development stages of the crop under climate change so that it equals that of

the baseline (i.e. current) climate, the impact of mean temperature on duration is removed.
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Any impacts of climate change seen in these simulations is due to other processes such

as the direct CO2 effect and changes in the hydrological cycle. Hence this method allows

the impact of individual crop processes, and their uncertainties, to be assessed. A similar

method was used by Challinor et al. (2007a) to examine the relative importance of changes

in the mean and extreme of temperatures. For this reason, the impact of temperature

extremes on flowering is not simulated in the current study. Limiting the processes studied

in this way isolates them and permits an assessment of their relative importance.

The study has three aims. The first is to identify the (indirect) bio–physical processes

that are important in determining yield under climate change, and quantify their impacts.

These processes may vary geographically with climate, although the methods themselves

are not location–specific. The second aim is to identify the key uncertainties that emerge:

which parameters contribute most to the total uncertainty in the climate change projec-

tion? Since the parameters in GLAM map directly onto specific processes in a transparent

way, these results are relevant beyond the GLAM framework: they can be used to assess

the importance of these processes, and their associated uncertainties, in other crop models

and also in field studies. The generality of the results from the first and second aims is

discussed in section 4.

The third aim is more specific than the other two: to put geographically–specific central

values and uncertainty ranges on the changes in groundnut yield under the 2071–2100

Special Report on Emissions Scenarios (SRES) A2 scenario. This is carried out for both

the adapted and non–adapted crops. In reality, of course, the adaptive measures used by

the end of the century may be something that cannot currently be envisaged. This is an

important caveat to the third aim of this study. It is also a motivation for the first two

aims, since these seek to analyse fundamental processes towards which adaptation should

be geared.

The study region is India, where extensive evaluation of GLAM has been carried out

(Challinor et al., 2006, 2007a, 2005b, 2005d, 2004). The key bio–physical processes iden-

tified may vary with crop species. However, many annual crops, particularly those that

share the C3 photosynthesis pathway, are likely to show similar broad responses to the crop

studied here (groundnut, also known as peanut; Arachis hypogaea L.). A third factor may

affect the generality of the results: the choice of crop model. To address this, simulations

with two further crop models (CROPGRO: Boote and Jones, 1998; and the groundnut
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4 Challinor and Wheeler

model of Hammer et al., 1995) were carried out, in order to assess the sensitivity of those

models to the identified processes.

2. Methods

2.1. Large–area crop modelling

The impact of climate variability and change on food production has been assessed using

a number of methods. Empirical parameterisations of crop yield have been combined with

climate modelling and economic modelling (e.g. Iglesias et al., 2000), with the advantage

of quantifying impacts in human terms such as levels of risk to hunger (Parry et al., 2004).

A disadvantage of this method is that it may introduce errors through the linearisation of

crop yield equations (Challinor et al., 2006) and/or the use of monthly data, which does

not account for sub–seasonal weather variability (Challinor et al., 2007b, 2005c). Detailed

process–based crop models have also been used with climate model output (e.g. Carbone

et al., 2003), sometimes scaled down in space (e.g. Busuioc et al., 2001). This method

can capture the complex bio–physical processes associated with climate change that are

usually overlooked by empirical studies. However, these models produce results which are

location–specific, since the yields depend upon the specific crop variety, soils and man-

agement practices used. Whilst this problem can be overcome through the identification

of representative farms, this choice can itself be problematic (Antle, 1996; Luo and Lin,

1999). The problem can also be overcome by applying a bias correction at the output stage

(Jagtap and Jones, 2002). Whilst this is a pragmatic approach, some of the benefits of

process–based modelling are lost by calibrating outside the model structure: the coherent

simulation of the simulated aspects of crop growth and development is clearly not realistic

if a large bias correction is applied to yields.

Process-based crop modelling can also be carried out at the scale of the climate model,

providing climate is believed to influence crop yield on that scale (Challinor et al., 2003).

The result is a model of intermediate complexity: less complex than location–specific mod-

els and more complex than empirical parameterisations. GLAM is a large–area crop model

of this sort. This model does not represent the heterogeneity within a climate model grid

cell and as a result it has a lower input data requirement than point–based models. Since
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it is also less complex than many point–based models, the risk of over–parameterisation is

reduced (Cox et al., 2006; Sinclair and Seligman, 2000). GLAM contains parameterisations

of the mechanisms through which a crop responds to weather and climate. It can therefore

turn time series of weather into time series of crop yield. Being designed to operate with

climate model data in this way is an advantage for a study such as this one. However, this

method can omit important fine-scale information on climatic (Baron et al., 2005) and/or

non–climatic (Challinor and Wheeler, 2007) sources of yield variability. Furthermore, there

is no evidence of any link at the large scale between yield and non–climatic factors such

as management practices, pests and diseases. Hence this may not be an appropriate scale

for the study of non–climatic influences on yield. Despite these issues, large–area crop

modelling has shown promising results in current climates in India (Challinor et al., 2007a,

2006, 2005b, 2005d; Wheeler et al., 2007) and in other tropical regions (Bergamaschi et al.,

2007; Chee-Kiat, 2006; Osborne, 2005).

2.2. Input future climate scenario

The input future climate data for this study is taken directly from the PRECIS regional

climate model (http://precis.metoffice.com/) simulations of IITM (2004). These simu-

lations did not include sulphate aerosols. The greenhouse gas emissions for the chosen

simulation was that of the Special Report on Emissions Scenarios (SRES) A2 storyline

for 2071–2100. This is one of the most fossil fuel intensive scenarios, with emissions rising

monotonically from present–day values (< 10 Gt of carbon) to over 25 Gt in 2100, leading

to an approximate doubling of present–day atmospheric CO2 by the end of the century

(IPCC, 2001). The input weather data for the crop model was solar radiation, rainfall,

and daily maximum and minimum temperatures (Tmax and Tmin). Vapour pressure deficit

(VPD) was calculated using maximum and minimum temperatures (Tanner and Sinclair,

1983), a method which has independently been shown to produce good results (Wang

et al., 2004).

The future climate scenario produces a warmer, wetter and more variable monsoon over

most of India (figures 1a and 1b). Such an increase in the mean and interannual variability

of monsoon rainfall (i.e. intensification of the monsoon) has been found in other studies

(Turner et al., 2007; May, 2004). O’Brien et al. (2004) and Sivakumar et al. (2005) briefly

review a number of studies of projected changes in the Indian summer monsoon, and
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they are in general agreement with this result. Those studies also show that the effect

of the inclusion of sulphate aerosols, which is more realistic than their omission (see also

IPCC, 2001), is to dampen the strength of the monsoon relative to simulations without

sulphate aerosols. However, the inclusion of sulphate aerosols does not necessarily lead to

a weakening of the monsoon under climate change. The intensification of the monsoon in

the simulations used here suggests that water becomes less limiting in the future climate

scenario, so that changes in water availability are not the principal driver of changes in

crop yield.

The increase in precipitation over most of India results in an increase in atmospheric

water content (by mass) of around 10–20%. However, relative humidity (RH) falls over

the vast majority of the country. This suggests that for significant periods during the

monsoon, precipitation is sufficiently high that it does not have a large impact on VPD,

at least on timescales greater than approximately one day (see Monteith, 1986). Most of

the decreases in RH are of less than 5%. In contrast, differences in VPD are mostly in

the range 15–30%. This change is not sensitive to the method used to calculate VPD: two

methods were used, the first based on mean daily temperature and relative humidity, and

the second based on Tmax and Tmin, as described above (see also Challinor et al., 2004).

Whilst these methods produced different absolute values of VPD, similar changes between

the baseline (see section 2.3) and scenario values were found in both cases. Furthermore,

these changes were of greater magnitude than the differences between the two methods.

Hence this is a robust change.

Four regions are studied in particular detail in this paper: north–west (NW), the north–

western part of Gujarat (GJ), a region in central India (CE) and part of the southern

peninsula (SP) (figure 1a). Mean VPD in CE is mostly between 0.6 and 0.9 Pa, whilst

in GJ it is mostly in the range 0.9–1.2. These values are typical of most of India, the

exceptions being north of 26◦N, where VPD is mostly 1.2–1.5 Pa, and SP and south of

SP, where VPD is mostly in the range 1.8–2.4 Pa. In NW VPD is in the range 1.8–2.4 Pa.

The largest changes in VPD between the baseline and scenario climates are seen in NW,

followed by SP, GJ and finally CE. Associated with the high VPD in NW and SP is low

rainfall, which causes plant water stress (see Challinor and Wheeler, 2007).

The increases in VPD are mostly driven by temperature changes, which increase the

capacity of the air for holding water vapour. future climate scenario the mean temperature
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increases across all of India, by between 2 and 6 ◦C (figures 1c and 1d). Based on seasonal

averages, Tmax increases by more than Tmin, so that the amplitude of the diurnal cycle

increases. Whilst recent observations of Tmin and Tmax in many parts of the world do

not show the same result (Parker, 2006), there is evidence of this trend in temperatures

in India (Arora et al., 2005). Since the VPD used by the crop model is proportional to

Tmax − Tmin, this preference for daytime over nighttime heating contributes to the VPD

increase seen by GLAM. The impact of some of the changes described here has also been

studied by Challinor et al. (2007a, 2006).

2.3. Crop yield simulations

Crop yield simulations for the climate change scenario were carried out using the General

Large–Area Model for annual crops (GLAM; Challinor et al., 2004; Challinor et al., 2006).

The model, as well as the simulations of crop yield under the baseline climate (1961–1990)

that are used in the current study, are described in more detail in Challinor and Wheeler

(2007). That study is referred to hereafter as CW07. Four sets of baseline simulations

were produced in that study, and these are described in table I. These four sets of simu-

lations were designed to quantify the uncertainty associated with the parameterisation of

crop growth. They varied the parameters that control transpiration and assimilation (i.e.

transpiration efficiency). CW07 also produced simulations with the baseline climate but

with an elevated CO2 (CO2–only simulations), and these are used in the current study to

isolate the impact of non–CO2 effects.

Planting in all simulations referred to in this study occurs on the first day within the

planting window on which the available soil moisture exceeds 50% of the maximum. Since

water availability increases in general between the two time periods, the planting window

was not changed for the scenario simulations. The parameter sets used for the scenario

simulations in the current study, as well as the soils and planting window data, are those of

CW07. These parameter sets are those that reproduced observed large–scale yields (based

on a district–level data set) in the baseline climate and observed changes (based on free

air CO2 enrichment and controlled environment studies) in yield , leaf area index (LAI)

and specific leaf area (SLA) under elevated CO2 with no associated change in climate.

A number of parameter sets were rejected by CW07 based on these comparisons. The

surviving 18 parameter sets are summarised in table I and listed in Appendix A. Each
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8 Challinor and Wheeler

of these parameter sets is an equally plausible representation of crops growing under the

scenario climate. Differences in yields across these parameter sets is therefore a measure

of the uncertainty in yield associated with input parameter uncertainty.

The 18 simulations were repeated with one modification made to the model: instead

of being determined by thermal time, the duration of each crop development stage was

fixed, on a year–by–year basis, at the corresponding duration of that stage in the baseline

simulation. For these fixed–duration simulations, then, there was no impact of mean

temperature on crop development. Whilst this is a departure from reality, it remains

sufficiently realistic for our purposes since it approximates the use of a longer–duration

crop. For many regions, then, these simulations represent a form of adaptation, although

not necessarily an optimal one. The advantage of this method over a change in genetic

coefficients is that it permits the direct comparison with baseline simulations in a manor

that factors out completely the impact of mean temperature on development.

GLAM accounts for many processes that are important under climate change. The

model contains parameterisations of the impact of changes in atmospheric CO2 on tran-

spiration efficiency (TE) and SLA, as well as the impacts of mean temperature on crop

duration. Subseasonal processes are also parameterised, so that changes in temperature,

radiation, atmospheric humidity and water availability will affect evapotranspiration and

crop growth and development. Daily values of VPD, for example, will affect TE. Some

processes are not accounted for in this study. The impact of increased ozone concentra-

tions or temperature on transpiration efficiency (as a surrogate for assimilation rates)

is not considered. The impact of elevated temperature alone would be to increase TE

(Bernacchi et al., 2006), whilst the impact of elevated ozone alone would be decrease TE

(Long et al., 2005). In reality these effects interact both with each other and with CO2

concentrations (Bernacchi et al., 2006). Interactions between temperature and elevated

CO2 may (Rötter and van de Geijn, 1999; Easterling and Apps, 2005; Long et al., 2004) or

may not (Morison and Lawlor, 1999) be important for crop growth and development (see

Tubiello and Ewert, 2002; Porter and Semenov, 2005 for further discussion). Interactions

between water stress, nutrients and CO2 concentrations are not considered, and neither

is any potential downregulation or acclimation to elevated CO2. CW07 has some further

discussion on these issues. Finally, the impact of changes in plant pests and diseases, which
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has been researched less than impacts on yield (Chakraborty et al., 2000), has not been

considered in this study.

In summary, 36 sets of GLAM simulations were carried out for this study: 18 sets

with the variable–duration crop and 18 sets with the fixed–duration crop. These 36 sets

of simulations were compared to the baseline simulations (Control, High Baseline TE,

Reduced Physiological Transpiration Limitation, Reduced VPD–TE Interaction; see table

I of CW07). Each set of simulations consists of thirty years of crop yield for a number of

grid cells. For clarity and conciseness, a set of GLAM simulations is referred to simple as ’a

simulation’. Unless otherwise stated this includes all of the 787 grid cells for which GLAM

has been calibrated by CW07. All results presented are for averages across the whole thirty

year period. All cited percentage changes in yield refer to the thirty–year average from

the respective baseline simulation. Since the climate input data was the same in all four

baseline simulations, these simulations have the same planting dates (for a given year and

location). Similarly, the planting dates across all 36 scenario simulations were the same.

2.4. Sensitivity analysis

Sensitivity analyses were performed with CROPGRO (Boote and Jones, 1998) and with

the groundnut model of (Hammer et al., 1995) (hereafter referred to as QNUT) in order

to compare the response of these models to elevated temperature and humidity to those

of GLAM. CROPGRO is a widely used crop simulation model, and QNUT, whilst not

currently used widely, formed the base for the development of the legume model template

in APSIM (Wang et al., 2002). Note that CW07 compared the response to elevated CO2

of these models (using the same parameter sets as those used here) to that of GLAM.

QNUT and CROPGRO were not calibrated to reproduce observed yields. Instead, standard

parameter values were used where possible in order to ensure that the model was being

used within operational limits. The parameter set used for the QNUT model was that

of Virginia Bunch, with one modification: the thermal requirement was reduced in order

to give the crop a duration of around 140–150 days. The genetic coefficients used for the

CROPGRO simulations were those of TMV2 as calibrated for use in India by Kakani

(2001). Weather inputs for the two crop models came from the thirty–year time series in

each of the grid cells from the regions NW, GJ, CE and SP shown in figure 1a. Each of

these regions has between 23 and 25 grid cells. The crop was sown on the same day as
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in the GLAM simulations. The final yield from all (690 to 750) simulations within each

region were averaged in order to produce a value for each region.

The response of the models to elevated temperature and humidity was tested separately.

The crop response to elevated CO2 was turned off for all simulations, in order to facilitate

the attribution of yield changes to either temperature or humidity changes. The sensitivity

of yield to mean temperature was tested using both irrigated and rainfed simulations. The

four chosen regions have different mean temperatures, so that no artificial variation of

temperature was required for this sensitivity analysis. This has the advantage of being more

realistic and the disadvantage that temperature is not the only variable that changes across

location. The sensitivity of yield to changes in atmospheric humidity was tested using

rainfed simulations only, since humidity and water supply are correlated. Two methods

were used for the CROPGRO simulations: (i) directly changing the vapour pressure deficit

(VPD) by multiplying it by 1.5. (ii) indirectly changing VPD by altering the maximum and

minimum daily temperatures (by +2 and -2 ◦C, respectively). In the QNUT simulations,

only the first of these methods was used, since radiation use efficiency in this model has a

strong dependence on daily maximum and minimum temperatures. In CROPGRO, the in-

direct changes were carried out using one of two options for calculating evapotranspiration:

either the Ritchie version of the Priestly–Taylor equation, or the Penman–FAO method

(see Boote and Jones, 1998). The indirect method has the advantage of having consistent

temperature and humidity, and the disadvantage that observed changes may not be due

to changes in VPD, making comparisons with GLAM more difficult. The direct method

is less internally consistent, but has the advantage that any changes in yield are definitely

the result of the changes in VPD.

It is possible that results using parameter sets calibrated to reproduce observed yields

(as is the case with the GLAM simulations) would produce a different sensitivity to tem-

perature and VPD to that found here. This was not done for this study since scale issues

mean that it is not clear how point–based crop models such as CROPGRO and QNUT

would be calibrated to reproduce large–area yields (see section 1). In order to minimise

the impact of any bias due to the choice of parameter values, all the results presented are

normalised by the control simulation yields. For the CROPGRO model, some attempt to

examine a range of calibrations was made: two values (High and Low: 0.82 and 0.22) of

the soil fertility factor (SLPF) were used for each simulation.
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The fact that CROPGRO and QNUT are designed for use with point–based weather

data rather than large–area gridded data is a further reason for considering the results of

the sensitivity analyses to be preliminary rather than definitive. However, all three models

used are process–based, so that despite these limitations, the level of consensus between

the CROPGRO, QNUT and GLAM simulations provides an indication of the likely level

of importance of the bio–physical processes observed in GLAM. Where consensus exists,

there is sound reason to believe the results. Where there is no consensus, future work can

be aimed at understanding why not. In either event, a crop modelling study at the field

scale using fully–calibrated simulations with these two models, and with full representation

of parameter uncertainty, would be a useful way to test further the validity of the results

found in this study.

3. Results

3.1. Crop yield ensemble

Differences in the mean planting date between the scenario and baseline simulations were

small: less than three days for 90% of the grid cells, less than six days for 99% of the

grid cells, and less than nine days for the remaining grid cells. Differences in yield are

therefore not, on the whole, due to differences in planting date. The 18 variable–duration

simulations were used to assess the differences between the parameter sets used. These

differences can be seen in figure 2, which presents scenario yields for the Gujarat (GJ)

and central India (CE) regions (see figure 1a). The choice of transpiration efficiency (TE)

in both the baseline and scenario simulations is shown to contribute to uncertainty (High

Baseline TE and Small/Large TE Increase simulations). However, changes in TE do not

always act systematically, and the impact of different parameter sets can vary between the

two locations. The relationship between VPD and TE is also important in both locations,

as is shown by the Reduced VPD–TE Interaction simulation. However, VPD in these two

regions (see section 2.2) was not sufficiently low as to be affected by the switching on/off

of TE changes in humid environments (see the [no] TE Increase at Low VPD simulations

in figure 2). The response of yield to the higher value of physiologically–limited maximum

transpiration is not the same at the two locations. This is because LAI is higher, and
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12 Challinor and Wheeler

increases by more, in GJ than in CE, so that in GJ greater use can be made of the

possibility of increased transpiration.

The 18 fixed–duration simulations were used to assess the indirect impact of elevated

CO2 on crop yield. Figure 3 shows the scenario yields as a percentage difference from

the baseline yields. Also shown are the simulations of CW07, which used the baseline

climate but with an elevated CO2. Differences between these two simulations are due only

to the indirect effects of CO2 (excluding the impact of mean temperature on duration).

These differences indicate that the indirect effect of CO2 on crop yield is negative. Taking

the difference between the scenario and CO2–only simulations, averaged over all ensemble

members, shows reductions in regionally–averaged yield of 16% (CE), 28% (GJ), 49% (SP),

and 60% (NW). These reductions in yield are rank in the order of the percentage changes

seen in VPD between the baseline and scenario climates (see section 2.2). This, together

with a sensitivity analysis performed with GLAM (not presented), shows that the changes

in yield in GLAM are attributable primarily to increases in VPD, which acts to reduce

TE.

Contrasting the fixed– and variable– duration simulations reveals the impact of mean

temperature changes on crop yield, as mediated through changes in crop development.

Figure 4 shows this contrast for two regions. In GJ, temperatures become sufficiently high

that the optimal temperature for development (Topt) is exceeded, and crop development

slows, resulting in an increase in yield. In CE, crop duration, and hence yield, fall because

Topt is not commonly exceeded. Figure 5 shows this contrast more globally and in a different

way: for most of India, where temperatures remain below Topt, the majority of variable–

duration ensemble members show a reduction in crop yield. Hence the uncertainty in the

response of the crop to elevated CO2 is smaller than the magnitude of the impact of

mean temperature on duration. The ensemble average yield (i.e. the mean across years

and ensemble members) in these simulations falls by 10–40% over most of India, and the

standard deviation across ensemble members is 5–10%. In contrast, in the fixed–duration

simulations yield increases in all regions except those where water is limiting. However,

the magnitude of these increases is far from certain, as can be seen in figure 6: whilst

the ensemble mean yields most commonly rise by between 10 and 30%, the standard

deviation across ensemble members (10–15%) is a significant fraction of this. The full

range from the ensemble is greater than the mean change (20–60% over most of India).
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Ensemble mean yield increases of above 30% are seen in some regions. These tend to

be associated with regions where increases in temperature (and possibly VPD) cause the

potential transpiration to rise.

In summary, the results from the GLAM simulations have identified two processes

that are important in determining yield in India under the chosen 2071–2100 scenario:

firstly, the impact of decreased humidity on assimilation and secondly the impact of mean

temperature on development rates. In GLAM the second of these processes has the largest

impact. We now go on to examine both of these processes in two other crop models, as

described in section 2.4.

3.2. Sensitivity analysis

Figure 7 show the impact of increased VPD on yields in the two other crop models. QNUT

consistently shows a reduction in yield at high VPD. CROPGRO shows a reduction in yield

in most, but not all, of the simulations. There is a large spread of results in the CROPGRO

simulations using the direct multiplication method (VPD=VPD*1.5). Reductions in yield

are only found for GJ and CE, regions which have relatively high water availability and

low VPD. Hence these are regions where VPD, rather than water, is likely to be limiting.

The average impact across all simulations which show a reduction in crop yield is 13%, and

42% of all simulations lie within a range of ±10% from this value. GLAM, in comparison,

shows a greater impact of humidity on yield (16–60%; see section 3.1), which is greater at

higher VPD.

The response of the QNUT and CROPGRO models to mean temperature is shown

in figure 8. Normalised yields are similar at low temperatures, but diverge at higher

temperatures, beyond Topt. QNUT shows increases in yield at super–optimal temperature.

(Note the term super–optimal here refers to development rates and not to yields). These

increases in yield are greater at higher temperatures, and also greater in the irrigated than

the rainfed simulations. This is consistent with the mechanism for extended crop duration

increasing yield for two reasons: firstly, duration is proportional to the exceedence of mean

temperature over Topt, and secondly, increased water availability allows the crop to take

advantage of the increased season length.

The response of GLAM to mean temperature is also shown in figure 8. This response

was calculated by taking the difference between the scenario and CO2–only simulations.
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Prior to differencing, yields were averaged over all grid cells within each location. (Hence

this number is a measure of the distance between the solid and dotted lines in figure 4).

Whilst GLAM shows increases in yield at super–optimal temperatures in three of the four

locations, these locations are not entirely consistent with those seen in the QNUT results.

In GLAM, for example, the response in NW is the lowest of the three. This is because of

the high VPD in that region, which reduces yield more strongly in GLAM than in QNUT.

On the whole, GLAM shows a greater response to mean temperature than QNUT. The

sign of the temperature response in CROPGRO is the opposite to that of GLAM and

QNUT. The reasons for this are discussed below.

4. Discussion

4.1. Bio–physical processes

In accordance with the first aim of this study, two bio–physical processes, which are not

usually cited in climate change studies, have been identified. The first of these is that

when the optimal temperature for development is exceeded, crop duration is lengthened

and yield may increase. This was seen most markedly in GLAM, which used an optimal

temperature for development of 28◦C. The same effect was seen in QNUT (Topt=29◦C),

in a manner proportional to the mean temperature in the climate change scenario (figure

8). However, increases in yield were not seen in the CROPGRO model (Topt=28–30◦C,

depending on development stage). For some simulations, this was because the duration

of the crop did not lengthen. For other simulations, there was an extension in duration

resulting from the super–optimal temperatures, but this still did not result in greater

yields. Since Topt during pod filling is similar in CROPGRO to GLAM, this suggests that

other processes in CROPGRO affected growth and development at high temperatures.

For example, at high temperatures, the partitioning to pods in CROPGRO is decreased.

CROPGRO also includes a temperature–dependent parameterisation of photosynthesis,

so that, for example, in CE higher temperatures produced shorter durations but higher

yields.

Crops exhibit a number of temperature thresholds which, when exceeded, result in

reduced yield. For example, in some (but not all) genotypes, the temperatures encountered
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during flowering in this study can result in a reduction in fruit–set and yield, in spite of any

lengthening of duration (Challinor et al., 2007a). This process was not simulated in any

of models in this study. Vegetative growth may also be affected at high temperatures. In

groundnut, vegetative growth is optimal at 30–35 ◦C (Ketring, 1986). This range is similar

to the average temperatures seen in the regions where duration is lengthened in this study

(figure 8). This suggests that changes in vegetative growth would be unlikely to greatly

reduce the simulated yields reported in this study. Other high temperature processes,

such as impacts on germination (Ong, 1986), may begin to mitigate the duration–induced

increases in yield at temperatures far beyond (& 15◦C) Topt (Squire, 1990). In this study,

temperatures did not exceed Topt by such large amounts. For example, less than 2% of the

mean temperatures from sowing to maturity in GJ exceeded Topt+7 (=35◦C). Hence in

terms of processes, the increases in yield simulated by GLAM at T > Topt seem plausible.

The relevance of this result goes beyond just groundnut cultivation in India for two reasons.

Firstly, this process is common to many tropical annual crops, and secondly temperatures

under climate change are expected to increase across the tropics, not just in India.

Identification of the importance of super–optimal temperatures in determining yield is

not new. Hammer et al. (1995) noted the lack of crop duration data at high temperatures.

This is in part because of the difficulty in maintaining low levels of water stress at high

temperatures. Also, at high temperatures lethal limits may be approached, making the

isolation of the impact of temperature on development difficult.

The second process identified in this study is the reduction in transpiration efficiency

at high values of VPD. This was seen most markedly in GLAM. It was seen consistently

in QNUT, which uses transpiration efficiency, and a known assimilation (derived from

radiation use efficiency) to calculate transpiration. Yield reductions were seen consistently

in CROPGRO only when the Penman–FAO evapotranspiration method was used. This

suggests that in both QNUT and CROPGRO, the mechanism for reducing yield was via

water use, rather than via assimilation as in GLAM.

Is the simulated impact of VPD on yield a process that we may expect to observe in the

field under climate change? Certainly, VPD is expected to increase under climate change,

although the magnitude of the change may be uncertain (see section 2.2). The response

of assimilation to VPD that is used in both GLAM and QNUT is based on observations

that indicate an inverse relationship beyond a threshold VPD (e.g. Chapman et al., 1993;
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Squire, 1990). Hence the process is certainly a real one. The basis for this relationship is

discussed in more detail in Tanner and Sinclair (1983) and Kemanian et al. (2005). The

relationship has been used successfully in a number of models, ranging from leaf–level

photosynthesis models (Leuning, 1995) to larger scale analyses at the canopy/yield level

(Zwart and Bastiaanssen, 2004). A number of process–based crop models also parameterise

this relationship. In the most recent Wageningen model, GECROS (Yin and van Laar,

2005), the ratio of intercellular to atmospheric CO2 concentrations decreases linearly with

leaf–to–air VPD. Whilst the standard version of the CERES crop model (Jones and Kiniry,

1986) does not include the impact of VPD on assimilation, at least one version with VPD–

dependence has been developed (Lizaso et al., 2005). Of the water use efficiency models

which use this relationship that were reviewed by Tanner and Sinclair (1983), none had

a threshold value of VPD below which assimilation was not affected. Hence at low VPD,

these models would show a greater sensitivity than GLAM to increasing VPD.

Steduto and Albrizio (2005) found greater skill when normalising water–use efficiency by

reference evapotranspiration (ETref ), as opposed to VPD. Does the sensitivity to humidity

depend upon the humidity metric used? For China, Gong et al. (2006) found that ETref

was mostly controlled by relative humidity (followed by solar radiation and temperature).

Since ETref is proportional to VPD, and rises also with temperature (Allen et al., 1998), it

would be expected to rise under climate change. As a proxy for the change in ETref in the

simulations in this study, the change in potential evapotranspiration was computed (ETref

itself could not be calculated because of a lack of wind data). Potential evapotranspiration

increased by 10–30% over most of central India. These increases are similar to those in

VPD (see section 2.2), suggesting a similar impact on transpiration efficiency.

4.2. Uncertainty and its implications

The uncertainty in the response of yield to climate change in this study was comparable

in magnitude to the mean simulated yield change (section 3.1). However, this does not

prevent the results from suggesting some implications for future assessments of crop yield

under climate change. Transpiration efficiency was a key uncertainty, consistent with the

findings of Challinor et al. (2005a), as was its interaction with VPD. The results showed

that changes in transpiration and in TE do not act systematically across space. Hence

even when modelling assimilation and water use at the relatively large (canopy) scale, bias
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correction is problematic. This demonstrates the need for process–based modelling, since

empirical methods cannot reproduce such non–linear interactions. For the same reason,

this result demonstrates the need to take account of known uncertainties at the input stage

of crop modelling, rather than only at the output stage.

In addition to the uncertainty due to assimilation and water use, then, there is an

uncertainty associated with the interaction of simulated processes. Only for a crop model

whose equations were 100% accurate (but with uncertainty in parameter values, due to

measurement error) would the output uncertainty be a true reflection of the limitations of

our measurements. Such a model would necessarily be a complex model with many input

parameters. Uncertainty in each of these parameters will interact, resulting in a large

uncertainty in yield. In reality any model will have structural uncertainty (its equations

will not be 100% correct), so that the output uncertainty of a complex model will be both

large and have its own associated uncertainty. A simple model has less parameters, and

is likely to have a high fraction of directly measurable parameters. Therefore a simpler

model is likely to have a lower output uncertainty estimate than a more complex model.

However, a simple model is also less likely to contain all the relevant interactions and

processes, so that it will probably underestimate uncertainty. Optimal complexity includes

all key processes whilst minimising structural and parameter uncertainty.

The projected yield changes in the GLAM simulations often varied little in sign (figure

5). This is because they are explicable principally in terms of the two processes discussed

in section 4.1. Where water was sufficient (CE and GJ), the probability of increases in the

yield of the fixed–duration crop was high. Conversely, the probability was low for the well–

watered variable–duration crop, as long as the optimal temperature for development was

not exceeded. In regions where Topt was exceeded, yields tended to increase, regardless

of water availability (figure 5). Confidence in these results is greatest where Topt is not

exceeded, since GLAM is well–tested in this temperature range (Challinor et al., 2005c).

However, a cross–model consensus did not emerge on the response at T < Topt (figure

8). Water–stressed regions (NW and SP) under the fixed–duration crop tended to show

decreasing yield, even where water availability did not fall (cf figures 1 and 6). This is due

primarily to the inverse relationship between VPD and yield. Without the indirect impact

of elevated CO2, yields in these regions show increases (CW07). Note that these regions
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also tend to have higher risk of heat stress damage (Challinor et al., 2007a), which also

acts to reduce yields.

The analysis above has shown that under the SRES A2 scenario, in the absence of

adaptation, CO2 stimulation is more than offset by other processes — principally the

impact of temperature on duration. How general is this result?. Some degree of generality

would be expected across annual crops and across tropical regions, since the same bio–

physical processes will occur. For India, studies of rice, wheat and soybean have shown that

CO2 stimulation is more than offset by warming (Mall et al., 2004; DEFRA, 2005). Whilst

earlier studies have shown only a partial offset (Ministiry of Environment and Forests,

Government of India, 2004), at least one review suggests that complete offset is likely

(Easterling and Apps, 2005). Experimental studies support this. For example, Wheeler

et al. (1996) found that the increase in wheat yield under doubled CO2 is offset by a mean

warming of less than 2◦C. This is less than the projected change in any part of India in

this study (figure 1). This result implies that the need for genotypic adaptation to mean

temperature changes is critical (see also Challinor et al., 2007a).

5. Conclusions

This study has identified two processes which may be important in determining the yield

of tropical annual crops under climate change. The moderation of duration by temperature

and photoperiod is a fundamental and well–researched topic. However, responses above

the optimum temperature for development have not been quantified as well as those be-

low. More crop experiments to quantify the extension of duration through super–optimal

temperatures, and the associated increase in yield, are required. The second process, the

impact of low atmospheric humidity on assimilation, has been researched in depth in crop

experiments. However, no consensus on this response was found in the crop models in

this study. More analysis and more modelling studies would help to elucidate the likely

importance of this process relative to other bio–physical climate change processes. Since

projections of decreases in humidity under climate change are not confined to the tropics

(see e.g. Rowell and Jones, 2006), this question is one of broad significance.

This study has also shown that the quantification of uncertainty does not preclude the

identification of key processes. Neither does it preclude conclusions regarding the direction
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of likely changes in crop yield, given a particular climate change scenario. Indeed, more

adequate quantification of uncertainty can lead to greater confidence in our assessments

of the impact of climate change on crop yield. In this case — that of groundnut in India

— we have shown that the beneficial direct impact of elevated CO2 can be offset by

indirect effects of climate change. This highlights the importance of genotypic adaptation

to climate change. Finally, we note the role, illustrated here, of crop models of intermediate

complexity in identifying processes and quantifying uncertainty.
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the baseline climate and the future climate (2071–2100) scenarios (there are therefore four corresponding baseline simulations —

see text). Six of the parameter variations affect only the scenario simulations. Each unique pair of scenario parameter variations
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VPD–TE Interaction scenario simulations had their own (small) value of the parameter controlling increases in TE at low VPD

(see CW07). All scenario simulations used a value of the physiologically–limited maximum transpiration that was 17% lower than

the corresponding baseline value.

Baseline and Scenario

Name No. simulations Description

Control 4 Standard parameter set

High Baseline TE 5 Increased transpiration efficiency

Reduced Physiological Transpiration Limitation 6 Increased physiologically–limited maximum transpiration

Reduced VPD–TE Interaction 3 TE is constant over a larger range of VPD

Scenario only

Name No. simulations Description

Large TE Increase 8 40% TE increase under 2*CO2

Small TE Increase 10 24% TE increase under 2*CO2

Reduced SLA Limit 12 10% decrease in prescribed maximum SLA under 2*CO2

Same SLA Limit 6 No change in prescribed maximum SLA under 2*CO2

No TE Increase at Low VPD 6 At low VPD, TE does not increase under 2*CO2

TE Increase at Low VPD 9 TE increases for all values of VPD under 2*CO2
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Figure 1. Change in the statistics (bars indicate means, σ indicates standard deviation) of growing–season

weather (precipitation, P and mean daily temperature, T ) between the 1961-90 baseline simulation and

the 2071–2100 simulation. Crosses indicate regions where no simulations were carried out. Also shown are

the four regions used for further analysis. From north to south, these are: NW, GJ, CE and SP
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Figure 2. Ensembles of thirty–year mean yields from the 2071–2100 scenario simulations using individual

grid cells within each of two regions (CE and GJ; see figure 1a). Each ensemble consists of a number

of simulations grouped by crop model parameter values, as described in table I. (a) and (b) show the

18 simulations grouped by perturbations of baseline parameter sets (each group having various scenario

parameter sets). (c) and (d) show the simulations grouped by perturbations of scenario parameter sets

(each with a number of baseline sets).
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Figure 3. Simulations, within each of two regions, under two conditions: the baseline climate with elevated

CO2 (CO2–only), and the 2071–2100 scenario. The latter uses the fixed crop durations, so that the time

to maturity at each location is the same in both simulations. Differences between the two simulations are

therefore due only to the indirect effects of CO2 (excluding the impact of mean temperature on duration).

Two regions, both with similar behaviour, are shown. In all cases, means of all 18 ensemble members have

been used to calculate the histogram.
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Figure 4. Fixed and variable duration simulations, within each of two regions, using the scenario climate.

Two regions with contrasting behaviour are shown. In GJ the optimal temperature for crop development

is exceeded, and in CE it is not. In all cases, means of all 18 ensemble members have been used to calculate

the histogram.
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Figure 5. The number of ensemble members, from a total of 18, which predict an increase in yields between

the baseline and scenario periods. The results for the fixed–duration crop are very different to those of the

variable duration crop.

-60

-50

-30

-10

10 

30 

50 

160

 65° E  75° E  85° E 
  7° N 

 12° N 

 17° N 

 22° N 

 27° N 

 32° N 

(a) Mean

0 

5 

10

15

20

75

 65° E  75° E  85° E 
  7° N 

 12° N 

 17° N 

 22° N 

 27° N 

 32° N 

(b) Standard deviation

Figure 6. Mean and standard deviation of the ensemble values of percentage change in yield between the

baseline and 2071–2100 scenarios. The fixed–duration crop has been used for these simulations, so that

any changes are due to changes in growth processes only.
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Figure 7. Results of the humidity sensitivity analyses, carried out on two crop models: the DSSAT CROP-

GRO model (D) and QNUT (Q). Four regions (CE, NW, SP and GJ) are shown. CROPGRO simulations

used two values of the soil fertility factor, SLPF. Three sensitivity analyses on CROPGRO are shown.

Two of these adjusted the maximum and minimum temperatures (+2 and -2 ◦C, respectively), whilst

using either the Ritchie version of the Priestley–Taylor equation or the Penman–FAO method to calculate

evapotranspiration. The third method adjusted VPD directly by multiplying it by 1.5. This third method

was also used with QNUT.
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Figure 8. Results of the temperature sensitivity analysis, carried out on two crop models: the DSSAT

CROPGRO model (D) and QNUT (Q). Yields for the climate change scenario (CCS) were simulated using

no CO2 increase, so that only changes in climate affected the simulations. Rainfed (Rfd) and irrigated (Irr)

runs are shown. CROPGRO simulations used two values of the soil fertility factor, SLPF. All CROPGRO

simulations used the Ritchie calculation of evapotranspiration, as this the option which minimises any

systematic influence of VPD (see figure 7). The 18 GLAM ensemble members are also shown as boxplots

(whiskers show full range, boxes show inter–quartile range, and bars show median). These GLAM simu-

lations have been corrected for the impact of increased CO2, as described in the text. Mean temperature

changes were calculated over the first 90 days of crop growth. In the baseline simulations, the corresponding

temperatures are, from left to right, 23.8, 27.4, 27.9 and 27.9 ◦C. These last three temperatures are close

to the range of optimal temperatures for development (Topt) across all three crop models.
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List of abbreviations

CW07 Challinor and Wheeler (2007)

GLAM General Large–Area Model for annual crops

LAI Leaf area index

SLA Specific leaf area

TE Transpiration efficiency

VPD Vapour pressure deficit

Appendix

A. List of scenario simulations
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Table II. The 18 scenario simulations, described in terms of the four parameter properties listed in table I: the

baseline parameter set to which changes were applied and the imposed changes, under elevated CO2, in transpiration

efficiency (TE) and maximum specific leaf area (SLA).

Baseline TE increase Max. SLA TE increase at low VPD

Control Small Unchanged Yes

Control Small Decreased Yes

Control Large Decreased No

Control Large Decreased Yes

High Baseline TE Small Unchanged No

High Baseline TE Small Decreased No

High Baseline TE Small Unchanged Yes

High Baseline TE Small Decreased Yes

High Baseline TE Large Decreased No

Reduced Physiological Transpiration Limitation Large Decreased Yes

Reduced Physiological Transpiration Limitation Small Unchanged No

Reduced Physiological Transpiration Limitation Small Unchanged Yes

Reduced Physiological Transpiration Limitation Small Decreased Yes

Reduced Physiological Transpiration Limitation Large Decreased Yes

Reduced Physiological Transpiration Limitation Large Decreased No

Reduced VPD–TE Interaction Small Decreased Small decrease

Reduced VPD–TE Interaction Large Unchanged Small decrease

Reduced VPD–TE Interaction Large Decreased Small decrease

Challinor2007-revised.tex; 31/07/2007; 12:08; p.28



29

References

Allen, R. G., L. S. Pereira, D. Raes, and M. Smith: 1998, ‘Crop evapotranspiration. Guidelines for comput-

ing crop water requirements’. FAO Irrigation and Drainage 56, FAO, Viale delle Terme di Caracalla,

00100 Rome, Italy.

Antle, J.: 1996, ‘Methodological issues in assessing potential impacts of climate change on agriculture’.

Agric. For. Meteorol. 80(1), 67–85.

Arora, M., N. K. Goel, and P. Singh: 2005, ‘Evaluation of temperature trends over India’. Hydrological

Sciences Journal.

Baron, C., B. Sultan, M. Balme, B. Sarr, S. Teaore, T. Lebel, S. Janicot, and M. Dingkuh: 2005, ‘From

GCM grid cell to agricultural plot: scale issues affecting modelling of climate impacts’. Phil. Trans.

Roy. Soc. 1463(360), 2095–2108.

Bergamaschi, H., T. R. Wheeler, A. J. Challinor, F. Comiran, and B. M. Heckler: 2007, ‘Relationships

between maize yield and rainfall on different temporal and spatial scales in subtropical Southern Brazil.’.

Pesquisa Agropecu Brasileira 42(5), 603–613.

Bernacchi, C., A. Leakey, L. Heady, P. Morgan, F. Dohlman, J. McGrath, K. Gillespie, V. E. Wittig,

A. Rogers, S. Long, and D. Ort: 2006, ‘Hourly and seasonal variation in photosynthesis and stomatal

conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open–air

field conditions’. Plant, Cell and Environment pp. 1–14. doi: 10.1111/j.1365-3040.2006.01581.x.

Boote, K. J. and J. W. Jones: 1998, ‘Simulation of crop growth: CROPGRO model’. In: R. M. Peart

and R. B. Curry. (eds.): Agricultural systems modeling and simulation. Marcel Dekker Inc, New York,

Chapt. 18, pp. 651–692.

Busuioc, A., D. L. Chen, and C. Hellstrom: 2001, ‘Performance of statistical downscaling models in

GCM validation and regional climate change estimates: Application for Swedish precipitation’. Int.

J. Climatol. 21(5), 557–578.

Carbone, G. J., L. O. Mearns, T. Mavromatis, E. J. Sadler, and D. Stooksbury: 2003, ‘Evaluating

CROPGRO-Soybean performance for use in climate impact studies’. Agron. J. 95(3), 537–544.

Chakraborty, S., A. V. Tiedemann, and P. S. Teng: 2000, ‘Climate change: potential impact on plant

diseases’. Environmental Pollution.

Challinor, A., T. Wheeler, J. Slingo, and D. Hemming: 2005a, ‘Quantification of physical and biological

uncertainty in the simulation of the yield of a tropical crop using present day and doubled CO2 climates’.

Phil. Trans. Roy. Soc. 1463(360), 1983–1989.

Challinor, A. J., J. M. Slingo, T. R. Wheeler, P. Q. Craufurd, and D. I. F. Grimes: 2003, ‘Towards a

combined seasonal weather and crop productivity forecasting system: Determination of the working

spatial scale’. J. Appl. Meteorol. 42, 175–192.

Challinor, A. J., J. M. Slingo, T. R. Wheeler, and F. J. Doblas-Reyes: 2005b, ‘Probabilistic hindcasts of

crop yield over western India’. Tellus 57A, 498–512.

Challinor2007-revised.tex; 31/07/2007; 12:08; p.29



30 Challinor and Wheeler

Challinor, A. J. and T. R. Wheeler: 2007, ‘Using a crop model ensemble to quantify CO2 stimulation of

water–stressed and well-watered groundnut’. Agric. For. Meteorol. submitted.

Challinor, A. J., T. R. Wheeler, P. Q. Craufurd, C. A. T. Ferro, and D. B. Stephenson: 2007a, ‘Adaptation

of crops to climate change through genotypic responses to mean and extreme temperatures’. Agriculture,

Ecosystems and Environment 119(1–2), 190–204.

Challinor, A. J., T. R. Wheeler, P. Q. Craufurd, and J. M. Slingo: 2005c, ‘Simulation of the impact of high

temperature stress on annual crop yields’. Agric. For. Meteorol. 135(1–4), 180–189.

Challinor, A. J., T. R. Wheeler, C. Garforth, P. Craufurd, and A. Kassam: 2007b, ‘Assessing the

vulnerability of food crop systems in Africa to climate change’. Climatic Change 83, 381–399.

Challinor, A. J., T. R. Wheeler, T. M. Osborne, and J. M. Slingo: 2006, ‘Assessing the vulnerability of crop

productivity to climate change thresholds using an integrated crop-climate model’. In: J. Schellnhuber,

W. Cramer, N. Nakicenovic, G. Yohe, and T. M. L. Wigley (eds.): Avoiding Dangerous Climate Change.

pp. 187–194, Cambridge University Press.

Challinor, A. J., T. R. Wheeler, J. M. Slingo, P. Q. Craufurd, and D. I. F. Grimes: 2004, ‘Design and

optimisation of a large–area process–based model for annual crops’. Agric. For. Meteorol. 124, 99–120.

Challinor, A. J., T. R. Wheeler, J. M. Slingo, P. Q. Craufurd, and D. I. F. Grimes: 2005d, ‘Simulation of crop

yields using the ERA40 re-analysis: limits to skill and non-stationarity in weather–yield relationships.’.

J. Appl. Meteorol. 44(4), 516–531.

Chapman, S. C., M. M. Ludlow, F. P. C. Blamey, and K. S. Fischer: 1993, ‘Effect of drought during early

reproductive development on growth of groundnut (Arachis hypogaea L.). I. Utilization of radiation and

water during drought’. Field Crops Research 32, 193–210.

Chee-Kiat, T.: 2006, ‘Application of satellite–based rainfall estimates to crop yield forecasting in Africa’.

Ph.D. thesis, University of Reading.

Cox, G. M., J. M. Gibbons, A. T. A. Wood, J. Craigon, S. J. Ramsden, and N. M. J. Crout: 2006, ‘Towards

the systematic simplification of mechanistic models’. Ecological Modelling 198(1–2), 240–246.

DEFRA: 2005, ‘Investigating the impacts of climate change in India, Keysheet 6’. Available at

http://www.defra.gov.uk/environment/climatechange.htm. Produced as part of the Indo–UK collabo-

ration.

Easterling, W. and M. Apps: 2005, ‘Assessing the consequences of climate change for food and forest

resources: a view from the IPCC’. Climatic Change 70, 165–189.

Gong, L., C. Xu, D. Chen, S. Halldin, and Y. D. Chen: 2006, ‘Sensitivity of the Penman–Monteith reference

evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin’. Journal of

Hydrology 329(3–4), 620–629.

Hammer, G. L., T. R. Sinclair, K. J. Boote, G. C. Wright, H. Meinke, and M. J. Bell: 1995, ‘A peanut

simulation model: I. Model development and testing’. Agron. J. 87, 1085–1093.

Iglesias, A., C. Rosenzweig, and D. Pereira: 2000, ‘Agricultural impacts of climate change in Spain: de-

veloping tools for a spatial analysis’. Global Environmental Change — Human and Policy Dimensions

10(1), 69–80.

Challinor2007-revised.tex; 31/07/2007; 12:08; p.30



31

IITM: 2004, ‘Indian Climate Change Scenarios for Impact Assessment’. Technical report, Indian Institute

of Tropical Meteorology, Homi Bhabha Road, Pune 411 008, India.

IPCC: 2001, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

881 pp.

Jagtap, S. S. and J. W. Jones: 2002, ‘Adaptation and evaluation of the CROPGRO–soybean model to

predict regional yield and production’. Agric. Ecosyst. Environ. 93, 73–85.

Jones, C. and J. Kiniry: 1986, CERES–Maize. A simulation model of maize growth and development. Texas

A&M Univ. Press, USA.

Kakani, V. G.: 2001, ‘Quantifying the effects of high temperature and water stress in Groundnut’. Ph.D.

thesis, University of Reading, U.K.
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