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ABSTRACT
Process-based integrated modelling of weather and crop yield over large areas is becoming an important research topic.
The production of the DEMETER ensemble hindcasts of weather allows this work to be carried out in a probabilistic
framework. In this study, ensembles of crop yield (groundnut, Arachis hypogaea L.) were produced for 10 2.5◦ × 2.5◦

grid cells in western India using the DEMETER ensembles and the general large-area model (GLAM) for annual crops.
Four key issues are addressed by this study. First, crop model calibration methods for use with weather ensemble

data are assessed. Calibration using yield ensembles was more successful than calibration using reanalysis data (the
European Centre for Medium-Range Weather Forecasts 40-yr reanalysis, ERA40). Secondly, the potential for proba-
bilistic forecasting of crop failure is examined. The hindcasts show skill in the prediction of crop failure, with more
severe failures being more predictable. Thirdly, the use of yield ensemble means to predict interannual variability in
crop yield is examined and their skill assessed relative to baseline simulations using ERA40. The accuracy of multi-
model yield ensemble means is equal to or greater than the accuracy using ERA40. Fourthly, the impact of two key
uncertainties, sowing window and spatial scale, is briefly examined. The impact of uncertainty in the sowing window
is greater with ERA40 than with the multi-model yield ensemble mean. Subgrid heterogeneity affects model accuracy:
where correlations are low on the grid scale, they may be significantly positive on the subgrid scale.

The implications of the results of this study for yield forecasting on seasonal time-scales are as follows. (i) There is
the potential for probabilistic forecasting of crop failure (defined by a threshold yield value); forecasting of yield terciles
shows less potential. (ii) Any improvement in the skill of climate models has the potential to translate into improved
deterministic yield prediction. (iii) Whilst model input uncertainties are important, uncertainty in the sowing window
may not require specific modelling.

The implications of the results of this study for yield forecasting on multidecadal (climate change) time-scales are
as follows. (i) The skill in the ensemble mean suggests that the perturbation, within uncertainty bounds, of crop and
climate parameters, could potentially average out some of the errors associated with mean yield prediction. (ii) For
a given technology trend, decadal fluctuations in the yield-gap parameter used by GLAM may be relatively small,
implying some predictability on those time-scales.

1. Introduction

Numerical crop growth models are increasingly being used to
simulate yield over large areas. Seasonal predictability can in-
form early warning systems (e.g. Rijks et al., 2003) whilst mul-
tidecadal time-scales can inform climate change impacts assess-
ments (e.g. Fischer et al., 2002). Most, if not all, studies of yield
predictability to date treat crop yield simulation deterministically

∗Corresponding author.
e-mail: ajc@met.rdg.ac.uk

(i.e. one set of inputs is used to derive one set of outputs). How-
ever, climate on seasonal time-scales is inherently unpredictable.
Recent progress in the use of multi-model weather ensem-
bles has been achieved through the DEMETER project (Palmer
et al., 2004). Such weather ensembles provide an excellent op-
portunity to explore crop yield predictability using probabilistic
methods (see also Cantelaube and Terres, 2005). This is the ob-
jective of this paper, which forms part of the methodology for
the development of a combined seasonal weather and crop pro-
ductivity forecasting system outlined by Challinor et al. (2003).
This study uses seasonal time-scales although the conclusions

498 Tellus 57A (2005), 3



PROBABILISTIC HINDCASTS OF CROP YIELD OVER WESTERN INDIA 499

reached will have relevance for studies of longer time-scales,
and climate change, because inherent unpredictability and un-
certainties have to be estimated for these time-scales also.

Crop modelling approaches are either empirical (e.g.
Camberlin and Diop, 1999; Hsieh et al., 1999; Landau et al.,
2000) or process-based (e.g. Southworth et al., 2000; Jagtap and
Jones, 2002), although in practice the distinction between these
can be blurred because empirical regressions are often used to
describe processes (e.g. Brooks et al., 2001). The process-based
approach has the advantage of potentially capturing changes in
the nature of the weather–yield relationship due to changes in
climate, such as intraseasonal variability and increased CO2 lev-
els. However, there is often a high input data requirement for
process-based models. For empirical approaches, the converse
tends to be true. Challinor et al. (2004) have developed a rela-
tively simple, large-area, process-based model [the general large-
area model for annual crops (GLAM)] which aims to combine
the advantages of these two approaches. The model simulated
the interannual variability in groundnut yield over the Gujarat
region of India well, when driven with either observed gridded
weather data (Challinor et al., 2004) or the European Centre for
Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis
(ERA40; Challinor et al., 2005). GLAM is used in this study and
is described briefly in Section 2.2.

The development and assessment of probabilistic yield fore-
cast methods using GCMs raises a number of issues. First, the
skill of the GCMs in simulating weather and climate needs to
be sufficient. The calibration of the crop model also needs to
be sufficiently accurate. Because the GLAM crop model has
already been tested in deterministic studies using observed data
and reanalysis, crop model skill is a secondary issue in this study.
Secondly, given a crop yield ensemble, there may be useful in-
formation in the mean, in the spread, or in both. Also, skill may
emerge on one or more spatial scales. Hence, the spatial scale for
crop model output needs to be determined according to the spa-
tial scale(s) at which the model can skilfully simulate observed
yields. The third issue is that of uncertainty. The spatial scale on
which simulations are carried out is one source of uncertainty:
when a single set of crop model parameters is used to represent
crop growth over a large area, subgrid heterogeneity may result
in poor agreement between simulated and measured yields (e.g.
Hansen and Jones, 2000). There will also be uncertainty associ-
ated with crop model inputs, such as soil type and planting date.
It is important to understand the impact of these uncertainties on
simulation skill.

This study aims to develop methods for the use of weather
ensembles with crop models such as GLAM. The chosen crop
is groundnut (peanut; Arachis hypogaea L.) as this is the crop
for which extended records of observed yield are available. The
geographical region chosen is in western India, and includes all
of Gujarat, the region for which skill has been most effectively
demonstrated to date using GLAM. However, the methods used
in this study are not location or crop specific.

2. Method: formulation of crop yield hindcasts

2.1. Weather data

The weather data used as input to the crop model in this study are
the DEMETER ensembles (Palmer et al., 2004). An ensemble
consists of a number of sets of weather variables such as tem-
perature, radiation, rainfall, humidity, each of which provides
a complete, and in theory equally probable, meteorological de-
scription of the atmosphere. The term ‘ensemble member’ refers
to one of these sets; it is a single realization of weather produced
by a GCM. Output from seven GCMs (denoted here as cnrm,
crfc, lody, scnr, scwn, smpi and ukmo) each with nine ensem-
ble members (hence 63 ensemble members in total) was used.
For each GCM, the nine ensemble members are referred to as
a single-model (i.e. single-GCM) ensemble. All 63 ensemble
members collectively are referred to as the multi-model (multi-
GCM) ensemble.

Each GCM was run four times for each year of the study
period. The four start (initialization) dates were the first days of
February, May, August and November. Each ensemble member
is a six-month daily time series. This creates two possibilities for
this study. (i) The use of the ensembles initialized in May for a
three-month groundnut simulation period, followed by use of the
ensembles initialized in August [August update (AUP)]. These
simulations involve a step change on 1 August to a time series
chosen from the nine new ensemble members using ensemble
identification number; this is essentially an arbitrary choice. (ii)
The use of the simulation initialized in May for the whole of the
growing season [no update (NUP)].

Two sets of input ensemble weather data have been used: the
first is the raw DEMETER ensembles [original data (ORI)] and
the second is a bias-corrected set of data (BIC). ERA40 was
used for this bias-correction. It was also used to drive the crop
model directly, producing benchmark deterministic simulations.
The ERA40 simulations here differ from those of Challinor et al.
(2005) in that maximum and minimum daily temperatures are
used as inputs to the crop model in the current study, whereas
mean daily temperature and vapour pressure deficit were used for
the previous study. A further difference is that the previous study
used the ERA40 grid (0.5◦ × 0.5◦) and the current study uses data
interpolated to the DEMETER grid using the Meteorological
Archive and Retrieval System interpolation tool.

Bias-correction was applied to daily values of maximum tem-
perature, minimum temperature and precipitation for each GCM
separately. First, an estimate of the seasonal cycle at each grid
point was obtained. The seasonal cycle with daily resolution was
computed by averaging, for a given start date and lead time, all
the weather ensemble members and hindcasts available. This es-
timate was smoothed out by retaining the three first harmonics
in a Fourier decomposition of the time series. The same method
was used to estimate the seasonal cycle with the ERA40 data.
The bias was defined as the difference between the GCM and the
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Fig. 1. Map of the crop model grid (with corresponding cell numbers)
and districts. The four districts referred to in Section 3.4 are
highlighted.

ERA40 seasonal cycles. Finally, bias-corrected hindcasts were
computed as the difference between the hindcasts issued by the
coupled GCMs minus the estimated bias. Negative precipitation
values were removed under the constraint that the total precipi-
tation of the hindcasts is equal to that of ERA40.

The study region is 10 grid cells in western India (Fig. 1).
The study period, 1987–1998, is the period for which both input
weather data and observed groundnut yield data (see Section 2.2)
are available. The GCMs varied in their simulations of weather
for this region over this period. For example, August rainfall for
the ORI inputs showed a wide range of values: the difference be-
tween the two extreme-valued GCMs varied (spatially) between
90 and 170 mm. A similar analysis of mean temperature gives a
range of 1.5◦ to 5◦. Bias-correction greatly reduced these ranges,
to 30–40 mm and 0◦–0.5◦.

2.2. Crop modelling techniques

The crop model used for this study is GLAM (Challinor
et al., 2004). GLAM seeks to combine the benefits of
empirical modelling (validity over large areas, low input data
requirement) with the benefits of process-based modelling
(capturing the impacts of subseasonal variability and retaining
validity under unprecedented conditions, such as are likely under
future climates).

Crop development is determined by accumulating daily mean
values of temperature above a base temperature (thermal time)
with development stages occurring at specific thermal times. The
leaf area index (LAI) is modelled using a maximum growth rate
modified by an indicator of water stress. LAI and solar radia-
tion are used to calculate the energy-limited evapotranspiration.
Actual transpiration is water-limited, and will depend on the
available water as given by the soil/roots submodel. The ratio
of actual to energy-limited evapotranspiration is the indicator of

water stress. Use of a transpiration efficiency (which is a function
of ambient vapour pressure deficit) then allows the calculation of
biomass, which through a harvest index allows the calculation
of yield.

The model, as it is used here, uses daily values of solar radia-
tion, minimum and maximum temperature, and rainfall. Radia-
tion is used to determine evapotranspirative demand and rainfall
is used as the input to the uppermost soil layer. Maximum and
minimum temperatures are averaged to produce daily mean tem-
perature, and they are also used to calculate the vapour pressure
deficit if those data are not available. GLAM has an intelligent
sowing routine, which requires as input a sowing window. Sow-
ing occurs on the first day on which the uppermost soil layer is
moist enough, or at the end of the window (crisis-sowing) if this
does not occur. The soil water model was initialized at the start
of the sowing window with zero available soil moisture.

Of the impacts on yield due to factors other than weather
(pests, diseases, management factors, etc., which act to reduce
yields by an amount referred to as the yield gap) only two are
modelled explicitly: planting date and soil type. The key soil
attribute is the water storage capacity. This is simulated using a
lower limit, drained upper limit and saturated limit. Other soil
influences are not simulated. All remaining influences on yield
are modelled using a single yield-gap parameter (YGP), which
acts to decrease the leaf area available for transpiration. This
allows the model to focus on the impact of weather and climate
on the spatio-temporal variability of crop yield. The YGP may
also be set to simulate zero yield gap (i.e. yield potential, which
is limited only by water, radiation, humidity and temperature).
However, it is observed yields with which model output is com-
pared, and this necessitates the calibration of the YGP.

The YGP takes values between zero and unity, in steps of 0.05,
and it is calibrated using observed yields. Hence, calibration is a
form of mean bias-correction, which may incorporate the impact
of biases additional to the yield gap, such as input data bias and
crop model error. Yearly district-level groundnut yield data for
calibration and evaluation were provided by the Socio-economic
Policy Division of the International Crops Research Institute
for the Semi-Arid Tropics (ICRISAT), Patancheru, India, from
yearly agricultural bulletins (Agricultural Situation in India, De-
partment of Agriculture, Government of India). Challinor et al.
(2003) provide further description, and some analyses, of these
data. For the current study, calibration of the YGP uses either
(i) ERA40 data (http://www.ecmwf.int/research/era/) prior to the
study period (1966–1986) to determine a single value of the YGP,
referred to as GCAL, or (ii) cross-validation using data within
the study period (1987–1992 data are used to determine the YGP
for 1993–1998, and vice versa), referred to as NCAL. The source
of data for the NCAL calibration was the same source as for the
relevant simulations: ERA40 data were used for ERA40 runs
and weather ensemble data for ensemble runs. Two calibration
methods were used for NCAL ensemble runs (Table 1). In the
first, a single pair of YGP values was determined by using the
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Table 1. Naming convention for the crop model configurations, together with a list of the simulation experiments performed. Each of the
simulation experiments refers to a particular choice of configuration (calibration, input weather data, sowing window and bias-correction).
Each simulation experiment was carried out using all 63 multi-model ensemble members individually, with the exception of WIA and
ERA40 runs, as explained below

Runcode Description

NUP Weather data: May hindcast used throughout (no August hindcast update)
AUP Weather data: May hindcast used for three months, then with August hindcast used
GCAL Calibration of the YGP on 1966–1986 yield data using ERA40 input data
NCAL Calibration of the YGP by cross-validation on 1987–1998 yield data (1987–1992 data used to

determine the 1993–1998 YGP, and vice versa). All NCAL runs use the August hindcast update (AUP)
MMC Calibration using the NCAL method on the multi-model yield ensemble mean
SMC Calibration using the NCAL method on the respective single-model yield ensemble mean
BIC Bias-correction of the input weather data to ERA40 has been performed
ORI Bias-correction has not been performed (original input weather data)
DSW Delayed sowing window
WIA Weather inputs averaged: ensemble-averaged weather values are used as input
ERA40 ERA40 weather data are used as input

Run Comments

GCAL–BIC–NUP This was the only NUP run performed
GCAL–BIC–AUP The control run: independent calibration with bias-corrected input weather data
GCAL–BIC–AUP–DSW Control run with delayed sowing window (9 July–7 August)
GCAL–BIC–AUP–WIA As control run, but with a single simulation using weather inputs averaged across the multi-model ensemble
NCAL–ORI–MMC Calibration using yield ensemble means and yield data from the study period, using a single pair of YGP

values for all GCMs
NCAL–ORI–SMC Model calibration using yield ensemble means and yield data from the study period, using a GCM-specific

pair of YGP values
GCAL–ORI–AUP True hindcast: no 1987–1998 data used
NCAL–BIC–MMC Full use of available 1987–1998 data
NCAL–BIC–SMC –
GCAL–ERA40 Benchmark comparison run with independent calibration
NCAL–ERA40 Benchmark comparison run with calibration on current yields
GCAL–ERA40-DSW Allows assessment of relative impact of delayed sowing window on control and benchmark runs

multi-model (i.e. multiGCM) yield ensemble mean [multi-model
calibration (MMC)]. In the second method, each single-model
(i.e. single-GCM) yield ensemble mean was used to determine a
pair of YGP values for yield ensemble members from that GCM
[single-model calibration (SMC)]. The YGPs resulting from this
second method may include a component of weather data bias-
correction for each individual GCM. In all cases the calibrated
value of the YGP is that for which the root mean square error
(RMSE) in yield is minimized.

The yield data used are either the district-level data (Fig. 1) or
data that have been upscaled to the crop model grid using an area-
weighted mean. Upscaling is carried out by assuming that the
area under cultivation is spread evenly throughout each district.
Yield often shows a monotonically increasing trend over time,
which is attributable to improvements in management and crop
variety. Hence, for this study, all yield data have been linearly
detrended to 1987 levels. Figure 2 shows the mean and standard
deviations of yields on the simulation grid.

Soil hydrological properties were derived from FAO/Unesco
(1974) following Challinor et al. (2004). The input sowing win-
dow used (Reddy, 1988) varies geographically, with the earliest
sowing across the region being the last day in May. The lat-
est sowing window starts in the last week in July. All sowing
windows last 30 d. Despite having observations of the sowing
window, the planting date remains a considerable source of un-
certainty. There is some evidence that choosing a sowing window
start date that is later than the observed value in Gujarat produces
more realistic simulations (Challinor et al., 2005). As a prelim-
inary study of the impact of uncertainty in the sowing window,
some simulations with a moderately delayed sowing window
(starting on 9 July; denoted by DSW) across the whole region
were carried out.

2.3. Hindcast simulation experiments

Hindcasts of crop yield were created by driving GLAM with in-
dividual DEMETER ensemble members. Ensemble mean yields,
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Fig. 2. Observed mean (a) and standard deviation (b) of (linearly) detrended groundnut yields (kg ha−1) in India, for the period 1987–1998, on the
DEMETER grid.

for either a single model (GCM) or the multi-model ensemble,
were then created by averaging output yields. Two sets of hind-
casts were carried out. The first of these used yield averaged over
crop model grid cells for calibration and evaluation of the crop
model (area-averaged geocode). This set of hindcasts consists of
a number of configurations of the crop model, each performed
across the whole study period and region. The configuration
determines the choice of calibration (GCAL or NCAL; MMC
or SMC; see Section 2.2), input weather data (NUP or AUP;
see Section 2.1), sowing window (standard or delayed, DSW;
see Section 2.2) and bias-correction method (BIC or ORI; see
Section 2.1). Each configuration is performed on either ensem-
ble average weather [weather inputs averaged (WIA)], ERA40
weather (denoted by ERA40) or individual ensemble members
(all remaining simulations). Table 1 summarizes the configura-
tions used in this study.

The second set of hindcasts used the district-level yield data,
one district at a time, for calibration and evaluation [one district
geocode (ODG)]. Hence, the ODG simulations sought to estab-
lish whether district-level yields could be simulated. Runs were
performed with one of the districts representing the yield for the
whole grid cell. The districts were chosen from grid cells where
the interannual standard deviation of the area-averaged yield was
not simulated well (low correlation coefficient) by ERA40. The
GCAL–BIC–AUP configuration was used for these simulations.

Hindcast simulation experiments are aimed at beginning to
address the issues highlighted at the end of Section 1. In particular
they seek to address the following key questions.

(1) How is a probabilistic forecasting system best calibrated
– is bias-correction of input weather data needed (BIC versus
ORI)? Do estimates of the YGP need to be current or will esti-
mates based on historical yields suffice (NCAL–ERA40 versus
GCAL–ERA40)? Should calibration be carried out on yields
from the same source/period as the yield data being simulated
(NCAL versus GCAL multi-model ensemble runs)?

(2) How can skilful probabilistic forecasts of crop yield
be formed from a set of yield ensembles? Is information
based on a dichotomous analysis of crop failure more accu-
rate than more highly resolved information such as indicators
of high/medium/low yields? Are there any benefits specific to
the multi-model, as opposed to the single-model approach? Do
updated forecasts produce increased probabilistic skill (GCAL–
BIC–AUP versus GCAL–BIC–NUP)?

(3) How skilful are the yield ensemble mean hindcasts when
measured relative to the accuracy of the benchmark ERA40 sim-
ulations? Do updated forecasts produce increased deterministic
skill (GCAL–BIC–AUP versus GCAL–BIC–NUP)? How does
the multi-model yield ensemble mean perform relative to indi-
vidual models?

(4) What are the impacts of two of the key uncertain-
ties – sowing window and spatial scale – on the accuracy of
the simulations? Preliminary analyses described in this paper
examine: (i) whether uncertainty in the sowing window af-
fects the accuracy of both the deterministic and probabilistic
simulations equally [GCAL–BIC–AUP(–DSW) versus GCAL–
ERA40(–DSW)]; (ii) whether, where there is little accuracy at
the grid-scale, this can be attributed to heterogeneity within the
grid cell. Specifically, is there accuracy on the subgrid scale
(ODG)?

For all of the above questions, ensembles of yield are used
in the analysis. However, for a deterministic simulation of crop
yield, only a single set of weather inputs is necessary. Hence,
a further simulation was carried out, using the multi-model en-
semble mean weather variables (maximum and minimum tem-
perature, solar radiation and rainfall) as input to GLAM. This
simulation used the control run configuration (i.e. GCAL–BIC–
AUP). It was aimed at one specific further issue which forms
part of the third question above: for a deterministic simulation,
is greater skill achieved when averaging at the input (weather)
stage, or at the output (yield) stage (GCAL–BIC–AUP–WIA
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versus GCAL–BIC–AUP)? Each of the questions above is dis-
cussed in turn in the four parts of Section 4.

2.4. Analysis methods

Deterministic simulations were formed from yield ensembles by
averaging across all the members. An important performance
statistic is the correlation coefficient between observed (de-
trended) and simulated yields (r os). A second measure of sim-
ulation accuracy is the RMSE, which includes both simulation
bias (which can be corrected based on observations) and corre-
lation (which cannot). The term ‘skill’, in both deterministic and
probabilistic analyses, is reserved for the description of simula-
tion accuracy relative to the accuracy of some baseline forecast
method; a simulation may be accurate and still show low skill if
similar accuracy can be achieved using the baseline method. For
deterministic simulations, the ERA40 yield simulations are the
baseline. This definition of deterministic skill is a stringent one
because the ERA40 data contain (assimilated) observed weather
data whereas the ensemble hindcasts do not.

Two sets of probabilistic analyses have been carried out. The
first of these is a dichotomous analysis of crop performance
based on an a priori crop failure yield threshold (Y cf) and an
a priori detection threshold in probability (P t). Predictive error
is measured using the Brier score, a mean square error which
can be used with either probabilistic or deterministic forecasts.
Error in this case is defined as the difference between the forecast
probability of crop failure (i.e. the fraction of ensemble members
predicting failure) and the observed probability (zero or unity).
Note that the Brier score cannot be compared across different
Y cf, because low Brier scores are favoured by low values of Y cf.

Relative operating characteristics (ROCs) describe the skill of
the crop failure hindcasts. ROCs are presented as plots of the hit
rate (fraction of crop failure observations which were correctly
forecast) against the false alarm rate (fraction of no-failure events
that were forecast as events). Zero skill (measured relative to a
random forecast) on a ROC curve is represented by the 1 : 1 line.
Skill is given by the area between the ROC curve and the 1 : 1
line, with skill being negative if the curve lies below this line.
Reliability diagrams provide important information to compli-
ment the ROC curve. They indicate the consistency between the
forecast probability of occurrence (plotted on the x-axis) and the
observed frequency of occurrence (plotted on the y-axis). The
latter is calculated across the subset of observations determined
by the forecast probability value (i.e. location on the x-axis).
A reliable forecast has points along the 1 : 1 line, where crop
failure is predicted with the same frequency with which it is
observed.

The second type of probabilistic analysis is based on the abil-
ity of the hindcasts to simulate climatological terciles: below
normal, normal and above normal. One measure of this ability is
the ranked probability score (RPS), averaged over all grid cells
and years. The RPS is an extension of the Brier score to multiple

categories, and can also be used with deterministic forecasts, by
assigning a probability of one to the forecast category.

For both the crop failure analysis and the tercile analysis,
two comparisons are made. The first is a comparison with the
deterministic ERA40 yield simulation. This is done by assigning
a probability of one to the relevant category (failure/no failure or
tercile) in which the ERA40 result falls. Note that lower (more
skilful) values of the RPS could be achieved by selecting a non-
zero probability for all three terciles, with a weighting towards
the ERA40 tercile. The second comparison is with climatology:
observed frequency of crop failure across all grid cells and all
time for the dichotomous analysis, and a probability of 33.3%
for each category in the tercile analysis.

Simulations show positive skill with respect to ERA40 when
Brier scores (crop failure) or RPS values (terciles) are lower than
those of the ERA40 yield simulation. A similar comparison can
be made to assess skill relative to climatological forecasts. In ad-
dition, a measure of skill relative to random forecasts is afforded
for the crop failure case by the ROC analyses described above.
The analytical theory behind all the graphs and statistics pre-
sented in Section 3.2 can be found in Stanski et al. (1989) and/or
Brown (2001). All analyses use all available grid cells (10) for
all available years (12). All references to statistical significance
are for the 5% level.

3. Results

3.1. Deterministic performance statistics

Figure 3 shows the correlation coefficient between observed (de-
trended) and simulated yields (r os) for the control run (GCAL–
BIC–AUP) and its ERA40 counterpart (GCAL–ERA40). The
multi-model yield ensemble mean shows higher correlations than
the ERA40 run, and both show high correlations for the north-
west of the region (where the climate signal is known to be strong
from observations; Challinor et al., 2003). In terms of RMSE, the
control run and its ERA40 counterpart perform similarly (Fig. 4).

Simulation accuracy shows some dependence on configura-
tion (the choice of calibration and bias-correction method). The
control run has three statistically significant (at the 5% level) val-
ues of r os, GCAL–ORI–AUP and NCAL–BIC–MMC both have
two, and NCAL–ORI–MMC has one. Hence, bias-correction
produces one more significant correlation than the raw data (for
both GCAL and ORI) and GCAL produces one more significant
correlation than NCAL (for both ORI and BIC). It is possible
that the step change in the YGP resulting from cross-validation
(Section 2.2) reduces correlations in the NCAL case. Note, how-
ever, that these differences in the number of statistically signifi-
cant correlations may not be statistically significant.

The RMSE of the multi-model yield ensemble mean shows
a clearer dependence on configuration than r os (Fig. 4). NCAL
tends to produce lower RMSE than GCAL. Bias-correction also
tends to reduce the RMSE. NCAL–BIC–MMC performs best
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Fig. 3. Correlation coefficients for observed and simulated yields (r os) for the period 1987–1998, for (a) the control run, GCAL–BIC–AUP and (b)
GCAL–ERA40. Statistically significant correlations are marked with a dot.

Fig. 4. RMSE of the multi-model yield
ensemble mean for eight hindcast simulation
experiment and all 10 grid cells. Note that
GCAL–ORI–AUP in grid cell 4 has a RMSE
of 1021 kg ha−1; this point is not included
on the graph. Two points from the
GCAL–BIC–AUP–WIA hindcast are also
outside the range of the graph: grid cell 1
(647 kg ha−1) and grid cell 4 (543 kg ha−1).

overall (in terms of RMSE): in six out of the 10 grid cells NCAL–
BIC–MMC has the lowest (or joint lowest) RMSE. In contrast
to the GCAL calibration, NCAL–BIC–MMC has RMSE com-
parable to or lower than that of its ERA40 counterpart (NCAL–
ERA40). For the NCAL–BIC–MMC configuration, the multi-
model yield ensemble mean shows more statistically significant
values of r os (three) than any other single model (two, for the
scnr, scwn and ukmo models).

The simulation using (weather) ensemble averaging at the
input stage (GCAL–BIC–AUP–WIA) showed the same number
of significant correlations as the control simulation, although
the RMSE was higher in eight of the 10 cases (Fig. 4). The
simulation without the August forecast update (GCAL–BIC–
NUP) produced only one statistically significant correlation and
RMSEs which were (slightly) higher than the control run in nine
out the 10 cases (Fig. 4).

An analysis of calibrated YGP values for grid cell 1 reveals
the reason for the NCAL results generally showing greater accu-
racy in the multi-model yield ensemble mean than the GCAL

results. First, note that NCAL–ERA40 does not outperform
GCAL–ERA40 (Fig. 4). This is because the YGPs between
the two calibrations do not differ greatly (0.25 for both GCAL
and NCAL 1987–1992; 0.20 for NCAL 1993–1998). This im-
plies that cross-validated calibration using 1987–1998 ERA40
data would produce ensembles of yield similar to those in the
GCAL case. Hence, estimates of the YGP using data prior to
the study period are adequate; the improved performance of
NCAL over GCAL in the single-model and multi-model ensem-
ble cases is due primarily to the YGP values being more optimal
when calibration uses yield ensemble mean data (as opposed to
ERA40 data).

The RMSE of each individual GCM and for each ensemble
member for grid cell 1 is presented in Fig. 5. For both NCAL and
GCAL, the spread of the RMSE is lower with input data bias-
correction than without. NCAL–BIC simulations produce lower
RMSE than GCAL–BIC–AUP for all but three models (lody,
scwn and ukmo). These are the only three models that show
a change in the calibration parameter, YGP, between the two
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Fig. 5. Box plots (the box shows the upper and lower quartiles, the line within shows the median and the whiskers show the full extent of
the data) from four configurations of calibration (GCAL/NCAL) and bias-correction (BIC/ORI), of RMSE in yield for the seven models (GCMs),
and RMSE for ERA40 (dashed line) and the multi-model ensemble mean (continuous line). Crosses show the RMSE of the mean of the individual
models. All results shown are for grid cell 1 (see Fig. 1). For the NCAL runs, individual models are calibrated individually on the yield ensemble
mean (SMC) and the multi-model yield ensemble is calibrated on the multi-model yield ensemble mean (MMC). Table 1 describes the runs
performed.

halves of the time series. Figure 5 can also be used to compare the
RMSE in yield of individual ensemble members, model (GCM)
ensemble means and the multi-model ensemble mean. Only with
the NCAL calibration do ensemble means begin to outperform
ensemble members. The multi-model yield ensemble mean has
a lower RMSE than six of the seven models.

The correlation coefficients and relative means and stan-
dard deviations for both the multi-model yield ensemble and
the ERA40 simulations in grid cell 1 are shown in Table 2.
It is clear that averaging over a number of yield ensemble
members reduces the interannual standard deviation of yield.
For the multi-model yield ensemble, both the standard devi-
ations and the means are more deficient in the GCAL cases
than in the corresponding NCAL cases. For the corresponding
ERA40 runs, NCAL improves the mean slightly, but the stan-
dard deviation remains too high, so that NCAL is no better than
GCAL.

Table 2. Correlation coefficient for observed and simulated yields for
the multi-model yield ensemble mean (MME), and for the
corresponding ERA40 run, for the four runs used in Fig. 5. Bold
indicates significance at the 1% level. Brackets indicate repeated
values. Also shown is the ratio of observed and simulated values of (i)
standard deviation of yield (σ y) and (ii) mean yield (y), for each case.
Taking an ensemble average results in a lower interannual standard
deviation than that of individual ensemble members. For instance, the
nine members of the GCAL–BIC–AUP run have σ sim

y /σ obs
y = [1.50,

0.94, 0.91, 1.25, 0.94, 1.33, 1.37, 1.08, 1.30]

Correlation σ sim
y /σ obs

y ysim/yobs

Run MME ERA40 MME ERA40 MME ERA40

GCAL–BIC–AUP 0.73 0.56 0.42 1.37 0.45 0.70
GCAL–ORI–AUP 0.76 (0.56) 0.25 (1.37) 0.58 (0.70)
NCAL–BIC–SMC 0.73 0.50 0.81 1.47 0.85 0.75
NCAL–ORI–SMC 0.57 (0.50) 0.54 (1.47) 1.00 (0.75)
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Fig. 6. Evaluation of control simulation (GCAL–BIC–AUP) for the
multi-model yield ensemble (thin lines, open symbols) and best single
model (thick lines, filled symbols) for crop failure thresholds of 200 kg
ha−1 (crosses) and 500 kg ha−1 (triangles). (a) ROC curves (skill is
proportional to area bounded by the grey 1 : 1 line, the ROC curve, and
the horizontal ‘hit rate = 1’ line); (b) reliability diagrams (reliability is
indicated by proximity to the grey line); (c) the number of observations
used in each point plotted in (b). In this last plot, black pluses are used
in place of black crosses to avoid masking of points. The best single
model is defined here as that which, for false alarm rate increasing from
zero to one, achieves the highest hit rate at the lowest false alarm rate.

3.2. Probabilistic performance statistics

Figure 6a compares the control simulation (GCAL–BIC–AUP)
ROCs of the multi-model yield ensemble and the best single
model (GCM) at two values of Y cf: 200 and 500 kg ha−1. The
latter of these has been identified by Rao et al. (2000) as the
point at which costs exceed the value of the crop. All events at
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Fig. 6. (cont’d).

Table 3. The Brier score for two threshold crop-failure
yield values (Y cf) for the GCAL–BIC–AUP run. Values
calculated using the multi-model yield ensemble (MME),
the best single model (BSM) and ERA40 are shown. Four
of these correspond to the four runs from Fig. 6. Also
shown is the mean RPS (averaged over all available years
and grid cells) for climatological yield terciles (bounded at
661 and 827 kg ha−1)

Run Y cf Brier RPS

MME 200 0.053 0.50
BSM (crfc) 200 0.043 0.56
ERA40 200 0.050 0.60

MME 500 0.143 (0.50)
BSM (lody) 500 0.125 0.53
ERA40 500 0.167 (0.60)

the lower yield threshold are simulated, whereas some events are
not simulated by any ensemble member for the higher thresh-
old. The best single model is more skilful than the multi-model
ensemble at low false alarm rate. In terms of the Brier score
and the mean RPS (Table 3), the multi-model yield ensemble
shows accuracy similar to or greater than ERA40, and similar or
worse skill than the best single model. Note, however, that the
best single model varies between each case. Figure 6b compares
the same simulations as above using a reliability diagram. The
accuracy of this diagram is limited by a low number of obser-
vations, particularly at high forecast probabilities (Fig. 6c). The
data available suggest that the multi-model ensemble is no less
reliable than the best single model.

Figure 7 presents ROC curves for various crop model config-
urations. The corresponding reliability diagrams are presented
in Fig. 8 and the corresponding values of the Brier score and the
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Fig. 7. ROC curves for the period 1987–1989 for crop failure, defined as yield below (a) 400 kg ha−1 (12 observed events out of 120 data points)
and (b) 500 kg ha−1 (17 observed events out of 120 data points). Black lines are for GCAL–BIC runs, with circles denoting the NUP run and crosses
denoting the AUP run. Filled symbols (no lines) show NCAL–ORI runs, grey lines show NCAL–BIC runs; for both of these cases, triangles denote
calibration using the single-model yield ensemble mean, and squares denote calibration using the multi-model yield ensemble mean. The thick black
line is for the GCAL–ORI–AUP run. The thick grey lines shows the zero-skill baseline.
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Fig. 8. Reliability diagram for for the period 1987–1989 for crop failure, defined as yield below (a) 400 kg ha−1 and (b) 500 kg ha−1. The
climatology is plotted as a dotted grey line and a perfectly reliable forecast as a solid grey line. The corresponding number of observations used for
each point plotted are shown in (c) for 400 kg ha−1 and (d) for 500 kg ha−1. The legend is exactly as Fig. 7: black lines are for GCAL–BIC runs,
with circles denoting the NUP run and crosses denoting the AUP run. Filled symbols (no line) show NCAL–ORI runs, grey lines show NCAL–BIC
runs; for both of these cases, triangles denote calibration using the single-model yield ensemble mean, and squares denote calibration using the
multi-model yield ensemble mean. The thick black line is for the GCAL–ORI–AUP run. In (c) and (d), black pluses are used in place of black
crosses to avoid masking of points.
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Table 4. The Brier score for two threshold crop-failure yield values
(Y cf = 400 and 500 kg ha−1) for the five runs used in Fig. 7 and for
two ERA40 runs. Note that the Brier score is by definition lower for
rarer events, so that values for different Y cf should not be compared.
The Brier scores of climatology (probability of crop failure equals
observed climatological occurrence across all years and grid cells) are
shown for comparison. Also shown is the mean RPS (averaged over all
available years and grid cells) for climatological yield terciles
(RPS–CLI, bounded at 661 and 827 kg ha−1) and for model yield
terciles (RPS–MOD, with configuration-dependent yield boundaries).
The RPS of climatology (33.3% probability for each tercile in the
observations) is shown for comparison

Run Brier-400 Brier-500 RPS–CLI RPS–MOD

GCAL–BIC–NUP 0.101 0.134 0.51 0.33
GCAL–BIC–AUP 0.100 0.143 0.50 0.32
NCAL–ORI–MMC 0.073 0.101 0.26 0.28
NCAL–ORI–SMC 0.075 0.106 0.30 0.28
GCAL–ORI–AUP 0.093 0.190 0.63 0.36
NCAL–BIC–MMC 0.071 0.110 0.28 0.29
NCAL–BIC–SMC 0.077 0.119 0.31 0.27
GCAL–ERA40 0.092 0.167 0.60 0.49
NCAL–ERA40 0.083 0.125 0.44 0.42
Climatology 0.090 0.122 0.28 –

mean RPS are presented in Table 4. Simulations are more reliable
for a crop failure yield threshold (Y cf) of 400 kg ha−1 than for
Y cf = 500 kg ha−1. RPS values for the multi-model yield ensem-
ble tend to be better (lower) than ERA40, but similar to or worse
than climatology. Given that GLAM tends to be more accurate
under water-limiting conditions, therefore favouring prediction
of crop failure over prediction of high yields, these results are
not surprising.

On the whole, the hindcasts are not particularly sharp for crop
failure prediction: there are few occasions when the forecast
probability is high (Figs. 8c and 8d). The few high probabilities
that are predicted do not generally indicate greater certainty:
most points in Figs. 8a and 8b lie below the 45◦ line.

The least skilful simulation overall is GCAL–ORI–AUP, al-
though this does produce a reliable forecast at low probabil-
ity (Figs. 8a and 8b). This may however be due to the greater
sample size at low probability for this run (Figs. 8c and 8d).
Bias-correction of input weather data improves the simulations,
although it can also remove the ability of any of the ensem-
ble members to simulate some of the observed crop failures
(Fig. 7). The GCAL–BIC–NUP and GCAL–BIC–AUP simu-
lations produce similar results to each other, indicating that the
use of the August update does not impact significantly on the re-
sults. Calibration by cross-validation using yield ensemble mean
data (NCAL) improves ROC skill further and also produces the
lowest values of the Brier score and mean RPS (Table 4). Brier
scores compare well with both ERA40 and climatology values

showing some skill in the prediction of crop failure. RPS values
show skill relative to the deterministic ERA40 hindcast but not
relative to climatology.

NCAL multi-model yield ensembles (both with and without
bias-correction) produced lower values of RPS than any of their
single-model counterparts: values were 10% and 15%, respec-
tively, lower than the lowest single-model value.

Whether calibration of the crop model treats the multi-model
ensemble as one model or as a sum of separately calibrated mod-
els (see Section 2.2) makes little difference to the ROC curves.
However, there is some indication that multi-model calibrations
may produce more reliable forecasts at high (30–60%) proba-
bility thresholds (Fig. 8). This suggests that, for probabilistic
information, calibration of the crop model using single-model
yield ensembles may be less effective than calibration using the
multi-model yield ensemble.

Overall, the results suggest that either bias-correction of in-
put weather data (BIC), or calibration via cross-validation with
yield ensemble means (NCAL), or both, are required in order
for the hindcasts to be skilful. Further, NCAL alone appears to
provide a considerable improvement. The values of YGP cal-
ibrated using ERA40 differ across NCAL and GCAL by 0.05
or less for seven grid cells, and 0.10 or less for nine grid cells,
suggesting that it is the calibration on yield ensemble means, as
opposed to the use of data within the study period, that is the
source of the increased skill in the NCAL case. This suggests
that for probabilistic information, crop model calibration of the
YGP on yield ensemble mean data can effectively be used as a
bias-correction.

3.3. Delayed sowing window

Use of the delayed sowing window described in Section 2.1 with
the ERA40 data results in correlations between observed and
simulated yields (r os) strengthening in eight of the 10 grid cells.
The largest change is significant at the 5% level and occurs in
grid cell 10, between GCAL–ERA40 (r os = 0.01) and GCAL–
ERA40–DSW (r os = 0.74). The corresponding values for the
mean yield from the multi-model ensemble runs are r os = 0.62
(GCAL–BIC–AUP) and r os = 0.58 (GCAL–BIC–AUP–DSW).
Hence, the representation of forecast uncertainty, in this case
at least, makes the representation of uncertainty in the sowing
window redundant.

3.4. District-level analysis

In this section we describe the results of the ODG simulations
(see Section 2.3). Using ERA40 data with both (in turn) of
the sowing windows described in Section 2.1, optimal values
of the YGP were found for the 1989–1998 period, and four
districts with statistically significant (p < 0.05) correlations
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Table 5. Performance of multi-model yield ensemble means for four
individual districts in the three grid cells shown. Correlation
coefficients (with values statistically significant at the 5% level in bold)
and the ratio of observed and simulated standard deviation are shown
for the single-district (ODG) runs and the corresponding area-averaged
geocode (AAG) runs

Correlation σ sim
y /σ obs

y

Grid cell District ODG AAG ODG AAG

6 Ratlam 0.66 0.20 0.31 0.55
9 Jalgaon 0.50 0.12 0.29 0.54
10 Parbhani 0.52 0.54 0.37 0.35
10 Yavatmal 0.66 0.54 0.30 0.35

emerged. Simulations and analysis focused on these districts,
which are marked in Fig. 1. The values of the YGP obtained
from the ERA40 analysis using the standard sowing window
were used to perform the crop simulations (i.e. GCAL cali-
bration). The simulations were performed using the BIC–AUP
configuration.

The resulting multi-model yield ensemble means are com-
pared to their area-averaged counterparts (GCAL–BIC–AUP) in
Table 5. Because standard deviations of yield (σ y) at smaller
spatial scales are often higher than those at larger spatial scales,
the disparity in σ y is in some cases greater for the district-level
case. Correlation coefficients however are generally an improve-
ment on the area-averaged case. Hence, where forecasts are not
useful on the grid scale because of low skill, they may useful on
the subgrid scale.

4. Summary and discussion

4.1. Optimal calibration and bias-correction methods

A number of crop model calibration methods exist. Most, if not
all, of these are applicable to deterministic simulations, where
one set of inputs determines one set of outputs. The crop model
parameters may be adjusted in order that yields and/or phenology
match observations (Travasso and Delécolle, 1995; Kaur and
Hundal, 1999). Alternatively, a yield correction factor can be
applied to the predicted yields in order to minimize the RMSE
(Jagtap and Jones, 2002). Calibration methods for probabilistic
studies are not well developed; Marletto et al. (2005) applied no
formal calibration to their crop model. The results presented here
are a first step to developing crop model calibration procedures
for probabilistic studies.

The analyses of correlations and RMSE presented in Sec-
tion 3.1 show that simulation accuracy is dependent on
the method of calibration. For multi-model yield ensemble
means, calibration of the crop model using ERA40 data of-
ten showed higher RMSE than calibration via cross-validation

(Figs. 4 and 5). However, the number of significant cor-
relations between observed and simulated yields was not
greater when cross-validation was used (Section 3.1). Bias-
correction tended to improve results for yield ensemble means
(Section 3.1) but not for prediction of crop failure (Sec-
tion 3.2). This bias-correction was towards ERA40 data. Be-
cause the ERA40 rainfall is deficient in both mean and
standard deviation when compared to observed gridded data
(Challinor et al., 2005) it is anticipated that bias-correction to
observations could improve results further. These results there-
fore suggest that the best configuration for producing output
based on the yield ensemble mean is cross-validation on the
ensemble mean, with input weather data bias-correction (i.e.
NCAL–BIC).

For probabilistic analyses, Figs. 6a and 7 show that bias-
correction of input weather data removed the ability to simulate
some events. The yield ensemble means again emerge as the most
favourable data on which to calibrate. However, for yield ensem-
ble means, separate calibration of the crop model for each single
model (GCM) was shown to have no advantage over calibration
using the multi-model ensemble (Fig. 7 and Table 4).

Both the probabilistic and deterministic analyses suggest that
estimates of the YGP do not need to be based on yields from
within the study period. However, it is important to base cali-
brations on data properly adjusted for technology trend. In this
study, all yields were adjusted to 1987 levels, using a linear re-
gression over the periods 1966–1986 and 1987–1998. Some of
the trends varied considerably between these two periods (e.g.
over 60 kg ha−1 yr−1). Therefore, if this change were not ac-
counted for, it would become important to calibrate the YGP on
data from a period closer to the study period.

4.2. Skilful probabilistic information

The importance of using probabilistic information has been noted
for both hydrological (Krzysztofowicz, 2001) and crop mod-
elling (Hansen and Indeje, 2004) studies. Probabilistic informa-
tion on seasonal time-scales currently available to the agricul-
tural sector consists typically of climate terciles – an indication
of the probability of low, average or high rainfall (e.g. Barnston et
al., 2003). The results presented here suggest that an extension of
such forecasts to yield can produce predictions comparable to the
use of climatological tertiaries (i.e. low, or even zero, skill). Cal-
ibration using yield ensemble mean data with no bias-correction
of input weather data (NCAL–ORI) produced the lowest (i.e.
most skilful) mean RPS. For this simulation, the multi-model
yield ensemble produced lower values of RPS than any single
model.

Positive skill was seen in the simulation of crop failure, with
more severe failures being more reliable (Fig. 8). The best single
model was not consistent across crop failure thresholds (Table 3).
There was no clear advantage to the multi-model approach in the
prediction of crop failure. A crop-failure prediction system based
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on the principles outlined in this study could potentially be used
as part of a hybrid (modelling plus descriptive) decision support
system, such as that described by Hansen (2002).

The use of the August forecast to update the crop model did
not appear to have a significant impact on the results (Figs. 7 and
8 and Table 3).

4.3. Skill relative to deterministic simulations

The multi-model yield ensemble was formed from a simple av-
erage of the 63 ensemble members. Even this simple config-
uration, with no weights, showed evidence of positive skill: a
greater number of significant correlations with observed yields
than the ERA40 simulations in the GCAL case, and lower RMSE
overall in the NCAL case. However, averaging over ensemble
members did tend to reduce the interannual standard deviation
(Table 2). The multi-model yield ensemble also showed more
statistically significant correlations with observations than any
single model (Section 3.1). Averaging of the weather data (all
63 ensembles) prior to crop simulation produced yields with
equally high correlations but higher RMSE than the control run
(Section 3.1). In a similar (but not identical) comparison, Trnka et
al. (2004) found that the use of scenarios averaged across several
GCMs with the CERES crop model resulted in yields with sim-
ilar characteristics to single-GCM scenarios. Because GLAM is
computationally cheap to run, there is no great advantage in this
scenario-averaged approach.

The use of the August forecast had a small positive impact on
the RMSE (up to 10%, but mostly less; Fig. 4) and a positive (but
not necessarily statistically significant) impact on the correlation
between observed and simulated yields (Section 3.1).

4.4. Impact of uncertainties

Two preliminary studies of uncertainty were made. A delayed
sowing window (Section 3.3) significantly (in the statistical
sense) improved correlations for one of the grid cells using
ERA40. The corresponding multi-model yield ensemble mean
correlations were both statistically significant but not signifi-
cantly different from each other. Sowing window uncertainty,
then, may be of secondary importance when ensemble mean
forecasts are used. If accurate simulations result, then this is an
advantage over the deterministic approach. Note that the choice
of sowing window made by the farmer remains important (e.g.
Rao et al., 2000); it is only with respect to prediction that it may
be secondary.

For two of the grid cells, significant correlations were found
at the subgrid scale where there were none at the grid scale
(Table 5). This implies that subgrid heterogeneity can impact on
skill over large areas, making it a potentially important source
of uncertainty. It also implies that as part of the development of
a forecasting system, a study of the spatial scale(s) on which the

yield simulations show skill would be worthwhile. This study
has not taken account of another scale-related issue: that the
yield scenarios themselves depend upon the spatial scale of the
climate and soils information (e.g. Mearns et al., 1999, 2001).

5. Conclusions: implications
for yield forecasting

The ensembles of yield developed in this study using DEME-
TER hindcast weather ensembles and the GLAM crop model
have shown predictive skill in both the ensemble mean and the
ensemble spread. In both cases, calibration using yield ensemble
mean information has lower RMSE than calibration using re-
analysis. However, there is some evidence that cross-validation
of the YGP reduces the correlation between observed and simu-
lated yield (Section 4.1). An important caveat to any conclusions
drawn is the length of the time series: 12 yr represents a small
sample over which to estimate the predictability of crop yields.
Further study using a longer time series of ensemble hindcasts
and yield data would be needed to enable conclusions to be drawn
more firmly.

These results of this study suggest four implications for fore-
casting on short-to-medium time-scales (a season to a decade).
First, calibration on yield ensemble means prior to the study pe-
riod would give the greatest predictive skill for studies of this
kind. Secondly, there is the potential for the probabilistic pre-
diction of crop failure, defined by a given threshold yield value.
Tercile forecasts may also become feasible if the skill of GCMs
increases. Thirdly, ensemble means can show skill in predict-
ing interannual variability in yield. Because bias-correction to
ERA40 showed the potential to increase skill further, improved
GCM skill has the potential to translate into improved deter-
ministic yield prediction. Fourthly, uncertainties in crop model
inputs are important, particularly when operating on large spatial
scales. However, the results presented here suggest that one of
these uncertainties, the sowing window, may not require explicit
modelling.

The implications for forecasting on multidecadal (climate
change) time-scales are as follows. First, yield ensembles based
on the perturbation of uncertain parameters in both crop and cli-
mate models could be used to create forecasts of mean yields, in
the same way as the ensembles in this study. This would smooth
out any information on the interannual variability but may aver-
age out errors associated with the prediction of mean yields in
future climates. Secondly, the results suggest that, as long as the
technology trend is known to some degree of accuracy (using,
for example, a linear regression), changes in the YGP on decadal
time-scales may be small. Hence, climate change impacts studies
may be formed from a number of plausible technology scenar-
ios whilst keeping the YGP constant. Alternatively, actual yield
values may be ignored, and the focus placed on spatial patterns
of yield.
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Finally, it is worth noting that the issue of extreme events,
which may become more important in future climates, has not
been addressed in this study because the time series was not
long enough. It is possible that some of the earliest and most se-
vere impacts of climate change will come from the exceeding of
climate thresholds, such as temperature, over short periods dur-
ing critical crop development stages (e.g. Wheeler et al., 2000).
Climate change impacts studies clearly need to take account of
this.
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