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Supplementary Information 

Supplementary Materials and methods 

Partially and fully calibrated simulation experiments (Fig. 1 and 2) with observed field experimental data 

Twenty-seven different wheat crop simulation models were used by individual modeling groups (in most 

cases by the model developers) (Supplementary Table S1) for a model intercomparison. The models varied in 

complexity and functionality (Supplementary Table S2). Six models did not simulate nitrogen (N) dynamics 

(Supplementary Table S2). Simulations were carried out for single treatments of experiments at four 

contrasting locations, which were The Netherlands (Wageningen
1
), Argentina (Balcarce

2
), India (New 

Delhi
3
), and Australia (Wongan Hills

4
) (Supplementary Table S3) representing a very wide range of growing 

conditions of wheat. Crop management treatments were chosen to be representative for each region 

(Supplementary Table S3). 

 

Supplementary Table S1. Crop models (27) used in AgMIP Wheat study. 

Model (version) Reference Documentation 

   

  APSIM-Nwheat (V.1.55) 
4-6

 http://www.apsim.info 

APSIM (V.7.3) 
6
 http://www.apsim.info/Wiki/ 

AquaCrop (V.3.1+) 
7
 http://www.fao.org/nr/water/aquacrop.html  

CropSyst (V.3.04.08) 
8
 http://www.bsyse.wsu.edu/CS_Suite/CropSyst/index.html 

DSSAT- CERES (V.4.0.1.0) 
9, 10

, 
11

 http://www.icasa.net/dssat/ 

DSSAT-CROPSIM (V4.5.1.013) 
10, 12

 http://www.icasa.net/dssat/ 

http://www.bsyse.wsu.edu/CS_Suite/CropSyst/index.html
http://www.icasa.net/dssat/
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Ecosys 
13

 https://portal.ales.ualberta.ca/ecosys/  

EPIC wheat (V1102) 
14-16

  http://epicapex.brc.tamus.edu/ 

Expert-N (V3.0.10) - CERES (V2.0) 
17-20

 http://www.helmholtz-muenchen.de/en/iboe/expertn/ 

Expert-N (V3.0.10) – GECROS (V1.0) 
19, 20

 http://www.helmholtz-muenchen.de/en/iboe/expertn/ 

Expert-N (V3.0.10) – SPASS (2.0) 
17, 19-22

 http://www.helmholtz-muenchen.de/en/iboe/expertn/ 

Expert-N (V3.0.10) - SUCROS (V2) 
17, 19, 20, 23

 http://www.helmholtz-muenchen.de/en/iboe/expertn/ 

FASSET (V.2.0) 
24, 25

   http://www.fasset.dk 

GLAM-wheat (V.2) 
26, 27

  http://see-web-

01.leeds.ac.uk/research/icas/climate_change/glam/download_glam.html 

HERMES (V.4.26) 
28, 29

 http://www.zalf.de/en/forschung/institute/lsa/forschung/oekomod/hermes 

InfoCrop (V.1) 
30

 http://www.iari.res.in 

LINTUL-4 (V.1) 
31, 32

 http://models.pps.wur.nl/models 

LINTUL-FAST (V.1) 
33

 Request from frank.ewert@uni-bonn.de 

LPJmL (V3.2) 
34-39

 http://www.pik-potsdam.de/research/projects/lpjweb 

MCWLA-Wheat (V.2.0) 
40-42

 
43

 Request from taofl@igsnrr.ac.cn 

MONICA (V.1.0) 
44

  http://monica.agrosystem-models.com  

O'Leary-model (V.7) 
45-48

 Request from gjoleary@yahoo.com 

SALUS (V.1.0) 
49, 50

 http://www.salusmodel.net 

Sirius (V2010) 
51-54

 http://www.rothamsted.ac.uk/mas-models/sirius.php 

SiriusQuality (V.2.0) 
55-57

  Request from pierre.martre@clermont.inra.fr 

STICS (V.1.1) 
58, 59

  http://www.avignon.inra.fr/agroclim_stics_eng/ 

WOFOST (V.7.1) 
60

  http://www.wofost.wur.nl 

 

http://www.fasset.dk/
http://www/
http://models.pps.wur.nl/models
http://www.avignon.inra.fr/agroclim_stics_eng/
http://www.wofost.wur.nl/
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Supplementary Table S2. Modeling approaches of 27 wheat simulation models used in AgMIP wheat study. 
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APSIM-Nwheat S RUE Prt T/DL/V EXP W/N/A S V C PT CN/P(3)/B RUE/TE 7 R/Tx/Tn/Rd C P 

APSIM-wheat S RUE Prt/Gn/B T/DL/V/O O W/N/A E - C/R PT/PM CN/P(3)/B RUE/TE/CLN 7 R/Tx/Tn/Rd/e/W C P 

AquaCrop S TE HI/B T/DL/V/O EXP W/N/H E/S V/R C PM none TE 2 R/Tx/ETo none P 

CropSyst S TE/RUE HI/B T/DL/V EXP W/N/H E R C/R PM N/P(4) TE/RUE 16 R/Tx/Tn/Rd/RH/W none P 

DSSAT-CERES S RUE B/Gn T/DL/V EXP W/N E/S - C PT CN/P(4)/B RUE/TE 7 R/Tx/Tn/Rd/RH/W C P 

DSSAT-CROPSIM S RUE Prt T/DL/V LIN W/N E/S V C PT CN/P(4)/B RUE/TE 21 R/Tx/Tn/Rd/ none p 

Ecosys D P-R Gn-Prt T/DL/V/O Call W/N/A/H E/S V/R R EB P30/B5 F 2 R/Tx/Tn/Td/Rd/W none P 

EPIC wheat S RUE HI T/V EXP W/N/H E V C 
P/PM/P

T/HAR 
N/P(5)/B RUE/TE/GY 16 R/Tx/Tn/Rd/RH/W E P/G 

Expert-N – CERES S RUE B/Gn T/DL/V EXP W/N E/S - R PM CN/P(3)/B RUE 7 R/Tx/Tn/Rd/RH/W C P 

Expert-N – GECROS D P-R/TE Gn/Prt T/DL/V EXP W/N E/S - R PM CN/P(3)/B RUE/TE 10 R/Tx/Tn/Rd/RH/W S P 

Expert-N – SPASS D P-R Gn/Prt T/DL/V EXP W/N E/S - R PM CN/P(3)/B RUE 5 R/Tx/Tn/Rd/RH/W C/S P 

Expert-N – SUCROS D P-R Prt T EXP W/N E/S - R PM CN/P(3)/B RUE 2 R/Tx/Tn/Rd/RH/W S P 

FASSET D RUE HI/B T/DL EXP W/N E/S - C MAK CN/P(6)/B RUE 14 R/Tx/Tn/Rd none P 

GLAM-Wheat S RUE/TE B/HI T/DL/V LIN W/H E R C PT none RUE/TE 22 R/Tx/Tn/Td/Ta/e none G 

HERMES D P-R Prt T/DL/V/O EXP W/N/A E/S - C 
PM/TW/

PT 
N/P(2) RUE/F 6 R/Tx/Tn/Rd/e/RH/W S/C P 

InfoCrop D RUE Prt/Gn T/DL EXP W/N/H E V/R C PM/PT CN/P(2)/B RUE/TE 10 R/Tx/Tn/Rd/W/e S P 

LINTUL-4 D RUE Prt/B T/DL LIN W/N/A E - C P N/P(0)* RUE/TE 4 R/Tx/Tn/Rd/e/W L P 

LINTUL-FAST D RUE Prt T/DL/V EXP W E - C PM CN/P(3) RUE/TE 4 R/Tx/Tn/Rd/RH L P 
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LPJmL S P-R HI_mws/B T/V EXP W E - C PT none F 3 R/Ta/Rd/Cl E G 

MCWLA-Wheat S P-R HI/B T/DL/V EXP W/H E V/ R R PM none F 7 R/Tx/Tn/Rd/e/W none G 

MONICA S RUE Prt T/DL/V/O EXP W/N/A/H E V C PM CN/P(6)/B F 15 R/Tx/Tn/Rd/RH/W H P 

O’Leary-model S TE Gn/Prt T/DL SIG W/N/H E/S V C P N/P(3)/B TE 18 R/Tx/Tn/Rd/RH/W none P 

SALUS S RUE Prt/HI T/DL/V EXP W/N/H E V C PT 
CN/P(3)/B(

2) 
RUE 18 R/Tx/Tn/Rd C P 

Sirius D RUE B/Prt T/DL/V EXP W/N E - C P/PT N/P(2) RUE 14 R/Tx/Tn/Rd/e/W none P 

SiriusQuality D RUE B/Prt T/DL/V EXP W/N S - C P/PT N/P(2) RUE 14 R/Tx/Tn/Rd/e/W I P 

STICS D RUE Gn/B T/DL/V/O SIG W/N/H E/S V/R C 
P/PT/ 

SW 
N/P(3)/B RUE/TE 15 R/Tx/Tn/Rd/e/W C P 

WOFOST D P-R Prt/B T/DL LIN W/N* E/S - C P P(1) RUE/TE 3 R/Tx/Tn/Rd/e/W S G 
a S, simple approach (e.g. LAI); D, detailed approach (e.g. canopy layers). 
b RUE, radiation use efficiency approach; P-R, gross photosynthesis – respiration; TE, transpiration efficiency biomass growth. 
c HI, fixed harvest index; B, total (above-ground) biomass; Gn, number of grains; Prt, partitioning during reproductive stages; HI_mw, harvest index modified by water stress. 
d T, temperature; DL, photoperiod (day length); V, vernalization; O, other water/nutrient stress effects considered. 
e LIN, linear, EXP, exponential, SIG, sigmoidal, Call, carbon allocation; O, other approaches. 
f W, water limitation; N, N limitation; A, aeration deficit stress; H, heat stress. 
g E, actual to potential evapotranspiration ratio; S, soil available water in root zone. 
h V, vegetative organ (source); R, reproductive organ (sink). 
i C, capacity approach; R, Richards approach. 
j P, Penman; PM, Penman-Monteith; PT, Priestley –Taylor; TW, Turc-Wendling; MAK, Makkink; HAR, Hargreaves; SW, Shuttleworth and Wallace (resistive model); EB, energy balance (“bold” indicates approached 

used during the study). 
kCN, CN model; N, N model; P(x), x number of organic matter pools; B, microbial biomass pool. 
l RUE, radiation use efficiency; TE, transpiration efficiency; GY, grain yield; CLN, critical leaf N concentration; F, Farquhar model. 
m Cl, cloudiness; R, precipitation; Tx, maximum daily temperature; Tn, minimum daily temperature; Ta, average daily temperature; Td, dew point temperature; Rd, radiation; e, vapor pressure; RH, relative humidity; W, 

wind speed. 
n C, CERES; L, LINTUL; E, EPIC; S, SUCROS; I, Sirius; H, HERMES. 
o P, point model; G, global or regional model (regarding the main purpose of model). 
* N-limited yields can be calculated for given soil N supply and N fertilizer applied, but model has no N simulation routines. 
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Supplementary Table S3. Field experiments, crop management and climate characteristics for baseline and a late 

century, high emission scenario (A2) used in partially calibrated and calibrated simulation experiments.  

  Experiment 

 
A

a
 B

b
 C

c
 D

d
 

Location Wageningen Balcarce New Delhi Wongan Hills 

Country The Netherlands Argentina India Australia 

Latitude 51.97 -37.5 28.38 -30.89 

Longitude 5.63 -58.3 77.12 116.72 

Environment 
high-yielding 

long-season 

high/medium-yielding 

medium-season 

irrigated short-

season 

low-yielding rain-fed 

short-season 

Average growing season November-July June-December November-April  May-December 

Soils 

    Soil type Silty clay loam Clay loam Sandy loam Loamy sand 

Maximum Root depth (cm) 200  130 160 210 

PAWC
†
 (mm to maximum 

rooting depth) 354 205 121 125 

Crop management 

    Cultivar Arminda Oasis HD 2009 Gamenya 

Sowing date (DOY
‡
) 294 223 328 164 

Total applied N fertilizer (kg 

N/ha) 
160 120 120 50 

Total irrigation (mm) 0 0 383 0 

Phenology 

    Anthesis (DOY) 178 328 49 275 

Maturity (DOY) 213 363 93 321 

Experimental year 1982/83 1992 1984/85 1984 

Mean growing season 

temperature 
8.8 °C 13.7 °C 17.3 °C 14.0 °C 

Mean growing season 

precipitation 
595 mm 336 mm 383 mm

*
 164 mm 

Baseline 

    Mean growing season 

temperature 
8.5 °C 12.0 °C 18.9 °C 16.2 °C 

Mean growing season 

precipitation 
716 mm 395 mm 467 mm* 246 mm 

Climate change scenario
**

 
    

GCM scenario examined ukmo_hadcm3 ncar_ccsm3.0 mpi_echam5 csiro_mk3.0 

Mean growing season 11.4 °C 14.2 °C 23.6 °C 18.7 °C 
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temperature 

Mean growing season 

precipitation 
690 mm 432 mm 583 mm* 164 mm 

†
Plant Available Water Content (PAWC, mm) 

‡
Day of Year (DOY) 

*
 Includes 383 mm of irrigation each year 

**A2 emission scenario from UKMO HadCM3 simulations, with 734 ppm CO2 at 2085 was assumed in the climate 

model and the crop model simulations. 

a
 Source: 

1
 

b
 Source: 

2
 

c
 Source: 

3
 

d
 Source: 

4
 

 

Sensitivity analysis with 30-years of climate data 

In addition to simulations of the single-year experiments, simulations were carried out with long-

term measured daily climate data (solar radiation, maximum and minimum temperature, 

precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure) using 

measured soil characteristics, measured initial soil water and soil N contents, crop management, 

measured anthesis and maturity dates from the single-year-experiments. For the baseline, daily 

climate data for the period 1980-2010 were used for all locations (31 years of climate data are 

required to simulate 30 years of yields in The Netherlands and India). For the location in India, 

solar radiation was obtained from the NASA/POWER dataset that extends back to 1983 

(http://power.larc.nasa.gov). Missing data for 1980 to 1983 were filled in using the Weatherman 

tool included in DSSAT 4.5
61

. In addition, 2-meter wind speed (m/s), dew point temperature 

(ºC), vapor pressure (hPa), and relative humidity (%) were estimated for each location from the 

NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA
62

). For the 

location in The Netherlands, measured wind speed and vapor pressure were available.  

Each of the 27 wheat models was used to simulate the field experiments in two separate steps, 1) 

with limited in-season information from the experiments being made available to the modelers 

(partial calibration or ‘blind’ simulations), and 2) all available information being made available 

to the modelers (full calibration). Simulations with partially calibrated models were included to 

allow a more objective model assessment
63

. For the partial calibration or ‘blind model test’, 
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modelers had no access to measurements of grain yield, biomass, and crop water and N 

dynamics, receiving information only on soil characteristics, initial soil-water conditions, daily 

weather data, crop management, and flowering and maturity dates. For full calibration, modelers 

had access to all available measurements, including within-season and final biomass, water and 

N uptake, soil water and soil N, grain yield and yield components.  

Note, some of these data may have been used, as part of a larger data set (NL and AU), for past 

calibration of some of the models. Furthermore, the organization of the project was such that one 

modeling group had access at all times to detailed data from all four sites, one group had access 

to NL and AU and one group had access to NL and did know the measurements beforehand. 

However, they did not change the model or parameters for the blind test as a consequence. 

The annual simulation outputs included: grain yield (t ha
-1

); above-ground biomass at anthesis 

(kg ha
-1

); above-ground biomass at maturity (kg ha
-1

); maximum leaf area index (LAI, m
2
 m

-2
); 

anthesis date (DOY); maturity date (DOY); cumulative N leached (kg N ha
-1

); cumulative water 

loss (mm); total above-ground N at anthesis (kg N ha
-1

); total above-ground N at maturity (kg N 

ha
-1

); grain N (kg N ha
-1

); grains per square meter (# m
-2

); cumulative ET (mm); cumulative N 

mineralization (kg N ha
-1

); cumulative N volatilization (kg N ha
-1

); cumulative N immobilization 

(kg N ha
-1

); cumulative N denitrification (kg N ha
-1

); plant available soil water to maximum 

rooting depth (mm); soil mineral N to maximum rooting depth (kg N ha
-1

).  

 

Data analysis (Fig. 1, 2 and 3a-d)  

The root mean square error (RMSE) between observed and simulated yield is calculated as: 

RMSE =               (1)                                                                                  

where  are the measurements, the simulations, and n is the number of comparisons.  

For the analysis in Fig. 1c, +/- 13.5% was used as the measurement uncertainty. That is the mean 

coefficient of variation (CV) for more than 300 wheat field experiments reported in Taylor et al. 

64
. For Fig. 2a-d, we define model response to changed climate as:  
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                (2) 

where  is predicted yield change according to model k,  is yield averaged over the 30 

years of future climate according to model k and is yield averaged over the 30 years of 

baseline climate according to model k. The coefficient of variation (CV%) of x represents the 

variation between models, calculated as:  

                                   (3) 

where   is the standard deviation of the yield changes (x) values and  is their average. 

Coefficients of variation were calculated separately for the partially calibrated models, the fully 

calibrated models, the 50% of fully calibrated models that have the smallest RMSE averaged 

over all locations and finally for each location the 50% of fully calibrated models (14 of 27) with 

the smallest RMSE for each particular location.  

The relative grain yield change in Fig. 3a-d was calculated as: 

                               (4) 

The box and whisker plots show the distribution of responses from the wheat models. The 

vertical line in each box represents the median response, the box delimits the 25
th

 to 75
th

 

percentiles, and the whiskers extend from the 10
th

 to the 90
th

 percentile. 
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Variation in model predictions of the effect of climate change in relation to calibration, soil and 

crop management (Fig. 2)  

For Fig. 2, the 30-year base line climate assumes a CO2 concentration of 360 ppm CO2 (mean of 

1995). The 30-year climate change scenario, an A2 emission scenario for 2070-2099 with 734 

ppm CO2 at 2085, was drawn from the single GCM that best represented the seasonal 

temperature and precipitation changes from the wider ensemble of GCMs at the given location 

(Supplementary Table S3). This emission scenario (A2) and future time period (2070-2099) was 

selected as one with extreme expected changes in temperature and precipitation over the next 

100 years for a sensitivity analysis. This ensured that the largest projected changes in climate are 

included in the model sensitivity analysis. The same local soil and crop management (except N 

and irrigation) was used for the baseline and sensitivity scenario. The crop management 

represents current practice at the selected locations, representative for the region of the location. 

Simulations were reset each year to the measured soil water and soil N contents from the field 

experiments before sowing to avoid carry-over effects. Dates for in-season crop management, N 

fertilizer (The Netherlands, India) and irrigation (India), were adjusted for phenology changes 

due to temperature changes in the sensitivity scenarios. An average application date was applied 

to each of the 30 years for each of the baseline, and sensitivity scenarios according to the mean 

temperature changes. 

To analyze the impact of different soils, soil properties were manipulated by creating a +/- 

20%
65, 66

 water-holding capacity at each location by changing the drained upper limit in each soil 

layer accordingly. To analyze the impact of different N-fertilizer management, N-fertilizer 

applications were varied by adjusting the N applications by +/-50% relative to the local crop 

management practice. To analyze the impact of sowing dates, the sowing dates were shifted 20 

days earlier and 20 days later than the locally practiced sowing date.  

 

Variation in model predictions (Fig. 3a-d) 

The sensitivity analysis of Fig. 3 was carried out with 26 of the 27 wheat models (one modeling 

group was not able to carry out the sensitivity analysis), using the fully calibrated models. The 

relative yield changes are calculated as in eq. (4). The future weather scenarios use the baseline 
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weather with temperature changes of -3°, 0°C, +3°C, +6°C or +9°C and CO2 concentrations in 

90 ppm increments from 360 ppm to 720 ppm (see Supplementary Table S4).  Temperature 

changes were added to daily minimum and maximum temperature as used in the models. In 

addition to the scenarios presented in Fig. 2, scenarios with changes in N fertilization 

(Supplementary Table S4) and some specific combinations of changes in future climate and crop 

management (Supplementary Table S5) were tested.   

 

Supplementary Table S4. Variable combinations altered in the sensitivity experiment
†
. All temperature by CO2 

combinations were simulated. +/-N was applied to all CO2 changes, but not in combination with temperature.  

Variable Change 

       

Baseline weather with 

Temperature
‡
 

 

-3°C 

 

0°  C 

 

+3°C 

 

+6°C 

 

+9°C  

      

Baseline weather with      

CO2 concentration 360 ppm 450 ppm 540 ppm 630 ppm 720 ppm 

      

Baseline weather with      

N
*
 100% 50% 150%   

† 
Carried out with 26 crop models (one modeling group was not able to participate in this analysis) for the four 

locations with 30 years. Changes were applied to 30-year baseline weather data (1981-2010).   

‡ 
Note, Tmax and Tmin were changed simultaneously for each day and all the temperatures are offsets from baseline 

temperature. 

* Six crop models do not simulate N dynamics.  
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Supplementary Table S5. Climate-by-crop-management experiments
†
. 

Description 

Baseline (360 ppm) + 7 days of Tmax=35 
o
C start at measured anthesis date

x
 

Baseline (360 ppm) - 20 days in sowing date 

Baseline (360 ppm) + 20 days in sowing date 

Baseline (360 ppm) - 20% PAW
‡
 of soil 

Baseline (360 ppm) + 20% PAW
‡
 of soil 

A2-End-of-Century scenario** 734 ppm - 20 days in sowing date 

A2- End-of-Century scenario** 734 ppm + 20 days in sowing date 

A2- End-of-Century scenario** 734 ppm   50% N fertilizer
*
 

A2- End-of-Century scenario** 734 ppm  150% N fertilizer
*
 

A2- End-of-Century scenario** 734 ppm - 20% PAW of soil 

A2- End-of-Century scenario** 734 ppm + 20% PAW of soil 

†
Carried out with 26 crop models (one modeling group was not able to participate in this analysis) for the four 

locations with 30 years. Changes were applied to 30-year baseline weather data (1981-2010).   

x
Baseline temperatures were modified by including a maximum temperature of 35°C for 7 days starting at measured 

anthesis date for each location. If baseline temperatures exceeded 35°C, values were not adjusted.  

‡
PAW - Plant available water holding capacity of a soil. PAW was reduced or increased by 20% by changing the 

drain upper limit of the soil.  

*Six models do not include N dynamics. 

**Modified baseline climate series for each location according to GCM scenario listed in Table S3 to represent A2 

End-of-Century (2070-2099) scenarios; 734 ppm CO2 represents 2085 concentration from A2 scenario. 

 

Observed impact of elevated CO2 and temperature (Fig. 3e) 

Fig. 3e in the main paper is based on the following data: Several FACE experiments in the USA, 

Germany and China have reported an 8 to 26 % grain yield increase with elevated atmospheric 

CO2 concentrations of 550 ppm compared with 360 ppm
67-72

. Similarly, an average 3 to 10% 

wheat grain yield decline per 1
o
C increase in mean temperature has been reported across several 

experiments
67, 73

, though there is some evidence that the impact of temperature change on grain 

yield might be non-linear
74

. Acknowledging this, but for simplicity here, the reported impacts 
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were linearly extrapolated in Fig. 3e to +3
o
C to allow for a general comparison with the 

simulation results in Fig. 3a-d.  

 

Calculation of required number of models to reduce uncertainty (Fig. 4a) 

Figure 4a is based on a sensitivity analysis with five temperature levels and five CO2 

concentrations at 100% N (Supplementary Table S4). We evaluated how variable the results 

would be if the number of models varied from m=1 to m=26 (one of the 27 models was not used 

in the sensitivity analysis). For each value of m, and for each site, we drew at random 260 

combinations of model results (10 times the number of models, each representing a model) and 

calculated CV%. A typical result is shown in Supplementary Figure S1 for one of the locations, 

India. Such analysis was carried out for each location. The smallest m such that CV% < 13.5% 

(which is the experimental variation reported by Taylor et al.
64

) is the number of models 

reported.  The average value of m across the four study locations is presented in Fig. 4a.  

 

India: +3oC & 450ppm
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Supplementary Figure | S1. Illustration of calculated coefficient of variation (CV%) of simulated yield responses 

to a combination of temperature and CO2 changes (+3 
o
C and 450 ppm) as a function of the number of average 

model responses randomly selected 260 times from the model results (calibrated models) for India. Vertical green 

line indicates number of models chosen in this case, i.e. the smallest number of models below the 13.5 CV% after 

Taylor et al.
64

. 
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Comparing uncertainties of crop and General Circulation Models (Fig. 4b) 

A scenario representing a A2 emission scenario for the 2040-2069 period (also referred to as 

2050s, Mid- Century, 556 ppm of CO2) from the ensemble of 16 General Circulation Models 

(GCM) (Supplementary Table S6) was used by 26 wheat models (one modeling group was not 

able to carry out this analysis). 30-year mean climatologies from each GCM were calculated for 

each month and the Mid-Century grid boxes corresponding to the four experimental locations 

were compared to the same grid box in the baseline period (1980-2009). The resulting monthly 

changes  (aggregated to growing season means in Supplementary Table S7, but applied here on a 

monthly basis) were then imposed on the observed 30-year daily baseline climate series 

baselines following the so-called “delta change approach”
75

.  

Each crop model simulated each of the 16 GCM scenarios. The 30-year mean absolute impacts 

of the scenarios were calculated (30-year scenario mean minus 30-year baseline mean). Standard 

deviations were calculated for the absolute yield impacts separately across crop models and 

across the GCM’s by using the model results from the 10
th

 percentile to the 90
th

 percentile of 

simulations based on multi-models (i.e. considering the 0-10
th

 and 90-100
th

 percentiles as 

outliers, consistent with the whisker plots used here).  Standard deviations were used to calculate 

the coefficients of variation (CV%, equation 3) by using the observed grain yields from each 

location (supplied in Figure 4b) as basis for the calculation of CV to be directly comparable with 

observed data shown in Figure 1.  

 

Supplementary Table S6: Sixteen General Circulation Models (GCM) models from CMIP3 General 

Circulation Models analyzed
76

 used for climate changes scenarios. 

  

GCM 

scenario 

GCM  GCM source 

A bccr_bcm2.0 Bjerknes Centre for Climate Research, Norway 

B cccma_cgcm3.1(T63) Canadian Centre for Climate Modeling  and Analysis, Canada 

C cnrm_cm3 
CERFACS, Center National Weather Research , METEO-FRANCE, 

France 
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D csiro_mk3.0 CSIRO Atmospheric Research, Australia 

E gfdl_cm2.0 Geophysical Fluid Dynamics Laboratory, USA 

F gfdl_cm2.1 Geophysical Fluid Dynamics Laboratory, USA 

G giss_modelE_r NASA Goddard Institute for Space Studies, USA 

H Inmcm3.0 Institute for Numerical Mathematics, Russia 

I ipsl_cm4 Institute Pierre Simon Laplace, France 

J miroc3.2 (medium resolution) 

Center for Climate System Research; National Institute for 

Environmental Studies; Frontier Research Center for Global Change, 

Japan 

K miub_echo_g Meteorological Institute of the University of Bonn, Germany 

L mpi_echam5 Max Planck Institute for Meteorology, Germany 

M mri_cgcm2.3.2a Meteorological Research Institute, Japan 

N ncar_ccsm3.0 National Center for Atmospheric Research, USA 

O ncar_pcm1 National Center for Atmospheric Research, USA 

P ukmo_hadcm3 Hadley Centre for Climate Prediction, Met Office, UK 

 

 

Supplementary Table S7: Projected change in mean growing-season temperature and percentage change in mean 

growing-season precipitation at each location for A2-2040-2069 (Mid- Century) scenarios from 16 GCMs.  

Location Wageningen Balcarce New Delhi 
Wongan 

Hills 

Country 
The 

Netherlands 
Argentina India Australia  

     
GCM 

scenario Change in mean growing season
†
 temperature (

o
C) 

A 1.56 1.26 1.58 1.24 

B 1.39 1.01 2.63 1.85 

C 1.67 1.29 2.12 1.56 

D 1.33 1.01 1.62 1.51 

E 1.52 1.27 3.00 1.55 
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F 1.12 1.01 2.22 1.50 

G 1.84 0.84 2.13 1.88 

H 1.44 1.37 2.95 1.34 

I 2.14 1.33 2.42 1.84 

J 1.96 1.33 2.17 1.51 

K 1.20 1.13 1.73 1.53 

L 1.46 0.77 2.20 1.54 

M 1.28 1.19 1.65 1.30 

N 1.96 1.33 2.22 2.23 

O 1.06 1.00 1.53 1.03 

P 1.22 1.60 2.42 1.84 

     GCM 

scenario Change in mean growing season
†
 precipitation (%) 

A 8.7 10.4 -18.7 -14.1 

B 6.3 0.4 -9.1 -23.3 

C 2.3 1.7 -31.3 -21.5 

D 16.8 12.4 6.5 -24.5 

E 1.8 -8.3 -40.1 -29.2 

F 2.2 -7.2 46.2 -24.2 

G -1.1 2.1 -2.3 -15.5 

H 12.2 0.9 10.4 -19.1 

I -7.8 -14.3 -0.2 -21.4 

J 2.5 -2.4 -6.7 -8.8 

K 6.5 -5.1 27.7 -19.0 

L -1.4 -3.5 13.7 -22.8 

M 4.4 -2.8 57.2 5.9 

N 0.9 -4.9 12.0 -7.5 

O 4.6 -0.7 -12.2 -12.9 

P -3.8 3.3 68.1 15.6 

†
Current growing season length. See Supplementary Table S3 for location specific growing season periods. 
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Supplementary Results 

Precipitation impact 

The simulated 30-year baseline yields were used to analyze the impact of growing-season 

precipitation changes on simulated yields. After sorting years according to mean seasonal 

temperature, yields from the mid-temperature tercile of the 30-year baselines for each location 

(except India which received irrigation) were selected to minimize a temperature effect, and 

compared with the yield from the year with the mean precipitation of this tercile. Years with 

about +10 and +25% higher growing-season precipitation and years with -10 and -25% less 

growing-season precipitation than the median of the mid-tercile were selected to calculate yield 

impacts from precipitation differences (i.e. difference in yield from year with +10, +25% higher 

precipitation, -10 and -25% less growing-season precipitation and the yield of the median 

precipitation year of the mid-temperature tercile. Growing-season precipitation differences had 

an impact on simulated yield but showed little impact on the variation in simulated yield change 

due to precipitation changes (Supplementary Fig. S2). 
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Supplementary Fig. S2. Simulated relative grain yield difference (change) for an increase (+10 and +25%) and a 

decrease (-10, -25%) in growing-season precipitation for the rain-fed sites a) The Netherlands (NL), b) Argentina 

(AR) and c) Australia (AU). For each box plot, vertical lines represent, from left to right, the 10
th

 percentile, 25
th

 

percentile, median, 75
th

 percentile and 90
th

 percentile of simulations based on multi-models. 
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High temperature impact 

Increased temperatures had an impact on simulated anthesis and maturity dates (Supplementary 

Fig. S3), which in turn affect simulated growth and grain yields.  

 

-80 -60 -40 -20 0 20 40-80 -60 -40 -20 0 20 40

T
e
m

p
e
ra

tu
re

 c
h

a
n

g
e
 (

o
C

)

+3

+6

+3

+6

a) NL

Simulated change (days)

c) IN

+3

+6

+3

+6

T
e
m

p
e
ra

tu
re

 c
h

a
n

g
e
 (

o
C

)

A
n

th
e
s
is

 D
a
te

s
M

a
tu

ri
ty

 D
a
te

s
A

n
th

e
s
is

 D
a
te

s
M

a
tu

ri
ty

 D
a
te

s

b) AR

d) AU

 

Supplementary Fig. S3. Simulated changes in anthesis and maturity dates with increased temperatures of +3
o
C 

(red) and +6
o
C (yellow). For each box plot, vertical lines represent, from left to right, the 10

th 
percentile, 25

th
 

percentile, median, 75
th

 percentile and 90
th

 percentile of simulations based on multi-models. 
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The scenario with seven consecutive days of Tmax of 35 
o
C at the mean anthesis date for each 

location is one of the special simulation experiments (Supplementary Table S5). The impact of 

this scenario is shown in Supplementary Fig. S4, indicating that some of the increased variation 

with increasing temperature in Fig. 3 is due to the contribution of variation in modeling heat 

stress impact on yields (Supplementary Fig. S4).  

Simulated relative heat impact (%)
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Supplementary Fig. S4. Simulated yield change from seven days of introduced Tmax of 35 
o
C at the mean anthesis 

date for each location. For each box plot, vertical lines represent, from left to right, the 10
th 

percentile, 25
th

 

percentile, median, 75
th

 percentile and 90
th

 percentile of simulations based on multi-models. Symbols indicate 

results from models which account for heat stress impact (see Supplementary Table S2, column 9) 
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Temperature by CO2 impact  

 

 

 

Supplementary Fig. S5: Response surfaces of crop model ensemble to temperature and atmospheric CO2 

concentration sensitivity tests at a) the Netherlands, b) Argentina, c) India, and d) Australia.  The filled 

colours represent the median (across the 26 crop models) 30-year mean yield change (as a percentage of 

the mean 30-year yield for the 1981-2010 baseline period) for each of the sensitivity experiments (dots) as 

well as an emulated surface fit to these dots.  The gray colours represent the standard deviation (across the 

26 crop models) of the 30-year mean yield change (percentage of the 30-year mean baseline yield), with 

the outlines of the dots representing the experiments and the contours representing an emulated surface fit 

to these experimental standard deviations.    

 

Response emulators for median yield change and the standard deviation of yield change (across 

the 26 crop models) were fit assuming a quadratic form (Supplementary Fig. S5): 
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E(T,[CO2]) = a + bT + cT
2
 + d[CO2] + e[CO2]

 2
 + fT[CO2] + g (T[CO2])

2 

where E(T,CO2) is the emulated response at a given temperature change T and CO2 

concentration ([CO2]) and parameters a-g are fit using a least-squares fit. 

 

The results indicate that the general pattern of yield sensitivities and their uncertainties is 

consistent from region to region, although the magnitude of the sensitivities varies from site to 

site.  Yields tend to be decreased at higher temperature and increased at higher CO2 

concentration; however, at high temperatures the CO2 benefits are reduced (Supplementary Fig. 

S5).  As the ensemble of crop models is tested with climates that are increasingly dissimilar from 

the baseline period (e.g. very hot and with high CO2), uncertainty also increases.  This effect is 

strongest in Australia (where the baseline climate is hot and dry) and weakest in The Netherlands 

(where the baseline climate is cool and wet).   
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