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Abstract

Bond splitting is investigated using flexural tests on twelve RC beams with substandard laps (25 bar 

diameters) at midspan. Different confinement configurations of the splice region, concrete covers and bar

sizes are examined. The results show that CFRP confinement enhances the splice bond strength by up to 

65% compared to unconfined specimens. Predictive equations from the literature are shown to yield a 

large scatter in results and to overestimate the strain developed in the CFRP confinement. An alternative 

approach to calculate the confinement strain and the additional bond strength provided by CFRP 

confinement is proposed and validated.

Keywords: substandard lap splices; seismic strengthening; RC beams; CFRP confinement; bond-splitting 

strength; bar slip
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1 Introduction

Disastrous human and economic losses in recent destructive earthquakes (Kashmir, 2005; China, 2008; 

Indonesia and Italy, 2009; Haiti, 2010) are a consequence of the high seismic vulnerability of existing 

substandard buildings, a large proportion of which is reinforced concrete (RC). Many catastrophic failures 

in RC structures can be attributed to failure of inadequate spliced reinforcement at locations of large 

demand, such as column-footing interfaces or in starter bars above beam-column joints. The local 

strengthening of these deficient members is a feasible option for reducing the seismic vulnerability of 

such substandard buildings. Over the last two decades, externally bonded fibre reinforced polymers (FRP)

have been used widely to strengthen seismically deficient members. Compared to other strengthening 

materials, FRP possess advantages such as high strength to weight ratio, high resistance to corrosion, 

excellent durability, ease and speed of in-situ application and flexibility to strengthen selectively only 

those members seismically deficient [1].

Many experimental studies have shown the effectiveness of FRP confinement at improving the behaviour 

of columns with inadequate short lapped reinforcement (e.g. lap length lb=20-35db, where db is the bar 

size) [2-15]. Despite the extensive research efforts, relatively little research has focused on developing

appropriate analytical models for the strengthening of column splices using FRP materials. Seible et al. 

[4] proposed the first model for FRP strengthening of short lapped bars in columns where failure was 

governed by splitting. Whilst this model is included in current FRP guidelines [16-17], its use in actual 

strengthening applications may lead to very conservative amounts of FRP confinement [7,11].

More recently, the strengthening of short laps with FRP materials was investigated by adopting a bond

approach similar to that used for internal steel stirrups [13,18,19]. The results of these studies indicate that 

a) the maximum bond strength of the lapped bars could be developed using less confinement than that 

recommended by current FRP strengthening guidelines, and b) in splitting-prone RC members, FRP 

confinement is effective at enhancing bond strength up to the point where bar pullout dominates failure. 

Based on limited experimental work, some analytical models were proposed to compute the additional 

contribution of FRP confinement to the bond strength of splices [e.g. 13,18,19]. These models are mainly 

based on modifications of existing equations originally developed for steel confinement, and assume the 
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total bond strength of a lap as the sum of the individual contributions of concrete cover and FRP 

confinement. Therefore, the concrete contribution to bond strength is computed using bond strength 

equations available in the literature, whereas the contribution of the FRP confinement is computed by 

adopting either i) a “strain approach” that considers the effective strain developed in the FRP [e.g 13,18],

or ii) an equivalent area of FRP confinement accounting for the different stiffness of steel stirrups and 

FRP [19]. Recent research by the authors on very short splices [20] showed that these models 

overestimate the strains developed in carbon FRP (CFRP) confinement and show a large scatter when 

predicting experimental results. Based on results from twelve CFRP-confined short beams with very short

splices (lb=10db), a new strain approach was proposed that yields more consistent predictions of bond

strength enhancement due to FRP confinement. However, the accuracy of the proposed approach needs to 

be verified using tests on lap splices as those found in typical substandard RC constructions.

This research is part of a multistage research project focusing on the seismic strengthening of substandard 

RC buildings [20-25]. This paper investigates the effectiveness of externally bonded carbon FRP (CFRP) 

confinement at enhancing the bond strength of substandard lapped bars (lb=25db) in RC beams. The test 

results are used to examine and discuss the accuracy of predictive models available in the literature. 

2 Experimental programme

Twelve RC beams were tested in flexure. The beams were designed to fail by bond-splitting at midspan, 

where the main bottom reinforcement was lapped. Consequently, the use of confinement at this zone is 

expected to improve considerably the bond behaviour of the bars.

2.1 Characteristics of beam specimens
The twelve tested beams are “splice specimens” as defined by ACI 408R-03 [26]. The beams had a 

rectangular cross section of 150×250 mm, a total length of 2500 mm and a clear span of 2300 mm (see

Fig. 1a-b). The main flexural reinforcement was lapped at midspan and consisted of two steel bars of 

diameter db=12 or 16 mm. The top beam reinforcement consisted of two continuous 10 mm bars. To 

prevent shear failure, 8 mm deformed stirrups were placed at 150 mm centres outside the lap splice zone.

The lap length selected for the beams (lb=25db) is representative of typical deficient laps of substandard 

(pre-seismic) RC structures in developing countries. To investigate different concrete cover to diameter 
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ratios (c/db), side and bottom covers of 10 and 20 mm were selected for the beams reinforced with 12 mm 

bars, whereas 27 mm covers were used for the beams reinforced with 16 mm bars. Different levels of 

confinement were investigated. Internal steel stirrups were used to confine the splice region of three of the 

tested beams. To replicate substandard construction detailing, the stirrups were closed with 90° hooks 

instead of 135° hooks typically required by current seismic codes. CFRP sheets were used for six beams:

the midspan of three beams was confined with 1 layer of CFRP confinement and another three with 2 

layers. For comparison, three unconfined control beams with lapped bars were also cast.

Fig. 1. General geometry and reinforcement details of tested beams.

The main characteristics of the tested beams are shown in Table 1. Beams are identified according to the 

intended concrete cover c (LC10, LC20 and LC27 for c=10, 20 and 27 mm, respectively) and type of 

confinement (Ctrl=unconfined control, S=steel-confined, and F=CFRP-confined beams). The last digit of 

the CFRP-confined beams indicates the number of layers utilised at midspan (1 or 2). Table 1 also reports 

the measured side (cx), bottom (cy) and internal (csi) concrete covers (see definitions in Fig. 1d). These 

produced cmin/db ratios ranging from 0.83 to 1.67, where cmin=min(cx, cy, csi/2).
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Table 1. Main characteristics of tested beams

Group ID fcm
(MPa)

Measured covers (mm) cmin/db Flexural 
bars

Confinement 
at midspancx cy csi

Face A Face B
LC10 LC10Ctrl 27.9 12 13 11 79 0.92 2Ø12 None

LC10S 27.9 11 16 13 81 0.92 2Ø12 3Ø8/90 mm
LC10F1 27.9 15 10 12 81 0.83 2Ø12 1 layer CFRP
LC10F2 27.9 16 15 11 76 0.92 2Ø12 2 layers CFRP

LC20 LC20Ctrl 24.7 27 22 17 55 1.42 2Ø12 None
LC20S 24.7 26 21 20 56 1.67 2Ø12 3Ø8/90 mm
LC20F1 24.7 21 21 17 60 1.42 2Ø12 1 layer CFRP
LC20F2 24.7 21 20 19 61 1.58 2Ø12 2 layers CFRP

LC27 LC27Ctrl 25.7 25 30 21 31 0.97 2Ø16 None
LC27S 25.7 30 28 27 29 0.91 2Ø16 3Ø8/90 mm
LC27F1 25.7 28 28 22 31 0.97 2Ø16 1 layer CFRP
LC27F2 25.7 28 29 23 28 0.89 2Ø16 2 layers CFRP

2.2 Material properties
Three batches of ready mixed normal-strength concrete were used to cast the beams. The following mix 

proportions were reported by the supplier: Portland cement CIIIA=125 kg/m3, GGBS=125 kg/m3, coarse 

aggregate 4-10 mm=1002 kg/m3, sand 0-4 mm=884 kg/m3, and water/cement ratio=0.8. Casting was 

performed from the top of the beams so that bars are classified as “bottom cast bars” [26]. After casting, 

the beams were covered with polythene sheets and wet hessian, cured for seven days in the moulds and 

subsequently stored under standard laboratory conditions. For each batch, the mean concrete compressive 

strength (fcm) was obtained from tests on at least three 150×300 mm concrete cylinders according to BS 

EN 12390-3 [27]. The indirect tensile splitting strength (fctm) was determined from tests on six 100×200 

mm cylinders according to BS EN 12390-6 [28]. The flexural strength (fcfm) was obtained from four-point 

bending tests on three prisms of 100×100×500 mm according to BS EN 12390-5 [29]. All cylinders and 

prisms were cast at the same time and cured together with the beams. Table 2 reports the average results 

and standard deviations for strength from the tests on cylinders and prisms. The elastic modulus of 

concrete (Ecm) was calculated according to Eurocode 2 [30] and the results are also shown in Table 2.
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Table 2. Properties of concrete for tested beams

Group LC10 LC20 LC27
fcm (MPa) 27.9

(1.19)
24.7
(1.06)

25.7
(0.90)

fctm (MPa) 2.45
(0.24)

2.20
(0.13)

2.48
(0.28)

fcfm (MPa) 3.51
(0.17)

3.54
(0.05)

3.60
(0.09)

Ec (GPa) 29.9 28.9 29.2
Note: standard deviation shown in brackets

The main bottom reinforcement of the beams consisted of high ductility ribbed bars Grade 500 complying 

with BS 4449:2005 requirements [31]. The mechanical properties of the bars were obtained by testing 

three bar samples in direct tension. Mean yield and ultimate strength were: fy=559 and fu=692 MPa for the 

12 mm bar, and fy=551 and fu=683 MPa for the 16 mm bar. The elastic modulus of both bars was Es=209 

GPa. Table 3 summarises actual bar rib geometry measurements as provided by the producer.

Table 3. Rib geometry of flexural lap spliced bars

Nominal bar size (mm) 12 16
No. of samples measured 58 245

°) 35 & 75 35 & 75
Rib inclination °) 50 50
Relative rib area (mm2) Mean 0.084 0.087

Std.Dev. 0.006 0.009
Rib height (mm) Mean 1.02 1.32

Std.Dev. 0.07 0.08
Average rib spacing (mm) Mean 7.40 9.42

Std.Dev. 0.13 0.17

The unidirectional CFRP sheets used as external confinement had the following properties provided by 

the manufacturer: tensile strength ff=4140 MPa, modulus of elasticity Ef=241 GPa, ultimate elongation 

fu=1.70%, and thickness sheet tf=0.185 mm. Before applying the CFRP confinement, concrete surfaces 

were brushed and cleaned to improve the adherence between the existing concrete and the fibre sheets. 

Sharp corners within the application zone were rounded off to a radius of 10 mm. The fibres were 

oriented perpendicular to the beam axis and were applied across the full lap length.



7

2.3 Test setup and instrumentation
The beams were tested in four-point bending using a 250 kN-capacity servo-controlled actuator and a 

spreader loading beam as shown in Fig. 2a. This loading arrangement produced a constant moment over 

the lapped bars at midspan. The beams were simply supported on steel plates and rollers. Linear Variable 

Displacement Transducers (LVDTs) were used to monitor the vertical deflections of the beams. To 

measure net deflections, the LVDTs were mounted on an aluminium reference yoke fastened to the beam 

ends as shown in Fig. 2a. To measure crack opening at the end of the laps, two linear potentiometers with

a gauge length of 50 mm were fixed at the level of the spliced bars (see Fig. 2a).

Fig. 2. Test setup and instrumentation of beams.

One of the splices was instrumented with two series of seven 10 mm strain gauges located along the 

lapped portion of the bars as shown in Fig. 2b. To produce minimal local disturbance of rib geometry, the 

gauges were fixed along a longitudinal rib of the bar. Four strain gauges were fixed on the CFRP at the 

locations where splitting cracks were expected, as shown in Fig. 2c. As sudden failure was expected in 

some specimens, the tests were video recorded to examine the progression of splitting cracks. All beams 

were tested after 28 days of casting, and 7 days or more after bonding the CFRP. The tests were 

performed in displacement control. An initial load cycle of 20 kN was applied to crack the beams in

flexure. The load was then restored and subsequently increased up to the maximum beam capacity. After 
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this point, the confined beams were subjected to three full load-reload cycles. The tests were halted when 

cover splitting occurred (unconfined beams), or when the load-midspan deflection curve was practically 

horizontal due to a low residual resistance (confined beams).

3 Test results and discussion

Table 4 reports a) the peak load Pspl of the tested beams, b) midspan deflection spl at Pspl, c) enhancement 

Pspl spl) of the steel and CFRP-confined beams over the control beams, d) 

maximum bar strain and bar stress at peak load ( s,spl and fs,spl, respectively), and e) post-peak load and 

deflection at 15% drop of Pspl (P85% and 85%, respectively). The table also presents the ratio of load and 

deflection of the tested beams to that of equivalent benchmark beams with continuous flexural 

reinforcement (Pspl/Pbmk and spl/ bmk, respectively) tested by Al-Sunna et al. [32] and Duranovic et al.

[33]. The following sections summarise the most significant observations of the testing programme and 

discuss the results listed in Table 4.

Table 4. Load, deflection and bar stress results of tested beams

ID Pspl
(kN)

spl
(mm)

Pspl
(%)

spl
(%)

s,spl
(b)

( )
fs,spl

(b)

(MPa)
P85%
(kN)

85%
(mm)

Pspl/Pbmk
(%)

spl/ bmk
(%)

BSb 72.3 38.2(a) - - s,spl> y fs>fy - - 100 100
LC10Ctrl 36.2 4.20 - - 1330 279 - - 50 11
LC10S 46.1 7.34 +27 +74 1995 418 39.1 9.88 64 19
LC10F1 66.5 12.3 +84 +190 3405 559(c) 56.2 16.0 92 32
LC10F2 68.5 17.9 +90 +325 14655 560(c) 59.2 21.5 95 47
BSa 71.0 40.7(a) - - s,spl> y fs>fy - - 100 100
LC20Ctrl 39.4 6.09 - - 1650 346 - - 55 15
LC20S 35.5 6.49 -10 +7 1505 315 30.2 8.63 50 16
LC20F1 61.4 14.7 +56 +140 2920 559(c) 52.2 17.4 86 36
LC20F2 59.2 11.7 +50 +92 3580 559(c) 50.3 13.1 83 29
SB3 115.9 36.7(a) - - s,spl> y fs>fy - - 100 100
LC27Ctrl 60.9 6.32 - - 1860 388 - - 53 17
LC27S 65.4 7.20 +7 +14 1800 375 56.0 8.00 56 20
LC27F1 83.5 11.3 +37 +80 2540 510 71.0 14.0 72 31
LC27F2 98.3 12.6 +61 +100 2965 551(c) 83.6 16.4 85 34
(a) Maximum deflection at concrete crushing
(b) Maximum of the two instrumented bars
(c) The bars developed yielding
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3.1 Failure mode
In all beams, first flexural cracks developed at the ends of the splice. The unconfined control beams 

experienced sudden brittle failure due to splitting of the concrete cover around the lapped bars (see typical 

failure in Fig. 3a and Video 1 in Supplementary Data - include here link to video LC20Ctrl.mp4), which 

was accompanied by a loud explosive noise. The use of internal stirrups in the lapped zone did not delay 

the onset of flexural cracking of the steel-confined beams. However, unlike the unconfined beams, large

flexural cracks appeared at the location of internal stirrups. At maximum load, splitting cracks formed 

along the lapped bars. Towards the end of the tests, some concrete detached due to the combination of 

cover splitting and wide flexural cracks (see Fig. 3b). As the CFRP sheets were bonded directly onto the 

concrete surface (see Fig. 3c), the onset of splitting cracking in the CFRP-confined beams was not 

observed. The CFRP confinement controlled the splitting cracks and prevented concrete cover spalling. 

Nonetheless, towards the end of the tests, wide flexural cracks formed at the ends of the laps outside the 

confined zone, as the lapped bars pulled out progressively from the concrete. No evident damage occurred 

at the CFRP sheets during the tests. However, some local fibre debonding occurred at the location of wide 

flexural and splitting cracks. It should be mentioned that for beams LC10 and LC20, splitting cracks were

first observed along the side and bottom concrete covers. Conversely, for beams LC27, concrete splitting 

occurred first between the splices, and then along the side and bottom covers. This was due to the small 

spacing between the lapped bars of the latter beams (csi 30 mm). Regardless of the confinement used at 

midspan, the progression of splitting cracks observed in the tested beams coincided with that described by 

Gambarova et al. [34] (see Fig. 4a-c). Due to higher bar stresses, splitting cracks always started at the end 

of the lapped bars (see Fig. 4a). This produced complete cover splitting along a given length l1, partial 

splitting along a length l2, and no splitting at the middle zone of the lap (length l3). When the peak 

splitting load wass reached, complete splitting propagated rapidly towards the centre of the lap (Fig. 4b).

Complete splitting along l2 led to lap failure (see Fig. 4c).
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Fig. 3. Typical failures at midspan of beams: (a) unconfined control, (b) steel-confined, and (c) CFRP-confined.

Fig. 4. Typical progression of splitting cracks just before complete cover splitting, adapted from Gambarova et al. 
[34].

3.2 Load-deflection response
The experimental load-deflection responses are shown in Fig. 5a-c. In the figures, the brittle failure of the 

unconfined beams is indicated by a star. Comparatively, the use of internal confinement in the lapped 

zone led to a ductile response, characterised by a gentle drop of the load capacity after the maximum load. 

The deflections at peak load of the steel-confined beams increased by up to 74% (beam LC10S) when 

compared to their unconfined counterparts (see Table 4). On the contrary, steel-confined beams only

resisted similar or slightly higher loads (by up to 27%) than unconfined beams. The bar stresses shown in 

Table 4 indicate that the splices of the steel-confined beams remained in the elastic range.
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Fig. 5. Load-midspan deflection response of tested beams (a) LC10, (b) LC20, and (c) LC27.

CFRP confinement was very effective at improving the load-deflection behaviour of the beams by 

delaying the splitting failure. Moreover, with the exception of beam LC27F1, all CFRP-confined beams 

developed some yielding as indicated by the short post-yield plateaus in Fig. 5a-c (see also s,spl values in 

Table 4). Maximum loads and deflections were consistently higher compared to their unconfined and 

steel-confined counterparts. As shown in Table 4, peak loads increased by up to 90% with reference to the 

unconfined specimens (beam LC10F2). Beams confined with 2 CFRP layers sustained slightly higher 

loads than those confined with 1 layer (except for beams LC20). The use of CFRP confinement also 

increased the deflection at peak load by up to 325% (beam LC10F2). Even after a drop of 15% of the 

peak load, the loads and deflections were up to 73% (beam LC20F1) and 118% (beam LC10F2) higher 

than those of steel-confined specimens, respectively.

With the exception of beam LC27F1, Fig. 5 and Table 4 show that the CFRP-confined beams resisted 

similar loads than the corresponding benchmark beams with continuous main bottom bars. The slightly 

higher capacity of the benchmark beams can be due to the higher yield strength of the reinforcement 

(fy=590 MPa) and to some strain hardening at peak load. Overall, the test results indicate that even small 

amounts of CFRP confinement are sufficient to develop yielding in relatively short splices, which leads to

load capacities comparable to those of beams without splices (see ratios Pspl/Pbmk in Table 4). However, 
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the ratios spl/ bmk in Table 4 (which range from 29% to 49%) also show that splice yielding does not 

guarantee a fully ductile response of the beams.

3.3 Bond-slip response of spliced bars
The readings from the bar strain gauges are utilised to examine in detail the bond stress and bar slip 

response of the individual lapped bars. The average bond stress ( ) between two strain gauges separated

a distance lx (see Fig. 2c) can be computed using the rate of change of stress (dfs) between them according 

to Eq. (1) [35,36]:

1

1,,

44 ii

isisb

x

sb

xx
ffd

l
dfd (1)

where db is the bar diameter; xi and xi-1 are the distances to the strain gauges measured from the unloaded 

end of the bar (lx=xi-xi-1, see Fig. 2c); and fs,i and fs,i-1 are the bar stresses at distances i and i-1,

respectively. The bar stress fs is computed using the experimental bar strains ( s) and a simplified bilinear 

tensile stress-strain model of steel:

sss Ef for ys (2)

shysys Eff )( for ys (3)

where Es and Esh are the elastic and post-yield modulus of steel, respectively, and y is the yield strain of 

the bar. Es was taken from the test data of the bars, whilst Esh was assumed to be equal to 0.01Es to 

approximately match the direct tension results of the bars (see Fig. 6).

Fig. 6. Idealised stress-strain behaviour of bars and bar test results.
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Fig. 7a-d show typical strain and bond stress distributions of the spliced bars of steel and CFRP-confined 

beams computed using Eqs. (1) to (3). For clarity, the results are presented at load intervals of 

approximately 10 kN and only up to the peak load. As expected, strains are larger at the loaded end of the 

bars and reduce progressively towards the unloaded end, where zero strain is assumed. In general, and 

despite some discrepancies, strain distributions are approximately linear up to the peak load. Whilst the 

bars of unconfined and steel-confined beams remained elastic, the strain values in Fig. 7c confirm that the

bars of CFRP-confined beams developed some yielding.

Fig. 7. Typical strain and bond stress distributions of spliced bars in steel and CFRP-confined beams.

Fig. 7b and d show that at the beginning of the tests (P=10 and 20 kN) higher bond stresses developed 

close to the ends of the lapped bars, whilst low bond stresses were mobilised within the middle zone. As 
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bond stresses were almost uniform along the bar length. The discrepancies in the bond stress profile 

indicate that flexural cracks also influence the strain distribution. It should be noted that, at peak load, 

bond stresses at the loaded end of the bars degraded significantly (see loaded ends of Fig. 7b and d). This 

can be attributed to i) concrete cover splitting around the bars in the case of steel-confined beams, and ii) 
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bar yielding in the case of CFRP confined beams. This corroborates previous research results [35-37] that 

indicate that yielding reduces the local bond stress in a similar manner as concrete cover splitting.

In this paper, “bar slip” is defined as the movement of the unloaded end of a bar with reference to its 

original position. As bar slip at the unloaded end (su) was not measured, its value was computed indirectly 

using crack width measurements from two linear potentiometers located at the bar ends (see Fig. 2a). In

addition to su, the measured crack widths include slips due to the bar elongation along the splice, sel.

Therefore, to obtain su, sel was computed using Eq. (4) and then subtracted from the crack width 

measurements:

1

1,,
1,, 2

1

ii

isis
ieliel xx

ss (4)

where sel,i and sel,i-1 are the slips due to bar elongation at distances i and i-1, respectively (see Fig. 2c), and 

s,i and s,i-1 are the corresponding experimental bar strains. It should be noted that Eq. (4) represents the 

area of the bar strain distribution along the bars (i.e. Fig. 7a and c) and includes the elastic and inelastic 

bar elongation.

Fig. 8a-c show the bond-slip responses of the tested beams. For clarity, only the envelope responses are 

presented. In these figures, bond stress is the average stress along the lap length. Fig. 8b-c show the 

response of some beams only up to the point where the potentiometers failed. It is shown that, during the 

initial loading, the bond-slip relationships of all beams were similar and negligible bar slips occurred. In 

the CFRP-confined beams, significant cover splitting occurred at bond stresses of approximately 80-90% 

the bond strength. After the peak load and for the same slip value, the bond stress sustained by the CFRP-

confined beams was consistently higher due to the delay in splitting crack propagation. As can be seen, 

some bond-slip curves of the CFRP-confined beams exhibit plateaus of relatively constant bond stress. 

This behaviour can be attributed to the small post-yield steel stiffness assumed in the calculations of bond

and to bar pullout. After the bond capacity of the bars was exhausted, bond stress degraded with 

increasing slip. The results indicate that although CFRP confinement may lead to bar yielding of 

substandard splices, it may not be sufficient to produce a fully ductile behaviour as bar pullout can govern 
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failure. In general terms, beams confined with 2 CFRP layers showed a slightly better response than those 

confined with 1 layer.

Fig. 8. Bond-slip relationships of tested beams (a) LC10, (b) LC20, and (c) LC27.

It should be mentioned that, compared to its steel-confined counterpart, the experimental bond strength of 

beam LC10Ctrl was suspiciously low ( spl=2.50 MPa). A post-failure inspection of this beam revealed that 

the concrete around the splices had little coarse aggregate, possibly due to the small cover used (minimum 

cover cmin=11 mm). As this lack of aggregate may have led to the premature splitting and failure of this 

beam, the bond strength of beam LC10Ctrl was computed using the equation proposed by Lettow and 

Eligehausen [38], which is included (in a simplified form) in Model Code 2010 [39]. This latter value is 

used in the following analysis and discussions.

Table 5 summarises the results of the tested beams at peak load: a) bond strength spl, b) bond strength 

spl
*

spl spl fcm, d) bar 

slip su su, and f) strain in the CFRP confinement f,spl. The 

value spl was computed as the difference between the bond strength of the confined beams and that of 

the corresponding unconfined control beam. The reported CFRP strains are the average readings from the 

strain gauges shown in Fig. 2c. As shown in Table 5, the premature failure of the unconfined beams is 
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clearly reflected in the very low bar slip values recorded during the tests (0.012 to 0.041 mm only). 

Although the bond strength of the steel-confined beams was similar or slightly higher than that of the 

unconfined beams, the use of steel stirrups enabled the development of a larger bar slip at failure by up to 

2790% (beam SC10S). The results also emphasise the effectiveness of CFRP confinement at improving 

the bond-slip behaviour of the beams. Compared to unconfined specimens, the normalised bond strength 

was enhanced by up to 57% and 65% for 1 and 2 CFRP confinement layers, respectively (see beams 

LC10). Moreover, the CFRP confinement increased considerably the slip at peak load by a minimum of 

6400% (beam LC10F1) and up to 14000% (beam LC10F2).

Table 5. Bond-slip and CFRP strain results of tested beams

ID spl
(MPa)

spl
(MPa)

*
spl

(b)

( MPa)
*
spl

(%)
su
(mm)

su
(%)

f,spl
( )

LC10Ctrl 3.31(a) - - - 0.012 - -
LC10S 3.76 0.45 0.08 +14 0.34 +2790 -
LC10F1 5.20 1.89 0.36 +57 0.76 +6400 1570
LC10F2 5.47 2.16 0.41 +65 1.64 +14000 910
LC20Ctrl 3.35 - - - 0.027 - -
LC20S 2.73 -0.62 -0.13 -19 0.31 +1040 -
LC20F1 4.86 1.51 0.30 +45 1.08 +3930 720
LC20F2 5.18 1.83 0.37 +55 0.27 +920 740
LC27Ctrl 3.30 - - - 0.041 - -
LC27S 3.50 0.20 0.04 +6 0.08 +100 -
LC27F1 4.80 1.50 0.30 +45 0.32 +670 1540
LC27F2 5.16 1.86 0.37 +56 0.32 +670 925
(a) Original value spl=2.50 MPa
(b) fcm

The current test results indicate that 1 or 2 layers of CFRP confinement were sufficient to develop some 

yielding in the substandard splices of the beams. As the maximum splice bond strength is developed,

additional CFRP confinement is not expected to enhance considerably the normalised bond strength in the 

post-yield stage (as shown by the yielding plateaus in Fig. 8a-c). This is also confirmed in Table 5, where 

the maximum normalised bond strength enhancement never exceeds *
spl=0.41. As a result, it is 

uneconomical to provide more confinement than that necessary to develop bar yielding (unless it is 

required for other strengthening objectives). An *
spl=0.40, also proposed by 
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Harajli et al. [19] and corroborated by the authors is a previous study on lap splices [20], is adopted in the 

analytical model discussed below.

4 Bond strength enhancement in CFRP-confined beams

4.1 Prediction of bond strength
An alternative strain approach to calculate the bond strength enhancement due to FRP confinement was 

proposed recently by Garcia et al. [20]. The approach considers the total bond strength of a lap as the sum 

of the individual contributions of concrete cover and FRP confinement. Whilst the concrete cover 

contribution can be computed using bond equations existing in the literature [e.g. 38,40,41], the effect of 

the CFRP confinement is considered through an additional confining pressure, fo. The concrete around the 

lapped bars is regarded as thick-walled cylinders (similarly to Tepfers [42]) of thickness cmin(x,y) as shown 

in Fig. 9a, where cmin(x,y)=min(cx, cy).

Fig. 9. Bond-splitting failure assumptions in CFRP-confined splices.

The confining pressure fo is assumed to act over a split cross sectional area equal to (cmin(x,y)+db lb as

shown in Fig. 9b. A strain control approach is adopted to compute fo, which leads to Eq. (5). The effective 

CFRP strain f,o is calculated using the concrete tensile strain at the approximate onset of cover splitting, 

when concrete tensile strains, ctm, and CFRP strains are assumed to be equal (perfect bond is assumed).

Hence, f,o= ctm= fctm/Ectm, where all the variables were defined previously. fo is computed as:

)( ),min(

,

byxb

fofff
o dcn

Etn
f (5)

where nf and tf are the number of CFRP sheets and thickness of one sheet, respectively; Ef is the elastic 

modulus of the CFRP; nb is the total number of pairs of lapped bars in tension, and the rest of the 

variables are as defined before. It should be mentioned that for discontinuous CFRP applications (strips), 

nftf  f,oEf

FRP sheets

fo

fo

Splitting crack

Thick-walled
cylinders

cmin+db
cmin+db
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cx

cy Splitting crack
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Eq. (5) can be multiplied by wf/sf, where wf and sf are the width and centre-to-centre spacing of the CFRP 

strips, respectively. Based on calibration with test data of CFRP-confined beams with very short splices

[20], the following relationship between the bond strength enhancement due to CFRP confinement and 

the confining pressure was found:

40.015.1*
ospl f (6)

where all the variables are as defined before. In Eq. (6), the maximum normalised bond enhancement is 

limited to 0.4 as discussed in the previous section.

Table 6 compares the experimental normalised bond strength enhancement ( *
spl) with analytical 

predictions ( *
spl,pred) obtained according to Eq. (6) as well as models proposed by Hamad et al. [18],

Harajli et al. [19] and Bournas and Triantafillou [13]. The table also summarises the predicted effective 

CFRP strains ( f,pred) used for the *
spl,pred in Hamad et al. and Bournas and Triantafillou 

equations. To assess the accuracy of the models, the test/prediction ratios (T/P) and corresponding 

standard deviations are also reported. Table 6 includes results from beam series S tested by Garcia et al. 

[20]. Beams S were tested under similar conditions as the current specimens (beams L), but they had

different test parameters and a very short lap length of only 10db. Compared to other models, the 

proposed equation predicts the test results more accurately (mean T/P=1.03) and with less scatter 

(Std.Dev.=0.08). 
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Fig. 10 compares Eq. (6) with the experimental results from beam series S and L. In spite of the different 

test parameters and lap length examined in these two experimental programmes, it is evident that the 

proposed equation matches consistently the trend of results. Therefore, it is proposed to use Eqs. (5) and

(6) for assessment and strengthening of short splices in substandard RC constructions.

Fig. 10. Comparison of proposed equation with experimental results, CFRP-confined beams.

4.2 Prediction of strains developed in CFRP confinement
To compute the bond strength enhancement due to CFRP confinement, the Hamad et al. [18] and Bournas 

and Triantafillou [13] models also adopt a “strain approach”. For instance, Hamad et al. calculate the 

effective CFRP strain according to the ACI 440.2R [43] recommendations for shear strengthening.

Conversely, Bournas and Triantafillou compute the effective strain as a function of the ratio lb/db. For the 

beam tested in this research (series L), these two models predict CFRP strain values of 4000 and 265

respectively (see Table 6). However, the current test results show that CFRP strain values never exceeded

1600 (see typical results in Fig. 11; see also last column of Table 5). Similar values were 

reported by the authors for beam series S [20] and by Harajli and Dagher [10]. The results of these 

experimental studies indicate that Hamad et al. and Bournas and Triantafillou models overpredict 

considerably the strain values of the CFRP confinement. In addition, Fig. 10 (which shows results of 

beams with lb=10 and 25db) suggests that the bond strength enhancement due to CFRP confinement is 

relatively independent of the lap splice length. As a consequence, these results do not support the strain 

approach proposed by Bournas and Triantafillou.
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Fig. 11. Typical development of strains in CFRP confinement (beam LC10F1).

As mentioned above, the bond strength enhancement given by Eq. (6) needs to be added to the concrete 

contribution to compute the total bond strength of the lapped bars, which should be limited to the bond 

strength at bar yielding. The effectiveness of the proposed model to predict the strength of splices in RC

columns confined with CFRP should be further investigated. Until additional experimental data become 

available, the applicability of the model should be limited to the values cmin(x,y)/db The use of 

glass, aramid or basalt FRP should be also studied.

5 Conclusions

This study investigated the bond strength enhancement resulting from the confinement provided by

externally bonded CFRP in the splice region of RC beams. The beams were subjected to four-point 

bending and were designed to fail by bond-splitting at midspan, where the main flexural reinforcement 

was lapped over a length equal to 25 bar diameters. From the analysis and results presented here, the 

following conclusions can be drawn:

1) The unconfined control beams failed in a brittle manner due to splitting of the concrete cover around 

the splice. For these beams, bar slip at splitting ranged from 0.012 to 0.041 mm.
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2) Compared to unconfined specimens, the use of internal steel stirrups along the splice length resulted in

splitting failures at similar or slightly higher loads (by up to 27%) and bond strengths (by up to 14%). 

However, bar slips increased by up to 2790%. After splitting, the steel-confined beams showed a rather 

ductile behaviour and sustained significant additional deformations, but with a gradual drop in capacity.

3) The use of externally bonded CFRP confinement delayed the splitting failure of the laps. Compared to 

unconfined specimens, CFRP confinement also enhanced the bond strength and bar slip by up to 65% and 

14000%, respectively. For the beams tested in this study, the use of 1 or 2 CFRP layers was sufficient to

develop some yielding in the splice (except for beam LC27F1). The results also indicate that the 

maximum normalised bond strength enhancement is limited to *
spl=0.40. As no significant bond 

enhancement is expected in the post-yield stage, it seems uneconomical to provide more confinement than 

that necessary to develop yielding in the splice.

4) Previous research and the current test results show that splitting failures of laps in CFRP-confined 

members occur at maximum strain values in the CFRP confinement of 1600 is value is

considerably lower than the effective CFRP strains predicted by Hamad et al. [18] and Bournas and 

Triantafillou [13] bond equations (2650-4000 , and supports the new “strain 

approach” proposed by the authors.

5) Existing equations for predicting the bond strength enhancement due to CFRP confinement show a

relatively large variability when compared to experimental results. The new “strain approach” proposed 

recently by the authors provides more consistent predictions. This can be used for assessment and 

strengthening of short splices in substandard RC constructions.
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