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Seismic strengthening of severely damaged beam-column RC1

joints using CFRP2

Reyes Garcia, S.M.ASCE1*, Yaser Jemaa2, Yasser Helal3, Maurizio Guadagnini4, Kypros Pilakoutas53

Abstract4

This paper investigates the seismic behavior of three full-scale exterior reinforced concrete (RC) beam-5

column joints rehabilitated and strengthened with externally bonded Carbon Fiber Polymers (CFRP). The6

specimens had inadequate detailing in the core zone and replicated joints of a real substandard building tested 7

as part of the EU-funded project BANDIT. Seven tests were performed in two successive phases. The bare8

joints were first subjected to reversed cyclic loading tests to assess their basic seismic performance. As these9

initial tests produced severe damage in the core, the damaged concrete was replaced with new high-strength10

concrete. The specimens were subsequently strengthened with CFRP sheets and the cyclic tests were 11

repeated. The results indicate that the core replacement with new concrete enhanced the shear strength of the 12

substandard joints by up to 44% over the bare counterparts. ASCE/SEI 41-06 guidelines predict accurately 13

the shear strength of the bare and rehabilitated joints. The CFRP strengthening enhanced further the joint 14

strength by up to 69%, achieving a shear strength comparable to that of joints designed according to modern 15

seismic provisions. Therefore, the rehabilitation/strengthening method is very effective for post-earthquake 16

strengthening of typical substandard structures of developing countries.17
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Introduction21

Recent strong earthquakes in developing countries (Kashmir, 2005; China, 2008; Indonesia, 2009 and Haiti, 22

2010) caused extensive economic and human losses due to the poor behavior of many old reinforced concrete 23

(RC) buildings. Many structural failures in these structures can be attributed to the lack of internal steel 24

stirrups in beam-column joints, which increase the seismic vulnerability of the building. The local 25

strengthening of these deficient elements is a feasible option for reducing the vulnerability of such 26

substandard buildings. Over the last twenty years, externally bonded Fiber Reinforced Polymers (FRP) have 27

been used extensively to strengthen seismically deficient elements. In comparison to other strengthening 28

materials, FRP possess advantages such as high resistance to corrosion, excellent durability, high strength to 29

weight ratio, adaptability to different shapes, and ease and speed of in-situ application (Gdoutos et al. 2000).30

Numerous experimental studies have demonstrated the effectiveness of FRP strengthening at improving the 31

seismic behavior of substandard RC beam-column joints (e.g. Mosallam 2000; Gergely et al. 2000; Granata 32

and Parvin 2001; El-Amoury and Ghobarah 2002; Antonopoulos and Triantafillou 2003; Prota 2004; Said33

and Nehdi 2004; Ghobarah and El-Amoury 2005; Mukherjee and Joshi 2005; Engindeniz 2008; Pantelides34

2008; Akguzel and Pampanin 2010; Alsayed et al. 2010; Le-Trung et al. 2010; Bousselham, 2010; Parvin et 35

al. 2010; Al-Salloum 2011a; 2011b; Ilki et al. 2011). Most of these studies aimed at a) assessing the 36

effectiveness of FRP at preventing premature shear failure of joints without internal confinement, and b)37

changing the strength hierarchy of the joints to promote yielding in the beam reinforcement. Despite the 38

extensive research, the majority of these studies focused on undamaged specimens, whilst less research has39

investigated the use of FRP as a post-earthquake strengthening solution in joints that experienced severe40

damage. Different rehabilitation techniques have been used to repair damaged joints, including a) crack 41

injection with epoxy resin and partial core replacement with high-strength cement paste or mortar42

(Karayannis et al. 1998; Karayannis and Sirkelis 2008; Sasmal et al. 2011), b) complete core replacement43

with new concrete (Ghobarah and Said 2001; 2002), and c) partial core replacement with high-strength 44

mortar (Tsonos 2008; Sezen 2012). However, researchers rarely attempted to evaluate the individual45

contributions of the repairing technique and the FRP strengthening to the total strength of the joint. As shown 46
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by Karayannis et al. (1998), the use of high-strength materials in the rehabilitation can by itself enhance the 47

strength of the joint considerably. Crack injection and mortar repairing have proven effective at low to 48

moderate levels of damage, but they may be less effective when severe damage occurs (e.g. complete49

concrete crushing in the core) or bond between reinforcing bars and concrete is lost. In this case, the complete 50

replacement of the core with new concrete may be necessary to recover its structural integrity before applying51

the FRP. Nonetheless, results of joints rehabilitated and strengthened with this solution are not available in 52

the literature. A combination of core replacement with high-strength concrete and FRP strengthening can be 53

suitable for rehabilitating existing substandard buildings in developing countries, where strengthening 54

interventions are usually carried out in structures damaged after an earthquake.55

This study is part of the multistage EU-funded project BANDIT (SERIES Program FP7) which focuses on 56

the seismic strengthening of substandard RC structures typical of developing countries. The work carried out 57

under this project comprises tests on beam-column joints and shake table tests on a full-scale RC building58

(Garcia 2013; Garcia et al. 2014a). This paper focuses on the former tests and investigates the seismic 59

behavior of severely damaged full-scale RC beam-column joints rehabilitated and strengthened with60

externally bonded CFRP. The geometry and detailing of the tested specimens were similar to those used in 61

the joints of the BANDIT building (Garcia et al. 2014a). Therefore, the current tests aimed at i) assessing the62

capacity and behavior of substandard joints under severe demands, and ii) investigating effective63

rehabilitation and strengthening solutions for damaged joints with FRP sheets. The experimental results are64

discussed and compared to predictions obtained according to existing models.65

Experimental program66

Three RC beam-column joints were tested in two successive phases. In phase 1, the bare joints were 67

subjected to cyclic tests up to drifts of about 4.0%, and the tests were halted when the peak capacity dropped 68

by 50%. As these tests produced severe damage in the joint core, the damaged concrete was fully removed69

and replaced with new high-strength concrete. The specimens were subsequently strengthened with externally 70

bonded FRP sheets and retested up to failure (phase 2).71
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Geometry of specimens72

The specimens simulated a full-scale 2D exterior joint between contra-flexure points of a floor in a multi-73

story moment-resisting frame, but excluding the slabs (see Fig. 1(a)). The column had a cross section of 74

260×260 mm and a height of 2700 mm. The longitudinal column reinforcement consisted of 16 mm bars (see 75

Fig. 1(b)). These bars were lapped over a length lb=25db (db= bar diameter) just above the joint core to76

represent typical construction practices of developing countries.77

The beam had a cross section of 260×400 mm and a length of 1650 mm. The main flexural reinforcement 78

consisted of 16 mm bars as shown in Fig. 1(b). Three types of anchorage detailing were examined for the top 79

beam reinforcement as shown in Fig. 1(c). To study the effect of deficient bar anchorage, the bottom beam 80

reinforcement of detailing types A and B was anchored into the joint for a length of 220 mm only 81

(approximately 14db), with no hooks or bends. This short anchorage length would be deemed insufficient to 82

develop the full capacity of the 16 mm bars according to current design recommendations. The column-to-83

beam relative flexural s MRcol MRbeam) of the specimens was approximately 1.0, and therefore84

the strong column-weak beam strength hierarchy intended by current design philosophy was not satisfied.85

Moreover, the specimens were designed to fail at the core where no confining stirrups were provided. To 86

prevent a shear failure outside the joint core, the column and beam were reinforced with 8 mm transverse87

stirrups spaced at 150 mm centers. The stirrups were closed with 90° hooks instead of 135° hooks typically 88

required by current seismic codes.89

Table 1 gives some of the main characteristics of the beam-column joints including concrete strength. The90

specimens are identified using an ID code in which the first letter stands for “Joint” and the second for the91

type of beam reinforcement detailing (A, B or C), respectively. The letters after the number indicates the 92

condition of the joints during the test: “R” stands for a joint tested in rehabilitated condition (i.e., with a new 93

concrete core), whilst “RF” stands for a joint tested in rehabilitated condition and strengthened with FRP 94

sheets. The core of joint JB2RF was recast again and the specimen (renamed as JB2R) was retested to95

examine the effect of core replacement on the joint shear strength.96
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Material properties97

The joints were cast using two batches of ready mixed concrete. A steel roller was inserted at the center of the 98

cross section of the beam tip during casting, as shown in Fig. 1(a). Following casting, the specimens were 99

cured for seven days in the formwork and then stored under standard laboratory conditions. The mean100

concrete compressive strength (fcm) was determined from tests on three 150×300 mm concrete cylinders 101

according to BS EN 12390-3 (BSI 2009a). The indirect tensile splitting strength (fctm) was obtained from tests 102

on three 100×200 mm cylinders according to BS EN 12390-6 (BSI 2009b). All cylinders were cast at the 103

same time and cured together with the joints. Table 1 summarizes the mean values and standard deviations 104

obtained from the tests.105

Grade S500 ribbed bars were used as reinforcement for all joints. The yield and tensile strengths of the steel 106

reinforcement were obtained from three test samples and were found to be fy=612 MPa and fu=726 MPa for 107

the 8 mm bar, and fy=551 MPa and fu=683 MPa for the 16 mm bar, respectively. The elastic modulus of both 108

bars was determined as Es=209 GPa.109

After phase 1 of testing, the damaged concrete in the core of the joints was completely removed and replaced 110

with new highly flowable concrete. In joint JB2, the bottom bars of the beam were welded to the 90° bends of 111

the top beam reinforcement as shown in Fig. 1(d) (JB2RF and JB2R in phase 2). Before casting the new 112

concrete, the contact surfaces of the existing concrete were thoroughly cleaned with compressed air and 113

moistened for 24 hours. No bonding agent was used between the new and existing concrete. At the end of 114

casting, the new core was cured in the mold for three days, and without the mold for four additional days.115

Following the core replacement, the joints were strengthened with externally bonded CFRP using a wet lay-116

up procedure. The unidirectional CFRP sheets had the following nominal properties provided by the 117

manufacturer: tensile strength ff=4140 MPa, elastic modulus Ef=241 GPa, ultimate elongation fu=1.70%, and 118

sheet thickness tf=0.185 mm. Before bonding the CFRP sheets, the concrete surfaces were wire brushed and 119

cleaned with pressurized air to improve adherence, and the corners were rounded off to a radius of120

approximately 15 mm.121
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Experimental setup and instrumentation122

The joints were tested with the column in horizontal position as shown in Fig. 2. A guiding device consisting 123

of an oiled roller inserted between two parallel steel plates was used at the beam tip to restrain possible out-124

of-plane movement at large displacements, but such device allowed free displacement and rotation of the 125

beam in the direction of testing. Displacements were monitored using Linear Variable Differential126

Transformers (LVDTs) at the locations shown in Fig. 2. Deformations of the joint core were also measured 127

using a set of 16 linear potentiometers. The strain developed along the beam and column steel reinforcement 128

and CFRP sheets was monitored using strategically placed foil-type electrical resistance strain gages (see Fig. 129

3(a)).130

The cyclic load was applied to the beam in displacement control using a servo-hydraulic actuator (see Fig. 2).131

Three push-pull cycles were applied at drift ratios ( =beam tip displacement/beam length) of ±0.25%, 132

±0.5%, ±0.75%, ±1.0%, ±1.5%, ±2.0%, ±3.0%, ±4.0% and ±5.0%. Cycles at ±0.75% and ±1.5% were not 133

applied in phase 2 to reduce the testing time. Each cycle was applied in the push (+) direction first, which 134

tensioned the top beam reinforcement. A second actuator applied a constant axial load N=150 kN on the 135

column (see Fig. 2), which corresponds to an approximate axial load ratio v=N/(fcmAg)=0.07, where Ag is the 136

column gross cross sectional area. The formation and development of cracks were monitored continuously137

during the test. Moreover, the tests were paused at the onset of the first visible diagonal core cracking (which 138

appeared suddenly) to record the applied load and tip displacement. The tests were halted when the load 139

capacity of the joints dropped to approximately 50% of the peak load.140

CFRP strengthening141

Fig. 3(a) shows a general view of the CFRP strengthening sequence. The main goal of the strengthening was 142

to develop the plastic capacity of the beam reinforcement. To achieve this, the premature failure of the core 143

zone had to be prevented and the flexural capacity of the column enhanced.144

Strengthening of joint core 145

The CFRP strengthening was designed considering the total shear capacity of the joint core as the sum of 146

concrete and CFRP contributions. The concrete contribution (Vc) was computed according to ASCE/SEI 41-147
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06 (2007) using Eq. (1), a shear strength coefficient =0.083×6 psi=0.50 MPa and the strength of the new 148

concrete core (see Table 1).149

kN25055)260)(260)(5.0(cjc fAV (1)

where Aj is the effective horizontal joint area.150

The theoretical shear force required to develop the plastic capacity of the beam reinforcement Vjh (associated 151

to a beam load Py=±106 kN) was computed using force equilibrium according to Eq. (2).152

kN392
2400

)260(5.01370
)362(875.0

13701060005.0

c

cbb
colbjh H

hL
z

LPVTV (2)

where Tb is the tension force of the top beam reinforcement; Vcol is the column shear; Lb is the beam length to 153

the applied load point; Hc is the distance between column supports; hc is the height of the column cross 154

section; and z is the lever arm of the beam flexural moment (assumed equal to 0.875 the beam effective 155

depth).156

Thus, the shear to be resisted by the CFRP sheets is Vf=392-250=142 kN. The required number of CFRP 157

layers was determined using ACI 440.2R-08 guidelines (ACI Committee 440 2008) adopting the 158

recommended value of effective CFRP strain ( fe=0.004) and =90°:159

layers2layers6.1
)222)(241000)(004.0)(185.0(2

142000
2 fvffef

f

dEt
V

n (3)

where dfv is the effective depth of FRP shear reinforcement.160

Accordingly, a minimum of two layers of CFRP were required to strengthen the joint core. As shown in Fig. 161

3(a), U-shaped CFRP sheets strengthened the joint core to increase its shear strength (layer ). Confining162

sheets (layer ) were then wrapped around the beam to prevent premature debonding of the U-shaped 163

sheets. 164
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Strengthening of column 165

The flexural capacity of the column was increased by bonding CFRP sheets parallel to the column axis166

(layers and in Fig. 3(a)). The number of layers required to satisfy a hierarchy strength167

MRcol MRbeam was determined using conventional moment-curvature analysis assuming perfect bond 168

between CFRP sheets and concrete. The presence of the beam hindered the continuity of sheets on the 169

inner part of the column. To avoid interrupting or mechanically anchoring sheets in the beam section, 170

these sheets were folded and bonded on the column faces. As a result, sheets provided slightly lower171

flexural strength in comparison to sheets . Nonetheless, detailed moment-curvature analyses indicate that 172

such difference is less than 10%, which is acceptable for practical strengthening applications. An additional 173

layer of CFRP ( ) was bonded on both sides of the column to keep sheets in place during the subsequent 174

installation of the confining sheets. Finally, sheets and were used to increase the ductility of the 175

column and to avoid premature debonding of , and .176

Table 2 summarizes the number of CFRP sheets used for each joint. In joint JA2RF, sheets had a shorter 177

bonded length to examine its effect on the resulting confinement level of the joint core and overall joint 178

behavior. As shown later, the relatively low capacity of joint JA2RF showed that two layers of CFRP sheets 179

were insufficient to develop the plastic capacity of the beam reinforcement. Therefore, three CFRP layers 180

were used for joints JB2RF and JC2RF (Table 2). Also, two layers of confining sheets were 181

used in the latter joints as one layer did not prevent premature fiber debonding at beam and column corners of 182

joint JA2RF. No mechanical anchors or steel plates were utilized to prevent debonding of CFRP sheets.183

After the tests on joint JB2RF, the CFRP sheets were completely removed and the core was replaced again 184

following the same procedure described previously (see Fig. 3(b)). Post-tensioned steel strapping was applied 185

to the beam and column outside the core to promote the development of shear cracks in the core, and the joint186

was retested (JB2R).187

It should be noted that in actual rehabilitation of damaged buildings, the removal and recast of the concrete 188

core would require the use of temporary shoring adjacent to the joint. Shoring can be removed after the recast 189



9

core sets, thus allowing the preparation of concrete surfaces for the application of CFRP sheets. In real CFRP 190

strengthening applications adopting the layout shown in Fig. 3(a), sheets could be bonded (completely 191

unfolded) on the inner face of the column, and then secured using mechanical CFRP anchors embedded in the 192

concrete. Such anchoring solution was proven effective at preventing debonding of the CFRP strengthening 193

on a substandard full-scale RC building tested by the authors (Garcia et al. 2010).194

Test results and discussion195

Table 3 reports a) the load and drift ratio at the onset of diagonal cracking in the core (Pcr and cr,196

respectively), b) the load and drift ratio at peak load (Pmax and max, respectively), c) enhancement in peak 197

Pmax) over the bare specimens, and d) ultimate drift ratio ( u) causing a 50% drop in Pmax. The results 198

are presented for the push (+) and pull (-) directions. The following sections summarize the most significant 199

observations of the testing program and discuss the results shown in Table 3.200

Bare and rehabilitated joints201

The progression of damage and final failure mode of the bare and rehabilitated joints were very similar.202

Despite the short anchorage length of the bottom beam reinforcement, pull out failure was not observed. This 203

was confirmed by experimental observations (no cracks formed at the beam-joint interface) and by204

comparison of readings from strain gages fixed on the bars with displacements. Narrow splitting cracks 205

formed along the spliced reinforcement in the column. As shown in Fig. 4(a) and (b), final failure of the bare206

and rehabilitated specimens was dominated by extensive diagonal cracking and partial concrete spalling in207

the core zone (J-type failure).208

The load-drift responses of the bare joints (Fig. 5(a)-(c)) show that the specimens remained elastic until the 209

onset of diagonal core cracking, when the load dropped slightly. Despite the lack of steel stirrups, the bare 210

specimens failed gradually and sustained drifts of up to ±4.0% (JC2 in Table 3). Such gradual failure is 211

attributed to progressive crushing of the diagonal concrete strut in the joint core. As shown in Table 3, the 212

load and drift at the onset of diagonal cracking were similar for all bare joints, regardless of the type of 213

detailing in the beam reinforcement. The peak load for all bare joints was achieved at very similar max ±1.4-214
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1.5% in both the push and pull directions and no pullout failure occurred during the tests because shear 215

failure dominated the response. The lower loads resisted in the pull direction (Table 3) can be due to damage 216

produced by the cyclic loading regime. The influence of the different anchorage solutions used for the joints 217

was examined in another study (Jemaa 2013).218

The load-drift relationship of joint JB2R in Fig. 5(d) shows the effect of core replacement on the shear219

strength of the joint (see also Table 3). Compared to JB2, the rehabilitation enhanced the peak capacity of 220

joint JB2R by an average of 44%. This confirms that, in spite of severe damage produced in the joints during221

testing phases 1 and 2, the high-strength concrete used in the core recast and the welding of the top and 222

bottom beam reinforcement (JB2R only) enhanced considerably the joint capacity. Note that although the 223

beam reinforcement did not pullout during the tests, such bars were welded in JB2R to correct excessive 224

permanent deformations and to assess the effectiveness of this strengthening solution as pullout failure was 225

not desired. This approach was also adopted in the joints of a full-scale building tested recently by the authors226

(Garcia et al. 2014a).227

Whilst in this study the joint specimens were tested up to a drift level of ±4.0% to produce severe damage and 228

help understand their vulnerability, it is evident that the residual value and capacity of an actual substandard 229

building pushed to such drift value would be relatively low. Nonetheless, concrete core replacement can be 230

carried out at lower levels of drift or damage and is justified when, for instance, the building experience 231

extensive shear damage or was cast with low-strength concrete (fcm<20 MPa). Poor quality concrete is a 232

common deficiency of many low-rise substandard constructions of developing countries.233

CFRP-strengthened joints234

As the CFRP sheets were bonded directly onto the concrete surface, the onset of diagonal cracking in the 235

joint core could not be observed. No damage was observed in the CFRP sheets, but extensive “crackling”236

noise at a drift ratio ±1.0% indicated that debonding was taking place at different locations. In specimen 237

JA2RF, full debonding of sheets and the rupture of sheets at of ±3.0% led to premature failure of the 238

CFRP strengthening. In contrast, total rupture of sheets occurred across the beam depth (just above sheets239
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) at ±5.0% and ±4.0% in joints JB2RF and JC2RF, respectively. Although no mechanical anchors were 240

used, sheet debonding did not occur in these joints. Fig. 6(a) and (b) show specimens JA2RF and JB2RF at 241

the end of the tests. The removal of the CFRP sheets after the tests revealed extensive diagonal cracking in 242

the core, but the width and extension of cracks reduced considerably in comparison to the bare specimens. No 243

evident damage was observed in the lap splices or in the columns outside the CFRP-strengthened area.244

However, the beams of joints JB2RF and JC2RF experienced significant flexural cracking outside the CFRP-245

strengthened region.246

Fig. 7(a) to (c) show the load-drift relationships for the CFRP-strengthened specimens. The combination of 247

core replacement and CFRP strengthening enhanced significantly the load and deformation capacity of the 248

joints. Compared to the bare counterparts, the peak load of specimens JA2RF, JB2RF and JC2RF increased 249

by an average of 52%, 145% and 128%, respectively (see Table 3). Moreover, the peak and ultimate drift250

ratios of the joints also increased by up to 97% and 67%, respectively (joint JB2RF). Fig. 7(a) to (c) show 251

that the area enclosed by the hysteretic loops is significantly larger for the CFRP-strengthened joints than for 252

the bare specimens, which implies that these joint had a higher energy dissipation capacity.253

Fig. 8 shows envelopes of the load-drift ratio relationships of the tested joints. The results indicate that the 254

bare specimens resisted only 40-55% of the load required to develop the plastic capacity of the beam, Py (see 255

also Table 3). The peak load of specimen JA2RF reached 78% of Py as premature debonding of the CFRP 256

sheets occurred. In contrast, specimens JB2RF and JC2RF developed some yielding in the top and bottom 257

beam reinforcement as shown by short post-yield incursions in Fig. 8. Readings from strain gages also258

confirmed that the beam reinforcement of the joints developed strains of up to 4000-5000 (e.g. Fig. 9). As 259

a result, joints JB2RF and JC2RF failed in a more ductile BJ-type mode (i.e. joint failure after yielding of 260

beam reinforcement), thus achieving the strengthening goals. However, CFRP rupture and excessive damage 261

in the joint core prevented the development of larger plastic strains in the beam reinforcement.262
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Stiffness degradation and shear stress-strain response263

Fig. 10 compares the stiffness degradation of the tested specimens. The secant stiffness is defined by the 264

slope of a line connecting the maximum drifts in the push and pull directions of the first hysteresis loop. The265

results indicate that the core recast was very effective at restoring the original stiffness of the CFRP-266

strengthened specimens. The stiffness of JB2R was not fully recovered and this can be attributed to the 267

flexural cracks formed in the beam of this joint during the previous tests (JB2 and JB2RF, see Fig. 10). In 268

comparison to the bare specimens, it is also evident that the CFRP strengthening of the joints reduced 269

significantly the rate of stiffness degradation. The fast stiffness deterioration after ±2.0% in the CFRP-270

strengthened specimens can be attributed to the onset of CFRP rupture and to damage in the core.271

Fig. 11 compares the experimental shear stress-strain response of joints JC2 and JC2RF, which are 272

representative of the rest of the specimens. Shear strains were derived using average measurements of the273

linear potentiometers located at the joint core. Results in Fig. 11 are only shown up to the point where the 274

potentiometers failed, after reaching the joint capacity. It is shown that average joint strains at peak load 275

(Pmax) of specimens JC2 and JC2RF were 0.0067 and 0.069 rad, respectively, whereas maximum joint strains276

were 0.025 and 0.11 rad. The considerable enhancement in joint deformation capacity of joint JC2RF is 277

attributed to the rehabilitation/strengthening intervention. Due to space limitations, the detailed analysis of 278

the joint strains will be published by the authors in a future paper.279

CFRP strains280

Typical strain readings (see Fig. 12(a)) from gages located at the core zone of the specimens indicate that, as281

expected, CFRP strains were negligible at the beginning of the test and increased after the onset of diagonal282

core cracking. In general, the CFRP strain values measured at peak load (Pmax) varied from 2500 (joint 283

JA2RF) to 7300 (JB2RF), and at ultimate drift ( u) varied from 11900 (JA2RF) to 16900 (JB2RF). 284

The latter values correspond to 70% and 100% of the ultimate strain of the CFRP sheets, respectively. Fig. 285

12(b) shows typical strain readings from gages fixed on the confining sheets at the mid-point of the lap 286

splice length (see Fig. 3(a)). Overall, maximum strains at Pmax varied from 200 to 570 only, whereas 287

strains at u were always lower than 1000 . These results confirm previous research by the authors (Garcia 288
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et al. 2013; 2014b) that showed that low CFRP strains ( f<1600 ) develop in CFRP-confined lap-spliced 289

RC members dominated by bond splitting failure.290

Contribution of rehabilitation and CFRP to total joint shear strength291

The maximum capacities of the strengthened joints reported in Table 3 include the contributions of the 292

replaced core and the CFRP strengthening. To decouple the individual contribution of the replaced core, the 293

shear strength factor included in current guidelines (e.g. ACI-ASCE Committee 352 2002) is adopted in this 294

study. Table 4 summarizes the experimental shear stress jh (computed using Eq. (4)) and corresponding 295

factor for the tested joints. The reported values are the average of the push and pull directions.296

jjhjh AV (4)

For comparison, Table 4 also shows the factors ( = jh/ fc) computed using existing predictive models: P297

Priestley (1997); KL Kim and LaFave (2009); HJ Hassan (2011) for J-type failure; HS Hassan (2011) for S-298

type failure due to the pullout of the straight bottom beam reinforcement; and PM Park and Mosalam (2012).299

A “virtual” joint index of 0.0139 was adopted to determine KL for joints without shear reinforcement a as 300

suggested by Kim and LaFave (2009). Table 4 also includes the shear strength factor A41 for exterior joints 301

given by the ASCE/SEI 41-06 (2007) guidelines.302

Table 4 shows that the bare specimens have similar shear strength factors ranging from 0.49 to 0.52.303

Moreover, despite the damage produced during testing phases 1 and 2, specimen JB2R had a similar factor304

=0.53. This indicates that the replaced core resisted a shear stress comparable to that of the bare joints. It is 305

shown that the approaches proposed by Priestley, Kim and LaFave, Hassan for J-type failure and Park and 306

Mosalam overestimate the experimental shear strength factors by an average of 13%, 77%, 48% and 85%,307

respectively. Conversely, Hassan’s S-failure model always underestimates by an average of 44%. This 308

underestimation may be due to the calibration of the model, which was done using joints with short 309

anchorage lengths of 152 mm only. Whilst recent research (e.g. Park and Mosalam 2013) suggests that ASCE 310

41 may yield conservative estimates for the shear strength of substandard joints, it predicted accurately the 311
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values of the bare and rehabilitated joints tested in this research. Consequently, ASCE 41 is used in this 312

study to evaluate the shear strength of the recast cores.313

Table 4 also shows the decoupled contributions of the recast core and CFRP strengthening for the CFRP-314

strengthened specimens. In this table, jh,core and jh,CFRP are the shear stress contributions of the recast core 315

and CFRP strengthening to the total jh,core jh,CFRP are the 316

corresponding shear stress enhancements. For specimen JB2RF, jh,core was taken as the shear stress of the 317

corresponding rehabilitated specimen JB2R. For joints JA2RF and JC2RF, jh,core was computed adopting318

=0.50 MPa and the concrete strength of the replaced core listed in Table 1. The value jh,CFRP was then 319

calculated as the difference between the experimental shear stress jh of the CFRP-strengthened joints and320

jh,core. The rehabilitation and strengthening were very effective at increasing the shear strength of the joints, 321

with the new core contributing by up to 44% of the total and the externally bonded CFRP by up to 69% (see 322

joints JB2RF and JC2RF in Table 4). It should be mentioned that the experimental shear strength factors 323

obtained for joints JB2RF and JC2RF ( =0.85 MPa and 0.83 MPa, respectively) are only 15 and 17% lower 324

than the factor =1.0 MPa considered in ACI 352R-02 (2002) for the design of code-compliant exterior 325

joints. As the capacity of the joints is not expected to increase significantly after yielding of the beam 326

reinforcement, the experimental factors reported here are considered as maximum achievable values. This 327

implies that the amount of CFRP utilized in the strengthening was sufficient to develop the full available 328

plastic capacity of the joints.329

Summary and conclusions330

This paper presented test results of three substandard full-scale RC beam-column joints subjected to two 331

successive testing phases. The geometry and detailing of the specimens were similar to those used in a full-332

scale substandard RC building tested on a shake table as part of BANDIT Project (Garcia et al. 2014a). In 333

phase 1, the bare joints were subjected to cyclic tests up to a load that induced a 50% drop in peak capacity. 334

As these tests produced severe damage in the joint core, the damaged concrete was fully removed and335

replaced with new high-strength concrete. The specimens were subsequently strengthened with externally 336
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bonded CFRP sheets and retested up to failure in phase 2. From the test results and analysis presented here, 337

the following conclusions can be drawn:338

1) The behavior of the bare joints was dominated by extensive cracking in the concrete core which led to 339

premature shear failure (J-type failure). The capacity of the bare specimens was approximately 40-55% the 340

plastic capacity of the joints. Despite the substandard anchorage used for the bottom beam reinforcement, no 341

pullout failure occurred during the tests.342

2) The final failure mode of the rehabilitated joint JB2R was similar to that observed in the bare counterparts 343

(J-type). However, the complete core replacement using high-strength concrete restored the original stiffness 344

of the severely damaged joints and increased their capacity by up to 44%.345

3) The CFRP strengthening enhanced the capacity of the joints by up to 145% over the bare counterparts346

(joint JB2RF), and by up to 69% over the specimens rehabilitated with a new core (JB2RF and JC2RF).347

Compared to the bare joints, the ultimate drift of the CFRP-strengthened joints was enhanced by up to 66%348

(JB2RF). The use of CFRP strengthening also resulted in yielding of the beam reinforcement and led to a349

more ductile BJ-type of failure. Although the adopted strengthening layout prevented sheet debonding350

without the use of mechanical anchors, CFRP rupture and excessive damage in the joint core prevented the 351

development of large plastic strains in the beam reinforcement.352

4) For the bare and rehabilitated joints presented here, the approaches proposed by Priestley (1997), Kim and 353

LaFave (2009), Hassan (2011) for J-type failure and Park and Mosalam (2012) overestimate the experimental 354

shear strength factors by an average of 13%, 77%, 48% and 85%, respectively. Conversely, Hassan’s model 355

for S-type failure underestimates by an average of 44%. The shear strength factor =0.50 MPa given by 356

ASCE/SEI 41-06 (2007) for exterior joints predicts the shear strength of the bare and rehabilitated joints with 357

very good accuracy.358

5) The amount of CFRP utilized in the strengthening was sufficient to develop the full plastic capacity of the 359

joints. The experimental shear factors of joints JB2RF and JC2RF ( =0.85 MPa and 0.83 MPa,360
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respectively) are only 15 and 17% lower than that considered in ACI 352R-02 (2002) for the design of code-361

compliant exterior joints ( =1.0 MPa). Therefore, the rehabilitation/strengthening method proposed in this 362

study is very effective for post-earthquake strengthening of typical substandard structures of developing 363

countries.364
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Tables

Table 1. Characteristics of beam-column joints

Phase ID fcm
(MPa)

fctm
(MPa)

Test condition

1 JA2 32.0(1.61) 2.44(0.16) Original joint
JB2 31.3(1.20) 2.41(0.21) Original joint
JC2 32.0(1.61) 2.44(0.16) Original joint

2 JA2RF 54.2(3.00) 3.67(0.17) JA2 with new recast 
core and CFRP 

JB2RF 55.3(1.90) 3.91(0.18) JB2 with new recast
core and CFRP

JC2RF 56.9(1.20) 3.61(0.19) JC2 with new recast
core and CFRP

JB2R 53.7(3.60) 3.70(0.21) JB2RF with new 
recast core

Note: standard deviations shown in parenthesis
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Table 2. Number of CFRP layers used for strengthening

Sheet no. No. of CFRP layers

JA2RF JB2RF JC2RF
2 3 3
1 2 2
2 2 2
2 2 2
2 2 2
1 2 2
1 2 2
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Table 3. Load and drift ratio results of tested joints

ID Pcr
(kN)

cr
(%)

Pmax
(kN)

max
(%)

Pmax
(%)

u
(a)

(%)
JA2 +39.8 +0.47 +57.0 +1.42 - ±3.0

-37.6 -0.50 -51.9 -1.48 -
JB2 +42.0 +0.59 +58.0 +1.51 - ±3.0

-43.1 -0.62 -43.3 -1.46 -
JC2 +41.4 +0.52 +54.5 +1.40 - ±4.0

-35.3 -0.39 -48.5 -1.49 -
JA2RF +49.0 +0.56 +86.2 +1.86 +51 ±4.0

-47.9 -0.54 -79.8 -2.00 +54
JB2RF(b) +63.9 +0.90 +120.0 +2.92 +107 ±5.0

-62.8 -0.87 -127.0 -2.95 +193
JC2RF +65.5 +0.80 +119.4 +2.91 +119 ±5.0

-53.3 -0.58 -115.0 -2.75 +137
JB2R(b) +56.7 +1.19 +75.0 +1.95 +29 ±4.0

-46.7 -1.01 -71.3 -2.87 +65
(a) Ultimate drift ratio applied in the test
(b) The bottom beam bars were welded to the top beam bars
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Fig. 1. General geometry and reinforcement details of tested joints (units: mm)
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Fig. 2. Test setup and instrumentation of joints (units: mm)
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Fig. 3. (a) CFRP strengthening strategy, and (b) removal of CFRP and core replacement in joint JB2RF (units: mm)
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Fig. 4. Typical failure of (a) bare joints (JB2), and (b) rehabilitated joint JB2R
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Fig. 5. Load-drift response for (a)-(c) bare joints, and (d) rehabilitated joint JB2R
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Fig. 6. Failure mode of specimens (a) JA2RF, and (b) JB2RF
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Fig. 7. Load-drift response for rehabilitated and CFRP-strengthened joints
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Fig. 8. Comparison of envelope from test results
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Fig. 9. Strains recorded at bottom beam reinforcement of joint JC2RF
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Fig. 10. Stiffness degradation of tested joints
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Fig. 11. Shear stress-strain of specimens (a) JC2, and (b) JC2RF
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Fig. 12. Strains recorded in CFRP sheets at (a) core and (b) column lap splices of joint JC2RF
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