This is a repository copy of Experimental coevolution of species interactions.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/77995/

Version: Submitted Version

Article:

https://doi.org/10.1016/j.tree.2013.02.009
Experimental coevolution of species interactions

Michael A. Brockhurst1 and Britt Koskella2

1 Department of Biology, University of York, York, YO10 5DD, UK
2 BioSciences, University of Exeter, Cornwall Campus, Tremough, TR10 9EZ, UK

Coevolution, the process of reciprocal adaptation and counter-adaptation between ecologically interacting species, affects almost all organisms and is considered a key force structuring biological diversity. Our understanding of the pattern and process of coevolution, particularly of antagonistic species interactions, has been hugely advanced in recent years by an upsurge in experimental studies that directly observe coevolution in the laboratory. These experiments pose new questions by revealing novel facets of the coevolutionary process not captured by current theory while also providing the first empirical tests of longstanding coevolutionary ideas, including the influential Red Queen hypothesis. We highlight emerging directions for this field, including experimental coevolution of mutualistic interactions and understanding how pairwise coevolutionary processes scale-up within species-rich communities.

Keywords: experimental evolution; coevolution; species interactions; host-parasite; mutualism

The rise of experimental coevolution

Naturalists have long recognised the importance of species interactions as a driving force of adaptation. Indeed, 19th-century evolutionary biologists often cited the conspicuous coadaptations of interspecific pollination and mimicry mutualisms as exemplars of evolution by natural selection. It is perhaps surprising then that coevolution, the process of reciprocal adaptation and counter adaptation by ecologically interacting species, was not studied in earnest until the mid-20th century. The first wave of empirical coevolution research was predominantly observational and field-based [1, 2]. Such studies inferred the action of reciprocal selection indirectly, typically from spatial patterns of trait co-variation between populations or by comparative and phylogenetic analyses of ecologically interacting clades. These early studies strongly suggested that coevolution was a central process driving natural selection and shaping the structure and function of communities, while never being able to provide unequivocal evidence of reciprocal evolutionary changes.

To overcome certain limitations of fieldwork - chiefly that the action of other sources of selection driving the observed patterns can never be ruled out - researchers have sought to bring the study of coevolution into the lab. Here, environments can be precisely controlled to exclude extraneous sources of selection, and the use of fast-growing organisms like microbes or classic lab-model animals, allows for the direct observation of coevolution in real time (Figure 1 & Box 1). Significantly, since many such experimental systems are amenable to cryogenic preservation, this allows experimenters to perform “time-shifts,” for instance, testing the performance of parasites against hosts from the evolutionary past or future (Figure 2). By analyzing these time-shifted interactions between coevolving species the temporal dynamics of coevolution can be directly estimated [3]. Moreover, while time-shifts
are possible in certain field systems [4], a crucial advantage of laboratory coevolution experiments is that control lineages, propagated under identical environmental conditions but where a given species is absent or where one species is held in evolutionary stasis, can also be established (Figure 1). Comparison of coevolving lineages against control lineages allows unequivocal identification of adaptations that evolved in response to reciprocal selection, i.e. those adaptations that are present only in coevolving lineages.

Coevolution experiments were first pioneered using simple microbial communities in the 1970s [5-7]. While these kinds of microbial associations remain the most intensively studied due to their ease of propagation, the experimental coevolution approach has recently been extended to a much wider range of species interactions involving more complex host organisms such as snails, beetles, bees and worms (Table 1). Moreover, whereas early studies largely focused on antagonisms, in part due to the intensity of reciprocal selection and rapid evolution generated by such interactions, today experimental coevolution researchers are studying other forms of species interaction, such as mutualisms. Experimental coevolution is providing causal tests of longstanding coevolutionary hypotheses, and also revealing novel facets of the coevolutionary process that are not captured or predicted by current theory. In this article we do not aim to provide an exhaustive account of experimental coevolution research but rather to review the key areas in which experimental coevolution has advanced our understanding of the coevolutionary process, identify the main gaps in our knowledge for future research, and highlight the ways in which coevolutionary research can be of applied importance.

Experimental coevolution of antagonistic species interactions
According to the Red Queen hypothesis, reciprocal selection arising from interspecific antagonisms, such as host-parasite interactions, should accelerate evolutionary rates through the need for continual adaptation and counter-adaptation [8, 9]. (The history of the use of the Red Queen metaphor is described in refs. [10, 11].) Recent tests of this prediction have compared evolutionary rates under coevolution against controls where coevolution is prevented, for example in the presence versus absence of an antagonist (Figure 1), and provide strong support for this hypothesis from a range of species interactions. When co-cultured, Caenorhabditis elegans, and a bacterial parasite, Bacillus thuringiensis, both exhibit greater molecular evolutionary change, assessed by microsatellites and gene content respectively, than do control populations of the nematode or bacterium propagated alone [12]. However, for parasite species in particular the complete removal of the host is an extreme environmental alteration, necessitating comparison of populations propagated in vivo with in vitro controls. A more subtle manipulation is to allow one antagonist to evolve while holding the other in evolutionary stasis, by regularly replacing its entire population with individuals of the ancestral genotype. By this approach, it has been demonstrated, using pooled whole-genome resequencing, that genomes of bacteriophage virus Φ2 coevolving with the bacterium Pseudomonas fluorescens evolve at double the rate of Φ2 populations evolving against a fixed, ancestral P. fluorescens genotype [13]. Similarly, whole genome analysis of Escherichia coli and the bacteriophage QB revealed increased mutational change in coevolving, relative to evolving populations of both host and parasite [14]. These studies strongly support the Red Queen view of interspecific antagonisms as a strong driver of evolutionary change and, for the first time, have allowed for direct tests of causation rather than correlation.
The process of rapid reciprocal adaptation inherent to antagonistic coevolution can be driven by at least two contrasting modes of reciprocal selection. Specifically, frequency dependent selection, where changing allele frequencies in host and parasite populations are driven by parasite-mediated selection against common host resistance alleles; or directional selection, where recurrent selective sweeps of novel host resistance and parasite infectivity alleles occur through time, leading to increases in a parasite’s host range and the subsequent host resistance traits. These possibilities have been termed Fluctuating Selection Dynamics (FSD) and Arms Race Dynamics (ARD), respectively [3, 15]. Distinguishing these dynamics requires either time-shifts to detect contrasting patterns of phenotypic evolution in host resistance and parasite infectivity traits (Figure 2), or alternatively, direct estimation of temporal change in the frequencies of resistance and infectivity alleles, or of linked genetic markers.

Experimental coevolution has revealed evidence for the operation of both of these modes of reciprocal selection. A response to frequency-dependent selection by parasites has been observed by tracking host genotypic markers in coevolving laboratory populations of the freshwater snail, *Potamopyrgus antipodarum*, infected by a sterilizing trematode parasite, *Microphallus* sp. [16]. However, several other studies reveal signatures of both FSD and ARD within the same coevolving population, suggesting that these contrasting modes of selection are not mutually exclusive. For example, genotypic data from *C. elegans – B. thuringiensis* coevolution experiments suggest that different host loci are under different modes of selection; perhaps reflecting that the infection/resistance process comprises multiple steps of interaction, each with independent genetic bases [12, 17, 18]. Furthermore, patterns of phenotypic and molecular evolution suggest that the interaction between *P. fluorescens* and Φ2,
while initially dominated by ARD, becomes increasingly FSD-like through time [19]. This appears to arise because, after a certain point, the costs to individual genotypes of accruing additional mutations that further increase the breadth of infectivity or resistance were unviable. The increasing costs act to prevent fixation of super-generalist genotypes and progressively weaken the response to directional selection over time. These findings suggest that, at least in part, the prevailing mode of reciprocal selection is determined by the coevolutionary history of an association and more long-term studies are required to resolve this. There is now a clear need for the development of coevolutionary theory targeted at resolving the impact of mixed modes of reciprocal selection on coevolutionary processes and at understanding the genetic and ecological factors driving switches in the prevailing mode of reciprocal selection.

Antagonistic coevolution and evolvability

The pressure for continual innovation during antagonistic coevolution can, in theory, select for mechanisms that increase evolvability, particularly in hosts, since they are often assumed to possess less evolutionary potential than their parasites [20]. Greater genetic diversity within a population increases the efficacy of selection and, notwithstanding immigration, can be achieved through increased rates of mutation or recombination. Studies across a range of species interactions strongly support the hypothesis that antagonistic coevolution selects for evolvability in hosts. The evolution of hypermutable *P. fluorescens* genotypes, with defective DNA proofreading enzymes, was found to occur at a higher frequency in populations coevolving with phage Φ2 than those evolving alone [21]. Similarly, more spontaneous mutations were observed in *C. elegans* that had been coevolving with *B. thuringiensis* compared to parasite-free controls [12]. For sexual host populations,
recombination offers another potential escape from coevolving parasites. Populations of the flour beetle, *Tribolium castaneum*, coevolving with a microsporidian parasite, *Noseum whitei*, displayed higher rates of meiotic recombination than both parasite-free controls [22] and populations exposed to an insecticide [23]. Similarly, higher rates of outcrossing have been observed in populations of *C. elegans* coevolving against the bacterial parasite *Serratia marcescens* relative to populations where the bacterium was held in evolutionary stasis [24]. Moreover, the rate of host population extinction was higher in coevolving populations where *C. elegans* outcrossing was prevented compared to populations where outcrossing was possible. While host evolvability has been well studied, the effect of antagonistic coevolution on parasite evolvability has not been addressed and provides a fruitful avenue for future studies particularly in sexually recombining parasites.

Antagonistic coevolution as a driver of diversification and divergence

Antagonistic coevolution can lead to higher levels of within-population polymorphism through either the transient coexistence of contending alleles undergoing selective sweeps or the operation of negative frequency-dependent selection. Several bacteria-phage coevolution studies reveal antagonistic coevolution as a driver of phenotypic and genetic diversification in both bacteria and phage [13, 25, 26]. Similarly, populations of *T. castaneum* coevolving with *N. whitei* harbor significantly more allelic diversity than parasite-free control populations [27]. The intense selection associated with antagonistic coevolution can also drive divergence among populations, as each takes a subtly different coevolutionary trajectory. Experimentally coevolving populations of phage Φ2 undergo an almost 10^\times higher level of between-population genomic divergence, compared to populations evolving against an evolutionarily fixed bacterial population [13]. Correspondingly, phage-mediated selection lead to greatly
increased allopatric diversity (i.e., diversity among populations) among experimentally
coevolved *P. fluorescens* populations [28].

Among-population divergence of parasite infectivity and host resistance traits can also be
detected using local adaptation assays, whereby, for example, parasite performance is
compared against their sympatric and allopatric host genotypes (Figure 2). These
experiments reveal a wide range of local adaptation patterns across various species
interactions including parasite local adaptation, host local adaptation or lack of local
adaptation (Table 1). Crucially, however, these studies allow explicit tests of theoretical
predictions on the effects of key ecological and life-history parameters on the evolution of
local adaptation. For instance, several studies of bacteria-phage metapopulations have
revealed that moderate parasite dispersal drives the evolution of parasite local adaptation [29-
31] (for detailed reviews of the parasite local adaptation literature see refs. [32, 33]). Among-
population divergence of coevolving species interactions can be further enhanced if there
exists environmental heterogeneity among patches [34, 35]. For example, variation in
productivity between populations drives the evolution of greater parasite local adaptation in
populations of *P. fluorescens* and Φ2 [36]. Between-population divergence of traits at the
coevolutionary interface, i.e., resistance and infectivity, can be accompanied by correlated
divergence in other phenotypic traits, such as colony morphology and biofilm formation in
bacteria coevolving with phages [28, 37, 38]. Moreover, recent evidence from experimental
populations of *T. castaneum* and *N. whitei* suggest that between population divergence caused
by antagonistic coevolution can even drive the correlated evolution of reproductive isolation,
and therefore could play a role in speciation [39].
Specificity of antagonistic coevolutionary interactions

Key to our understanding of coevolutionary dynamics is the underlying genetic specificity of the interaction and the emergent patterns of interaction specificity. Experiments with bacteria and phage have revealed that coevolution can lead to a nested interaction structure [40, 41], such that hard to infect bacterial genotypes are infected by generalist but not specialist phage genotypes [42]. Moreover, coevolving bacteria phage populations can harbor, at any given time, a diverse mix of phenotypes, ranging from specialists to generalists [26, 40], which is dynamic and variable through time. Interestingly, coevolution itself appears to be crucial in shaping host-range of some phages. In Φ2, spontaneous host-range mutants selected to infect a novel host genotype evolved narrower host ranges than did phages with a history of coevolution against this host genotype [43]. Here, broad host ranges relied upon the accumulation of multiple adaptive mutations acquired through repeated rounds of selection for infectivity. Similarly, the evolution of particular resistant bacterial genotypes in coevolving populations of E. coli and λ were necessary for the subsequent evolution by phage of the ability to bind to a new host receptor, OmpF, which was found to require the stepwise accumulation of four adaptive mutations [44]. Both studies highlight the importance of historical contingency in determining the trajectory of coevolution.

In addition to the effects of limited mutational supply, the evolution of generalists can also be constrained by costs associated with resistance and infectivity mutations. Often such trade-offs are expected due to antagonistic pleiotropy. In the case of bacteria-phage coevolution, phages often bind to bacterial cell-surface proteins that perform important functions, such as nutrient uptake or motility, and mutations conferring resistance to phages typically impair these functions [45, 46]. In addition, evolved resistance against one phage
can often come at a cost of increased susceptibility to another; experimentally evolved
Prochlorococcus hosts that were resistance to one phage genotype showed increased
susceptibility to another phage genotype [47]. Correspondingly, mutations allowing host-
range expansion in phages are also frequently associated with trade-offs, leading to impaired
growth on the original host. For example, during experimental host range expansion of
phage ϕ6, spontaneous mutants able to infect novel hosts were found to be less infective to
their native hosts [48]. However, surprisingly few studies have attempted to explicitly
determine how costs of multiple resistance and infectivity mutations accumulate and interact
through time during experimental coevolution (although see [49]) and correspondingly how
this shapes coevolutionary dynamics and trajectory [50].

Emerging directions in experimental coevolution

The major contributions of experimental coevolution thus far have been to provide direct
evidence of the tempo and mode of antagonistic coevolutionary dynamics, the role of
antagonistic coevolution in increasing diversity within and among populations, including the
role of parasitism in maintaining sexual recombination, and the structure of specificity in
coevolving antagonistic interactions. But as the field matures it is taking some exciting new
directions; in what follows, we outline several promising emerging research directions.

Experimental coevolution in ‘real-world’ environments

While an original motivation behind laboratory coevolution experiments was to exclude the
confounding selection pressures of complex natural environments, there is currently a shift
towards performing experiments in more naturalistic ‘real world’ environments. Such studies
are valuable, particularly when performed using well-studied species associations, as they
reveal ecological constraints on coevolution imposed by natural environments. Moreover, such studies can guide analysis of natural communities. Zbinden and coauthors (2008) infected populations of *Daphnia magna* with the microsporidian parasite *Octosporea bayeri* under natural conditions in field mesocosms to examine the evolution of host resistance and associated life-history changes and demonstrated rapid evolution with some associated costs of evolved resistance [51]. Gomez & Buckling [52] have performed experimental coevolution of *P. fluorescens* and Φ2 in soil microcosms, where in contrast to previous lab studies in rich liquid media, the coevolutionary dynamics follow FSD rather than ARD during the early stage of coevolution. This is likely to have been caused by much higher costs of resistance mutations in soil compared to liquid media thereby weakening the response of bacteria to directional selection.

Experimental coevolution of other forms of species interaction

Several researchers have begun to apply the experimental coevolution approach to study other forms of species interaction beyond antagonisms; in particular, mutualisms. This is an important step because such interactions are widespread in nature and, while antagonistic coevolution can promote diversification, theory suggests that those species interactions in which there is no cost to phenotypic matching (e.g. mutualistic interactions) may actually hinder diversification [53]. Hillesland et al. (2009) have demonstrated the rapid evolution of trait complementarity in an experimentally imposed obligate *syntrophic mutualism* [54]. They co-cultured a sulphate reducing bacterium, *Desulfovibrio vulgaris*, and a methanogenic archaeon, *Methanococcus maripaludis*, on lactate, where the two players had to collaborate to perform an energy yielding reaction. Communities initially underwent large population density fluctuations, but stabilized after around 300 generations. These coevolved
Communities had faster growth rates and higher yields than ancestral communities. Time-shifted pairings confirmed that adaptations in each species contributed to community-level improvements in growth rate and yield. This study highlights the utility of experimental coevolution for understanding species interactions in general, and beyond antagonistic interactions, and furthermore demonstrates the need for more studies of mutualistic species interactions.

Coevolution of complex communities

While most experimental coevolution has employed pairs of species, species interaction networks in nature are often complex. Scaling experimental coevolution studies up to the community level is a key next step. A study of P. syringae coevolving with multiple phages found that bacterial hosts are able to evolve resistance against multiple phages simultaneously, but that they pay a higher cost for these multiple resistances when grown in the absence of phage [55]. Addition of a protist predator, Tetrahymena thermophila, to coevolving populations of P. fluorescens and Φ2 impeded ARD coevolution between the bacteria and phage, and favoured the maintenance of coexisting resistance phenotypes specialized against one or other of these natural enemies [56]. Generalist bacterial resistance presumably did not evolve in these communities due to the existence of fitness trade-offs associated with multiple resistances. Networks of species interactions can also shape the evolution and stability of the community as a whole. Experimental communities of naturally co-occurring bacteria collected from holes in beech trees found that the interactions among these species were key to their ability to adapt to novel environments in the laboratory [57]. These species, when propagated in communities, evolved more over 70 generations than when grown in monoculture, and adapted to fill different niches, for example to utilize the
waste products generated from another species within the community. Indeed, **interspecific facilitation** was a common outcome of coevolution in these competitive communities. Future work will certainly allow great insight to the assembly, structure, function, and dynamics of communities.

Cophylogeny and cospeciation

Early work on coevolution utilized macroevolutionary patterns to infer microevolutionary processes (e.g. [58]), for example by comparing phylogenies of species pairs to look for cospeciation. However, while frequently cited as evidence for coevolution it cannot be ruled out that the same biogeographical or ecological process that drove speciation among one species was responsible, independently, for speciation of the other [59]. Similarly, divergence among lineages of one species might lead to subsequent divergence in the other (i.e., concordant phylogeny) but may also lead to the evolution of more generalist interaction networks or “escape” of one player if the new lineage no longer interacts with the other player [60]. Although there exists theory predicting when diversification of one species might lead to diversification of the other (e.g., [61]), there is little data testing the validity of these predictions. Combining experimental coevolution with phylogenetic methods has great potential to reveal the underlying dynamics that lead both to codiversification and the breakdown of *cophylogeny* patterns [62]. Towards this goal, several experimental evolution studies have created known phylogenies through population splitting and then attempted to infer their structure from genome sequences of viruses at the nodes. Experiments with bacteriophages ΦX174 and phi-6 have demonstrated that the high degree of convergent evolution and reversions made phylogenetic reconstruction incapable of accurately explaining the evolutionary history of the phage [63, 64]. By revealing whether convergence
is a general phenomenon of viral evolution, further studies could inform use of molecular
epidemiology in tracking viral outbreaks. More generally, long-term experimental
coevolution holds great promise in testing whether codivergence and/or cospeciation among
interacting species is the exception or the rule.

Concluding remarks and potential for application

Overall, experimental evolution has afforded remarkable strides forward in our
understanding of population-level responses to selection, the underlying genetics of
adaptation, and the limits of evolution [65]. Although still in its infancy, experimental
coevolution has great potential for informing our understanding of community stability,
species invasions, and the spread of disease, and as such holds promise in more applied
fields, most notably human health. Experimental coevolution techniques have already been
successfully applied to understand the evolution of human parasites: Webster et al. (2007)
found that experimental coevolution of the human parasite, *Schistosoma mansoni*, with
different genotypes of the intermediate host snail, *Biomphalaria glabrata*, led to rapid
adaptation to the snails but also altered infectivity on the definitive host [66]. Furthermore, it
is now abundantly clear that our own microbiota determine key aspects of our physical and
mental health, and experimental coevolution could play a critical part in testing how these
microbial communities evolve and change over time, both as a function of microbe-microbe
interactions and of host-microbe interactions [67]. The efficacy and long-term implications
of phage therapy for controlling bacterial pathogens and the use of probiotics for
promoting healthy gut flora is also ripe for experimental coevolution testing, and good
headway is already being made using experimental evolution of bacteria in response to
phages [55, 68-70] and to test evolution of bacteria in the gut [71]. Expanding this research
to explore the coevolutionary implications of these treatments is a clear next step and experimental coevolution could be fruitfully employed to select for stable microbial consortia with desirable traits for use in probiotics.

Acknowledgements

We are grateful to the reviewers for constructive comments on a previous version of this manuscript. This work was supported by a project grant (NE/H005080/1) to MAB and a research fellowship (R16150) to BK from the Natural Environment Research Council (UK).

Cited literature

2 Ehrlich, P.R. and Raven, P.H. (1964) Butterflies and Plants - a Study in Coevolution. *Evolution* 18, 586-608

31 Vogwill, T., *et al.* (2010) How does spatial dispersal network affect the evolution of
parasite local adaptation? *Evolution; international journal of organic evolution* 64, 1795-1801

79 Lohse, K., et al. (2006) Experimental evolution of resistance in *Paramecium caudatum* against...
the bacterial parasite *Holospora undulate* *Evolution* 60, 1177-1186
Box 1. When is it experimental coevolution?

In a classic article, Janzen defined the term coevolution [72], which at the time had become broadly and imprecisely applied by researchers of species interactions. Janzen stressed the requirement for the demonstration of adaptations in both species arising from reciprocal selection before a pattern should be attributed to coevolution. This definition of coevolution based on evolutionary outcomes is valuable for distinguishing coevolved adaptations but is not useful for defining an experimental approach to the study of coevolution. We propose that the term “experimental coevolution” should be applied to experiments where either:

(a.) interacting species are co-cultured and experimenters attempt to quantify evolutionary responses in both (or all if >2) interacting species; or (b.) interacting species are co-cultured and evolutionary responses of populations from coevolving treatments are compared to evolutionary responses of populations from control treatments where coevolution is prevented.

One of the most powerful aspects of experimental coevolution is that control treatments can be used to tease apart evolutionary change, based on adaptation to the abiotic environment and/or drift, from coevolutionary change. The exact approach depends on the system being used and the question being addressed, but one option is to compare the evolution of each species alone with the coevolution of the two. This approach can be used to tease apart selection imposed by abiotic versus biotic factors, for example by specifically identifying the responses to parasite-mediated selection. However, to specifically tease apart evolution in response to a biotic agent of selection from coevolutionary change requires the introduction of a “one-sided evolution” treatment, where one of the partners is held in evolutionary stasis while the other is allowed to evolve. This one-sided evolution treatment can be directly compared to the coevolution treatment to determine which evolutionary
changes are the result of an evolutionary response to the biotic agent versus a result of
coevolutionary interactions.

As experimental (co)evolution proceeds, fitness of the (co)evolving populations can
be measured over time to determine, for example, whether parasites become more or less
prudent on their hosts and whether hosts evolve towards complete resistance. In coevolving
populations, fitness can be measured both on the ancestral antagonist populations, allowing
for observation of absolute changes in population fitness, and on the coevolved antagonist.
As illustrated in figure 1, this latter relative fitness might not change over time, as the other
species is responding to any adaptations and countering. Finally, for many experimental
evolution systems, populations from each time point can be frozen and later resurrected to
perform time shifts in which the fitness of one species can be tested on populations of the
other from the past (i.e. populations which have not yet responded to any new adaptations),
the same time point, or from the future (i.e. populations that have potentially already
responded to any new adaptations). Note however, that for frequency-dependent selection,
populations may be unfit on past populations of the antagonist if, for example, they have
moved on to infect/resist common types in the contemporary antagonist populations.
Glossary of terms

Antagonistic coevolution/Interspecific antagonism: Coevolution is the reciprocal adaptation and counter adaptation of species that interact ecologically. When the fitnesses of the two species are negatively correlated, such that an adaptation that increases fitness in one species decreases in fitness of the other species and *vice versa*, these species interactions are termed antagonistic.

Antagonistic pleiotropy: A situation where one gene underlies more than one trait, and where an adaptation that is advantageous in one biotic or abiotic environment is deleterious in another.

Arms Race Dynamics (ARD): A mode of antagonistic coevolution driven by directional selection whereby hosts and parasites respectively accumulate resistance or infectivity alleles through a series of recurrent selective sweeps. This process leads, through time, to an increase in the range of parasite genotypes hosts can resist and an increase in the range of host genotypes that parasites can infect.

Cophylogeny: An approach by which the macroevolutionary histories of two clades are compared, for example to determine whether evolutionary branching of one species is correlated with branching in another.

Evolutionary stasis: This occurs when a population remains genetically constant over time. This can be manipulated during experimental coevolution by continually replacing the population of one of the two partners with the ancestral genotype in order to prevent evolution in this species.

Evolvability: The ability of a population to generate genetic diversity thereby allowing it to respond to selection.

Host-range: The subset of hosts that a parasite can successfully infect. Note that the known
host range for a given parasite is necessarily determined by the reference panel against which it has been tested and that parasite performance can vary within a given host range, such that the parasite performs better on some hosts than others.

Fluctuating Selection Dynamics: A mode of antagonistic coevolution driven by negative-frequency dependent selection whereby parasites evolve to infect common host genotypes, thereby favouring rare host alleles, which subsequently become common, leading to sustained oscillations in host and parasite allele frequencies. FSD does not lead to the evolution of broader parasite host ranges or increasing host resistance through time.

Hypermutable: Strains of bacteria with mutation rates far in excess of the wild-type; these typically arise through mutations altering mismatch repair enzymes.

Interspecific facilitation: A scenario whereby one species enhances the fitness or growth of another either directly, for example by increasing the availability of nutrients, or indirectly, for example by reducing competition or predation. Facilitatory interactions can benefit either one or both participants, and in the latter case are considered to be interspecific mutualisms.

Mutualisms: Mutually beneficial species interactions, which in reality are often mutually exploitative interactions but where net benefits accrue to both parties.

Phage therapy: The use of bacteriophage viruses to control the growth and/or harmfulness of pathogenic bacteria.

Phenotypic matching: The clustering of or correlation between traits governing a coevolutionary interaction, such that the common phenotype in the local populations of one partner is matched by the reciprocal trait in the other.

Red Queen hypothesis: The idea that, for antagonistic species interactions, the relative fitness of each antagonist does not increase over time, despite continual adaptation, due to the counteracting adaptations of their opponent. This hypothesis was later formalized to
describe the potential role of coevolving parasites in generating an advantage for sexual recombination.

Syntrophic mutualism: A form of microbial mutualism where the transfer of metabolites between species is essential for growth.

Time-shift experiment: Studies in which samples of coevolving populations are collected through time (either artificially by cryogenic freezing, or naturally by the deposition of resting stages) and then resurrected to challenge against coevolving partners from past, contemporary and future time-points.
Table 1. The experimental systems of antagonistic experimental coevolution.

Examples of study systems used and approaches taken using experimental coevolution so far. Although this list is not exhaustive, it is representative of the types of systems for which this approach has proven successful due, in part, to ease of use in the laboratory, short generation times (although note exceptions below), cryogenic preservation and large population sizes. Broadening the taxonomic range of study systems employed in experimental coevolution is an important future challenge to explore the generality of the patterns observed thus far. Moreover, it is clear that even for existing study systems there is work to be done in terms of employing the full range of assays available (i.e., both time-shift and local adaptation assays) and in terms of simultaneously analyzing the evolution of both victim and exploiter species.
A simplified illustration of experimental coevolution of host and parasite, where one can compare single species evolution (controlling for both adaptation to lab conditions and drift), one-sided experimental evolution \(\textit{i.e.},\) one species evolving in response to another which is unable to respond) and experimental coevolution, where it is possible to directly measure evolutionary change of one species in response to the other and any reciprocal adaptations that occur. Line graphs represent one scenario of evolutionary change in parasite populations (top) or host populations (bottom) over the course of the experiment. In the case of a parasite or host evolving alone, adaptation to the lab environment and/or drift could result in increased success against the host/parasite, decreased success against the host/parasite, or no change in fitness.

An illustrative example of techniques used to compare coevolution of two species (in this case, host and parasite) by examining changes in replicate experimental populations (or metapopulations, if connected by gene flow). A time shift experiment (a) can be performed across experimental time within each population by comparing the fitness of one player against the other from past, contemporary or future time points. This method can give unique insight into the coevolutionary dynamic underlying the change. For example, a scenario in which fitness is lowest against populations from the future and highest against those from the past might indicate arms race dynamics with directional selection whereas a pattern of peak fitness against contemporary populations or those from only the recent past is more in line with negative frequency dependent selection. However, note that the exact pattern will depend on the lag in evolutionary response of one player against the other [73].
A local adaptation experiment (b) compares performance of parasites against their sympatric hosts with their performance against allopatric hosts; higher parasite performance against sympatric versus allopatric hosts indicates that parasites are locally adapted.
<table>
<thead>
<tr>
<th>Model system</th>
<th>Control treatment</th>
<th>Time shift</th>
<th>Local adaptation</th>
<th>Victim change?</th>
<th>Exploiter change?</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invertebrate victim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. elegans - B. thuringiensus</td>
<td>Single species</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>[12, 74][12, 73]</td>
</tr>
<tr>
<td>C. elegans - S. marcescens</td>
<td>Evolution</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
<td>[75]</td>
</tr>
<tr>
<td>P. antipodarum - Microphallus sp.</td>
<td>Single species</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>[16, 76]</td>
</tr>
<tr>
<td>T. castaneum - Noseum whitei</td>
<td>Single species</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
<td>[22, 27, 77]</td>
</tr>
<tr>
<td>B. glabrata - S. mansonii</td>
<td>Single species</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>[66, 78]</td>
</tr>
<tr>
<td>D. Magna - O. bayeri</td>
<td>Single species</td>
<td>*</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
<td>[51]</td>
</tr>
<tr>
<td>Protist victim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. caudatum - H. undulata</td>
<td>Single species</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>[79]</td>
</tr>
<tr>
<td>Bacterial victim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. fluorescens - phage Φ2</td>
<td>Evolution</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>[40, 80, 81]</td>
</tr>
<tr>
<td>P. aeruginosa - phage PP7</td>
<td>None</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>✗</td>
<td>[82]</td>
</tr>
<tr>
<td>E. coli - phage Qβ</td>
<td>Evolution</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>✗</td>
<td>[83]</td>
</tr>
<tr>
<td>E. coli - phage T7</td>
<td>None</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>[30]</td>
</tr>
<tr>
<td>E. coli - phage T4</td>
<td>Single species</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>[84]</td>
</tr>
<tr>
<td>E. coli - phage PP01</td>
<td>None</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>[85]</td>
</tr>
<tr>
<td>Synechococcus sp. - phage RIM8</td>
<td>Single species</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>[86]</td>
</tr>
<tr>
<td>S. marcescens - T. thermophilia</td>
<td>Single species</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>[87, 88]</td>
</tr>
</tbody>
</table>

Table 1
Figure 1

Parasite evolution

Host evolution

Coevolution

Host evolution

Parasite alone

b) Parasite evolution

c) Coevolution

d) Host evolution

e) Host alone

Parasite infectivity

Host resistance

n/a
Figure 2