This is an author produced version of *Mid-mantle deformation inferred from seismic anisotropy*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78/

Article:

http://dx.doi.org/10.1038/415777a
Mid-mantle deformation inferred from seismic anisotropy

James Wooley*, J-Michael Kendall† & Guilhem Barreau‡

* School of Earth Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
† CNRS, Université Montpellier, 34095 Montpellier, Cedex 05, France

With time, convective processes in the Earth’s mantle will tend to align crystals, grains and inclusions. This mantle fabric is detectable seismologically, as it produces an anisotropy in material properties—in particular, a directional dependence in seismic-wave velocity. This alignment is enhanced at the boundaries of the mantle where there are rapid changes in the direction and magnitude of mantle flow, and therefore most observations of anisotropy are confined to the uppermost mantle or lithosphere and the lowermost-mantle analogue of the lithosphere, the D′ region. Here, we present evidence from shear-wave splitting measurements for mid-mantle anisotropy in the vicinity of the 660-km discontinuity, the boundary between the upper and lower mantle. Deep-focus earthquakes in the Tonga–Kermadec and New Hebrides subduction zones recorded at Australian seismograph stations record some of the largest values of shear-wave splitting hitherto reported. The results suggest that, at least locally, there may exist a mid-mantle boundary layer, which could indicate the impediment of flow between the upper and lower mantle in this region.

Seismic anisotropy in the upper 200 km of the Earth's mantle is primarily attributed to the preferred alignment of olivine crystals which have deformed by dislocation creep. The origin of anisotropy at greater depths is more speculative, but there is evidence for anisotropy in the transition zone in some regions, but not in others. In an effort to reconcile discrepancies in global velocity models derived from body-wave travel times and normal-mode observations, Montagner and Kennett allowed both anisotropy and attenuation in a joint inversion of these data sets. Their final model shows significant levels of anisotropy in the uppermost and lowermost mantle, but also in the vicinity of the 660-km discontinuity (hereafter referred to as the ‘660’). This motivated an investigation of mid-mantle anisotropy on a regional scale. Here we investigate shear-wave splitting in deep-focus events that image a region below the Australian plate (Fig. 1).

Stations in Australia are ideal for investigating near-source anisotropy, as studies have shown that they exhibit very little, if any, receiver-side shear-wave splitting (see Supplementary Information for a summary of observations). For example, 52 SKS measurements with good azimuthal coverage at the station CAN (see Fig. 1 for location) show that shear waves that are travelling nearly vertically are not split while crossing the Australian lithosphere beneath this station. In contrast, we find that deep-focus events from the Tonga–Kermadec and New Hebrides subduction zones show very large degrees of shear-wave splitting at this and four other Australian stations (Fig. 2), suggesting anisotropy deeper in the mantle, away from the receiver.

We made splitting measurements from 92 events, at epicentral distances of 24° to 59° from the Australian stations, using the method of ref. 15, which estimates the time separation between the fast and slow shear wave, δt, and the polarization of the fast shear wave at the receiver, ϕ. This method attempts to remove the anisotropy-induced splitting by minimizing the shear-wave signal in the direction perpendicular to the polarization direction of the shear wave before entering the anisotropic region. A grid search over δt and ϕ is used to estimate the splitting parameters, and a statistical F-test is used to assess errors. The correction for splitting

Competing interests statement

The authors declare that they have no competing financial interests.

Correspondence and requests for materials should be addressed to G.C.C.
(e-mail: G.C.Craig@Reading.ac.uk).

© 2002 Macmillan Magazines Ltd
should produce a linear S-wave particle motion, thus providing a further measure of confidence in the results. Of 164 splitting measurements, 66 gave very convincing results—that is, the error in δt is less than 0.5 s, and the error in ϕ is less than 10°. In an effort to isolate mid-mantle anisotropy, we further restricted our study to the 30 events deeper than 300 km which gave 35 high-quality splitting estimates (see Supplementary Information; 75% of the events are greater than 500 km deep). The magnitude of splitting for these events ranges from 0.6 s to 7.1 s. Many measurements show splitting in excess of 4 s (Fig. 2), and suggest either very high degrees of localized anisotropy or wave propagation through a more moderately anisotropic region of large extent. It should be noted that the maximum free-surface incidence angle for our data set is less than 32°, thus avoiding the effects of waveform distortion due to free- and near-surface coupling.

The azimuthal ray coverage at the midpoint between source and receiver spans a 60° region centred around 260°. The polarization of the fast shear wave is roughly aligned with the transverse component, but there is some scatter in this (back-azimuth $\phi = 108^\circ \pm 31^\circ$). Although the azimuthal ray coverage is not complete, the results suggest a transversely isotropic symmetry with the symmetry axis in the vertical plane, perpendicular to the ray direction. For horizontally travelling rays, this would imply a horizontally polarized fast shear wave (that is, SH leads SV).

To help guide interpretations of these observations, we model wave propagation through an anisotropic slab region using ray theory. The linear slab extends to a depth of 660 km and has a 60° dip angle. Anisotropy in the deeper parts of the slab may be due to the alignment of metastable olivine, or the preferred alignment of akimotoite, a polymorph of enstatite, which may exist under slab pressures and temperatures. Alternatively, transition-zone deformation above the slab may align its dominant minerals, wadsleyite and ringwoodite. Finally, anisotropy below the ‘660’ may be due to the alignment of lower-mantle minerals such as perovskite, pericline and/or stishovite, all of which are highly anisotropic. Perovskite is the most likely candidate as it constitutes nearly 80% of the minerals in this region, but an alignment mechanism for perovskite is still uncertain. Both experimental measurements and first-principles calculations suggest that perovskite is only mildly orthorhombic in symmetry and can be well approximated as being transversely isotropic. Unfortunately, these elastic constants predict that for horizontally travelling waves, vertically polarized shear waves are faster than horizontally polarized shear waves. Alternatively, the anisotropy may not be due to crystal alignment, but rather to the horizontal alignment of tabular inclusions, as has been suggested for the lowermost mantle.

Figure 2 compares predicted splitting for a variety of models and the observed splitting values. Consistent with the observations, the anisotropy is constrained to have a fast horizontally polarized shear wave. Very high degrees of anisotropy, distributed throughout the slab, are required to explain the observations with slab anisotropy. It is virtually impossible to explain 6 seconds of splitting in the deepest events (>600 km) with slab anisotropy. An absence of slab anisotropy is further suggested from an analysis of depth-dependent splitting for vertically travelling shear waves beneath Tonga, which shows no evidence of azimuthal anisotropy below 400 km (ref. 10). A lack of SKS splitting does not necessarily mean that the uppermost mantle beneath the receivers is isotropic. Transverse isotropy anywhere in the mantle will not split vertically polarized SKS phases, but will split an arbitrarily polarized S wave. However, Fig. 2 shows that the splitting for an uppermost mantle with 4% anisotropy cannot explain the results. Similarly, they cannot be explained with anisotropy confined to the transition zone, a conclusion reinforced by the fact that ringwoodite, the dominant mineral between depths of 520 and 660 km, is thought to be only very mildly anisotropic. It is difficult to explain the splitting with combinations of transverse isotropy in the uppermost mantle and in transition-zone regions. A problem with models where anisotropy is confined to the upper mantle is that they predict very large amounts of splitting at near offsets and little at large offsets, an effect not seen in the data. Such anisotropy may contribute to the splitting, but cannot explain the observations.

The modelling shows that moderate amounts of anisotropy in the lower mantle generate large amounts of splitting owing to long horizontal ray-paths below the ‘660’ at these epicentral distances. Assuming that the anisotropy is confined to a layer 100 km below the ‘660’, the average anisotropy magnitude is 3.0%. However, Fig. 1 shows that there is spatial variation in this estimate, with the largest
Shear-wave splitting (s)

Figure 2 Shear-wave splitting versus epicentral distance. Circles with error bars show observations and estimated uncertainty. Solid lines show predictions for a 500-km-deep source in models with a fast horizontally polarized shear wave: trace a, 4% transverse-isotropy in the uppermost 210 km of upper mantle; b, 5% anisotropy in a subducted slab that extends to a depth of 660 km; c, 5% anisotropy confined to a 100-km-thick layer immediately beneath the ‘660’; d, anisotropy that grades from 3% to 1% between the ‘660’ and 900 km; e, 2% anisotropy in 100-km-thick layers above and below the ‘660’, and 1% anisotropy in a layer between 760 km and 900 km; f, 4% anisotropy in the uppermost 210 km, 2% anisotropy in 100-km-thick layers above and below the ‘660’, and 1% anisotropy in a layer between 760 km and 900 km; g, anisotropy that grades from 2.5% to 1.5% in a layer between 760 km and 900 km. Although there is some ambiguity as to the best model, only models with anisotropy in the lower mantle can explain the large splitting observations.

Figure 3 Three models for anisotropy below the 660-km discontinuity. a. An anisotropic mid-mantle boundary layer near the ‘660’ that may or may not be a global feature of this boundary. Our results suggest that the magnitude of anisotropy in such a layer must vary laterally quite significantly. b. Slab forces on the surrounding mantle lead to strain-induced anisotropy. c. Anisotropy associated with slab material pooling in the lower mantle.
Kermadec slab morphology, with a significant change in slab dip near 25° (ref. 32). We note that it is from this region that we observe the smallest amounts of splitting.

Although the precise origin of the anisotropy is not clear at present, our observations and linked modelling show evidence for anisotropy in the uppermost lower mantle beneath the eastern part of the Australian plate. The anisotropy is probably inhomogeneous, as there appears to be an appreciable north–south variability in its magnitude. There must be large strains in this region, which are probably related to slab interaction with the sharp increase in viscosity at this boundary. Figure 3 summarizes the potential mechanisms that we propose. Our results may help describe to what extent there is an impediment of flow at this boundary between the upper and lower mantle.

Received 5 September; accepted 31 December 2001.

27. Kazmin, N. J. Subduction body force stresses and viscosity structure at the 410 km and 660 km phase transitions. Earth Planet. Inter. 81, 1081 (2000).

Supplementary Information accompanies the paper on Nature's website (http://www.nature.com).

Acknowledgements

We thank K. Fischer, G. Houseman and M. Casey for comments on the manuscript, and K. Fischer for suggesting alternative models to test.

Competing interests statement

The authors declare that they have no competing financial interests.

Correspondence and requests for materials should be addressed to J.-M.K. (e-mail: m.kendall@earth.leeds.ac.uk).

A basal troodontid from the Early Cretaceous of China

Xing Xu†, Mark A. Norell†, Xiao-Lin Wang†, Peter J. Makovicky‡ & Xiao-chun Wu§

† Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
‡American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA
§The Field Museum, 1400 S Lake Shore Drive, Chicago, Illinois 60605, USA

* Canadian Museum of Nature, Station D, Ottawa, Ontario K1P 6P4, Canada

Troodontid dinosaurs form one of the most avian-like dinosaur groups1–5. Their phylogenetic position is hotly debated, and they have been braunied with almost all principal coelurosaurian lineages6–13. Here we report a basal troodontid dinosaur, Sinovenator changii gen. et sp. nov., from the lower Yixian Formation of China. This taxon has several features that are not found in more derived troodontids, but that occur in dromeosauroids and avians. The discovery of Sinovenator and the examination of character distributions along the maniraptoran lineage indicate that principal structural modifications toward avians were acquired in the earlier stages of maniraptoran evolution.

Theropoda Marsh, 1881

Maniraptora Gauthier, 1986

Troodontidae Gilmore, 1924

Sinovenator changii gen. et sp. nov.

Holotype, IVPP Institute of Vertebrate Paleontology and Paleoanthropology, Beijing V 12615, a disarticulated partial skull and skeleton.

Referred specimen. IVPP V12583, an incomplete, articulated postcranial skeleton.

Etymology. ‘Sinave’, Latin referring to China, plus ‘Venator’, Latin for hunter. The specific name honours Meeman Chang of the IVPP for her significant role in the Jehol fauna.

Locality and horizon. Lijiutun and Yanzigou, Shanshan, western Liaoning, China; lowest part of Xiyian Formation, older than 128 Myr (ref. 14; Hauertivian); associated vertebrate fossils include the ceratopsian Psittacosaurus, the primitive ornithischian Jeholorusaurus15, and the primitive mammal REPONOMUS16.

Diagnosis. A troodontid with the following derived characters: straight and vertical anterior margin of antorbital fenestra; frontal with a vertical lamina bordering the lacrimal; surangular T-shaped.

letters to nature