promoting access to White Rose research papers

Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/

This is the author's post-print version of an article published in **Forest Ecology** and **Management**, **310**

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/id/eprint/77906

Published article:

Goodman, RC, Phillips, OL, Del Castillo Torres, D, Freitas, L, Cortese, ST, Monteagudo, A and Baker, TR (2013) *Amazon palm biomass and allometry*. Forest Ecology and Management, 310. 994 - 1004. ISSN 0378-1127

http://dx.doi.org/10.1016/j.foreco.2013.09.045

White Rose Research Online eprints@whiterose.ac.uk

1	Amazon palm biomass and allometry
2	
3	Rosa C. Goodman ^a *, Oliver L. Phillips ^a , Dennis del Castillo Torres ^b , Luis Freitas ^b , Sebastián
4	Tapia Cortese ^c , Abel Monteagudo ^{d,e} , and Timothy R. Baker ^a
5	
6	^a School of Geography, University of Leeds, Leeds, UK LS2 9JT
7	^b Instituto de Investigaciones de la Amazonía Peruana (IIAP), Iquitos, Perú
8	^c Foro de Etnobiología, Lima, Perú
9	^d Herbario Vargas, Universidad Nacional San Antonio Abad del Cusco, Cusco, Perú
10	^e Proyecto Flora del Perú, Jardín Botánico de Missouri, Oxapampa, Perú
11	
12	* Corresponding author. Tel: +44 11334 39448;
13	E-mail addresses: rosa.goodman@gmail.com (R. C. Goodman), O.Phillips@leeds.ac.uk (O. L.
14	Phillips), ddelcastillo@iiap.org.pe (D. del Castillo Torres), lfreitas@iiap.org.pe (L. Freitas),
15	sebastian.tac@gmail.com (S. Tapia Cortese), monteagudomendoza@yahoo.com (A.
16	Monteagudo), and T.R.Baker@leeds.ac.uk (T. R. Baker)
17	

18 Abstract

19 Palms (family Arecaceae) are abundant in Amazonian forests, but the allometry of these 20 monocotyledonous plants remains poorly quantified. Woody palm biomass is most commonly 21 estimated with dicotyledonous tree models, which leaves substantial uncertainty as to their true 22 biomass and productivity. We developed the first extensive dataset of directly-measured 23 arborescent palm biomass: 136 individuals from nine species in *terra firme* and wetland forests 24 —Astrocaryum murumuru, Attalea phalerata, Bactris gasipaes, Euterpe precatoria, Iriartea 25 deltoidea, Mauritia flexuosa, Mauritiella aculeata, Oenocarpus bataua, and Socratea exorrhiza. 26 We created single species (n = 8-21) and family-level (n = 97-106) allometric equations, using 27 diameter, stem height, total height, and stem dry mass fraction, to estimate (i) total aboveground 28 biomass for all species, (ii) belowground biomass for the two wetland species (Mauritia and 29 Mauritiella), and (iii) leaf mass for all species. These new palm models were then applied to nine 30 1-ha plots in the southwestern Amazon (Tambopata) to calculate the impact on forest biomass 31 estimates once palm mass is estimated with palm-specific models, rather than from models 32 created for dicot trees. We found that stem height was the best predictor variable for arborescent 33 palm biomass, but the relationship between stem height and biomass differed among species. 34 Most species showed weak biomass-diameter relationships, but a significant relationship could 35 be identified across all species. The new palm models were better estimators of palm mass than 36 existing dicot models. Using our species-level models increased estimates of palm biomass at our 37 study site by 14-27 %, compared to using recently published pantropical biomass models for trees. In other forests, the effect of using these palm equations on biomass estimates will depend 38 39 on palm sizes, abundance, and species composition.

40

41 Key words: Arecaceae, equations, Iriartea, Mauritia, leaf mass, productivity, tropical forest

42 **1 Introduction**

43 Palms (family Arecaceae or Palmae) are an ancient part of tropical ecosystems (Bremer et 44 al., 2004) and one of the most widespread and ecologically diverse plant families (Tomlinson, 45 2006; Eiserhardt et al., 2011). They play major roles in ecosystem processes (Peters et al., 2004; 46 LaFrankie and Saw, 2005) and local livelihoods (May et al., 1985; Johnson, 1996; Runk, 1998). 47 Arecaceae is one of the most heavily used plant families for non-timber forest products with 48 multiple applications in indigenous and rural activities, mostly associated with food, fibres, 49 animal fodder, and construction (Peters et al., 1989; Phillips and Gentry, 1993; Johnson, 1996; 50 Zambrana et al., 2007).

51 Nearly 2,400 species of palms occur across the Neotropics, Africa, and Asia (Govaerts and 52 Dransfield, 2005). Within the Neotropics, palms are most abundant in western Amazonia and 53 Central America (Kahn et al., 1988; Terborgh and Andresen, 1998; Montufar and Pintaud, 2006; 54 Eiserhardt et al., 2011). They are less prevalent in other regions but still occur, especially in forests with frequent inundation (Kahn et al., 1988; Terborgh and Andresen, 1998) and soils with 55 56 poor physical properties, such as shallow rooting depth (Emilio et al., 2013). Arecaceae is the 57 single most abundant arborescent plant family in western Amazonian forests, in both terra firme 58 and flooded forests (Terborgh and Andresen, 1998). In some forests, palms have been found to 59 represent over two-thirds of stems with diameter $(D) \ge 10$ cm (Terborgh and Andresen, 1998) or 60 nearly 100 % of stand biomass (Brown, 1997). Indeed, some species, such as Mauritia flexuosa, 61 can establish nearly mono-dominant stands ('aguajales'; Kahn and Mejia, 1990) and are an 62 integral part of many carbon-rich swamp ecosystems (Lahteenoja et al., 2009).

63 Despite their importance, there are no explicit studies of carbon stocks and dynamics of 64 palms. While many models have been developed to estimate the biomass of dicotyledonous 65 (dicot) trees (e.g., Brown et al., 1989; Baker et al., 2004; Chave et al., 2005; Basuki et al., 2009; 66 Alvarez et al., 2012; Feldpausch et al., 2012), there are few available to estimate palm biomass. 67 Thus, most stand-level and macro-ecological studies use dicot models to estimate palm mass (e.g., Malhi et al., 2004; Phillips et al., 2008; Baccini et al., 2012) or stem basal area to assess 68 69 aboveground biomass (AGB) changes (e.g., Lewis et al., 2004; Malhi et al., 2004). The 70 productivity of palms has also been poorly studied, and palms have even been described as a 71 'missing term' in coarse woody productivity assessments (Malhi et al., 2009). For example, palm 72 leaves are often not included in litterfall assessments even though they may contribute

substantially, and palm fruit productivity may be severely underestimated because they do not fit
into standard leaf litter traps (Chave et al., 2010). Overall, these factors lead to substantial
uncertainty in AGB stocks and productivity in areas where palms are prevalent.

76 Estimates of palm biomass and stem productivity made from dicot models are likely to be 77 inaccurate, especially when using D and wood density (ρ) , because the two groups of plants have 78 very distinct growth patterns and internal properties. Palms are monocotyledons which grow in 79 height but lack secondary (diameter) growth (Rich et al., 1986; Tomlinson, 2006). Thus, many 80 species have weak or no relationship between height and diameter (Rich et al., 1986). The 81 internal stem structure is also very different in palms (Parthasarathy and Klotz, 1976), with 82 higher density and stiffness towards the peripheries and base of the stem (Rich, 1987b), and 83 'wood' density in Arecaceae is generally lower than in dicot families (Chave et al., 2009; Zanne 84 et al., 2009). Furthermore, palms lack branches, which can contribute substantially to dicot 85 biomass (Goodman et al., in press). This suggests that palm biomass may be overestimated by 86 dicot equations, but this has yet to be tested on directly-measured palm biomass data.

87 The lack of palm biomass equations is puzzling: there are still no broadly accepted or 88 applicable equations to estimate their mass. The few existing palm models are created for a 89 single species and often do not cover a wide range of sizes. Most palm models appear in 90 technical reports or other unpublished works (Hughes, 1997; Delaney et al., 1999; Brown et al., 91 2001; Freitas et al., 2006; Sierra et al., 2007; Kumar and Russell, unpublished, cited in Kumar, 92 2011). The only three peer-reviewed publications we could locate were each developed for a 93 single species in a particular environment: Prestoea montana in sub-montane Puerto Rico 94 (Frangi and Lugo, 1985), oil palm (*Elaeis guineensis*) under commercial cultivation (Thenkabail 95 et al., 2004), and *Oenocarpus bataua* in a transition zone from lowland to premontane forests in 96 Colombia (Sierra et al., 2007). One mixed-species model has been developed but only for very 97 small individuals, $1 \le \text{height} \le 1.5 \text{ m}$ (Sierra et al., 2007). There is clearly a strong need to 98 develop more widely applicable equations to estimate the biomass and productivity of this 99 prevalent and important plant group.

Similarly, there has been no rigorous examination of the most appropriate form of palm allometric relationships. Most models are built with the simple form: biomass = a + bx (Frangi and Lugo, 1985; Thenkabail et al., 2004; Kumar and Russell, unpublished, cited in Kumar, 2011), but plant allometric relationships do not usually follow this simple linear relationship

104 (e.g., West et al., 1997; Chave et al., 2005). Stem height is the most commonly used predictor 105 variable (x) for palm mass (Frangi and Lugo, 1985; Delaney et al., 1999; Brown et al., 2001; 106 Thenkabail et al., 2004; Sierra et al., 2007), but others have used total height (Frangi and Lugo, 107 1985), diameter (Hughes, 1997), or age (Kumar and Russell, unpublished, cited in Kumar, 2011) 108 to estimate palm biomass. Brown (1997) suggested that palm biomass could be estimated using height and D as if palms were cylinders (i.e., D^2H), multiplied by wood density, and added to a 109 110 term accounting for leaves, but this approach has yet to be applied. Estimating AGB with compound variable $\rho D^2 H$ and a form factor to account for stem taper is common for dicots 111 112 (Chave et al., 2005; Feldpausch et al., 2012) but may be particularly appropriate for palm 113 allometry because they lack branches. Non-linear relationships between biomass and the 114 predictor variable(s) —such as with a power-law, as has been suggested on theoretical grounds 115 (West et al., 1997)— have also not been comprehensively tested.

116 Because palms exhibit primary (height) growth nearly independently of diameter and stems 117 taper little, we expect that that (i) height will be highly predictive of palm biomass, and (ii) palm mass should be approximately proportional to its volume calculated as a cylindrical form with D^2 118 119 and total or stem height. Furthermore, because palm 'wood' density can vary 10-fold between 120 species and even within individuals (Rich, 1987b), we expect that a variable accounting for 121 density or moisture content will be necessary to include in mixed-species models. Our specific 122 objectives are to (i) create single species and family-level models for arborescent palms using a 123 variety of simple and compound predictor variables and model forms and then (ii) examine the 124 impact of applying new palm models on forest biomass estimates in a well-studied western 125 Amazonian site where arborescent palms are common.

126 2 Materials and methods

127 2.1 Species selection and study area

Species or genera were selected to include the six most dominant arborescent palm species in the Amazon —*Iriartea deltoidea*, *Attalea butyracea*, *Oenocarpus bataua*, *Euterpe precatoria*, *Socratea exorrhiza*, and *Astrocaryum murumuru* (Emilio et al., 2013)— and two prominent species in wetland forests, *Mauritia flexuosa* and *Mauritiella* spp. (Kahn, 1991; Roucoux et al., 2013). We focus on arborescent palms because these are included in most forest inventories ($D \ge$ 10 cm). 134 Palms were harvested from mature forests in western Amazonia. In 2006, *Mauritia*

135 *flexuosa* and *Mauritiella aculeata* were harvested and weighed in wetlands within the Pacaya–

Samiria National Reserve in Loreto, Peru. In 2011, biomass data were collected from seven
species in *terra firme*, moist tropical forests within a forestry concession in Madre de Dios, Peru

138 (Table 1).

139 2.2 Data collection

140 In total, 136 arborescent palms from nine species were individually measured, harvested, 141 and weighed in 2006 and 2011 (Table 1). Similar methods were used throughout. Sampling was 142 designed to represent the entire range of stem heights exhibited by each species. In Madre de 143 Dios, individuals from each species were selected within a 100-m radius of dicot trees harvested 144 in a concurrent study (Goodman et al., in press), and the first individual encountered to fulfil the 145 stem height criteria was selected so that there was no bias towards any certain form or structural 146 integrity. Before harvesting, D was measured at 1.3 m or above the highest root and total height 147 (H_{tot}) was measured from the ground to the highest point of the highest leaf. After felling, stem 148 height (H_{stem}) was measured from ground level to the point where the first (lowest) leaf parted 149 from the stem. All leaves were counted, and, in the Madre de Dios dataset, the length of three 150 randomly-selected leaves was measured from the base of the rachis to the tip of the terminal 151 leaflet.

152 Fresh mass of all plant parts was measured in the field immediately after felling. 153 Aboveground parts were divided into aboveground roots, stem, leaves (petiole, rachis, and 154 leaflets), and other parts (flowers, fruits, bracts, etc), and measured in the field with a 250 kg 155 capacity scale with 0.1 kg precision. In Loreto, belowground roots were also sampled following 156 Gallardo-Ordinola (2001). Fine roots were sampled from eight soil cores (10 cm diameter and 90 157 cm deep). Four cores were excavated from each of two directions extending 80 cm from the base 158 of the stem at 90° . The entire main root was then extracted using a 3-ton hand winch and 159 weighed (Freitas et al., 2006).

160 Stem samples were collected from 3–4 individuals per species (except *Bactris*, n = 2) to 161 estimate moisture content. In Madre de Dios, samples were collected from individuals in the 162 lower, middle, and upper height classes per species; and three samples were collected from each 163 individual —at the base, middle, and top of each stem (Table A.1). In Loreto, three individuals 164 were randomly selected, and one stem sample was collected from each individual. In Madre de 165 Dios, we collected a composite leaf sample consisting of one leaf sample from each species 166 including the rachis and attached leaflets. In Loreto, leaves were sampled from three individuals 167 per species. Fresh mass of each sample was measured immediately in the field. Samples were 168 then air-dried and transported to a drying oven. In this study, we did not measure ρ directly 169 because volume measurement errors would have been virtually unavoidable. Measuring volume 170 by water displacement would have relied upon doing so immediately, which was not possible in 171 the field, and estimating volume by calliper or ruler measurements would have been inaccurate 172 due to uneven edges and thickness of the sample cut.

173 [Table 1]

174 2.3 Laboratory work and data preparation

175 Stem samples were dried at 101 °C and leaf samples at 65 °C (Williamson and Wiemann, 176 2010), and dry mass was recorded after three consecutive days of constant mass with a digital 177 scale with 1 mg precision. Dry mass fraction (*dmf*) was calculated as the proportion of dry mass 178 per unit fresh mass (dry mass/ fresh mass or 1 – moisture content). Individual mean dmf was 179 calculated as the mean of three samples taken at different points along the stem (Table A.1), and 180 species mean *dmf* was calculated as the average of individual means (Table 2). Carbon content 181 was determined for Mauritiella and Mauritia by calorimetry (Segura-Madrigal, 1997) at 182 Universidad Nacional Agraria La Molina, Lima, Peru. To test whether *dmf* is a better 183 explanatory variable than wood density, we followed the established practice of assigning ρ 184 values to each individual species to the finest taxonomy available according the Global Wood 185 Density Database (Chave et al., 2009; Zanne et al., 2009).

186 Stem, root, and leaf dry mass of every individual in the database was calculated as fresh 187 mass \times *dmf*, where *dmf* is mean *dmf* for each tissue for each species (Table 2). Mean individual 188 leaf mass was calculated by dividing total leaf mass by the number of leaves.

189 2.4 Model development and evaluation

All species were arborescent with a single stem and multiple leaves. Because of their simple growth form (no or very little diameter growth and no branches), models were created using H_{stem} , H_{tot} , and two compound variables based on the premise that palms are nearly cylindrical (D^2H_{tot} and D^2H_{stem}). Single-species models to estimate AGB were created for each species, except *Bactris gasipaes* (n = 3), and to estimate belowground biomass for *Mauritia* and *Mauritiella*. Given the ubiquity of forest inventories measuring *D* only, we also attempted tocreate models to estimate AGB without any height variable.

197 To create family-level equations, data from all species were combined. A subset of data 198 —the individuals from which stem *dmf* samples were taken (n = 27)— were excluded to test the 199 developed models. We used the same five variables as the single-species equations, plus four additional compound variables, $dmfD^2H_{tot}$ and $dmfD^2H_{stem}$, ρD^2H_{tot} , ρD^2H_{stem} , where dmf is the 200 201 species mean *dmf* of the stem determined in this study and ρ is 'wood' density for species, genus, 202 or family obtained from Global Wood Density Database (Chave et al., 2009; Zanne et al., 2009). 203 Finally, we created a mixed-species regression model to estimate mean leaf mass from leaf 204 length.

205 For each explanatory variable, we tested five model forms: simple linear, third-order 206 polynomial, exponential, logarithmic, and power. In several instances, variables in the linear 207 models had to be transformed to satisfy the assumption of equal variance and normality of the 208 residuals. Non-significant terms were removed via backwards elimination. All models were built 209 using the linear model function (lm) in R, version 2.15.1. For family-level models, we also 210 performed a generalised linear model (glm) analysis using the final linear model and species to 211 test whether the slope and intercept terms were significantly different between species (e.g., 212 AGB~D+Species). However, because no *a priori* factor —such as habitat or phylogeny— could 213 explain species differences, we included all species in the final equations to make them the most broadly-applicable possible. We evaluated models based on coefficient of determination (R^2) . 214 215 residual standard error (RSE), and Akaike information criterion (AIC), when comparable.

216 Next, all family-level models were evaluated against the test data (n = 27) to examine their 217 suitability. For the test data, dry mass was calculated from the directly-measured *dmf* and fresh 218 mass and of each individual (Table A.1). Finally, we used the full directly measured palm 219 biomass dataset (n = 136) to both further evaluate the recommended models and to assist the interpretation of the forest plot analysis. A correction factor, $exp(RSE^2/2)$, was applied to 220 221 biomass estimates from logarithmically transformed models (Baskerville, 1972). We examined 222 the errors produced by the recommended species-level models, selected family models, and two 223 dicot equations (Feldpausch et al., 2012). Errors (kg) were calculated on the original scale as 224 mass_{predicted} – mass_{observed}, and relative errors (%) were calculated as error/mass_{observed} \times 100 %. 225 We compared the equations based on mean error, mean % error (mean error / mean AGB × 100

226 %), and mean and standard deviation of relative errors. Overall predictability was assessed by

standard deviation of the relative errors (Chave et al., 2005), and R^2 was calculated on the

228 original scale as $1 - (SS_{error} / SS_{total})$.

229 2.5 Implications for forest biomass

230 To explore the implications of using new palm models on palm and forest biomass 231 estimates in western Amazonia, we estimated stand level AGB density on nine, 1-ha permanent plots within the Tambopata National Reserve in Madre de Dios, Peru (12.8° S, 69.3°W). Plots 232 233 were established between 1979 and 2010 and have been recensused every 2–3 years by 234 RAINFOR researchers (Malhi et al., 2002). All individuals with $D \ge 10$ cm are included in the 235 inventories and have been botanically identified. In 2011, D of all individuals was remeasured, 236 and data were obtained from the ForestPlots.net database on 2 August 2012 (Lopez-Gonzalez et 237 al., 2011; Lopez-Gonzalez et al., 2012). For this study, total and stem heights were measured on 238 all palms with a laser hypsometer (Nikon Forestry 550) during the same year.

239 We estimated AGB using two published dicot and four new palm models. First, we used 240 two new pantropical biomass models (Feldpausch et al., 2012) using ρ and D only (Feld 1) and ρ , 241 D, and estimated H (Feld 2) to estimate AGB of all trees and palms. Total height was estimated 242 from D using the Weibull model for western Amazonia (Table 3 in Feldpausch et al., 2012). 243 Next, we recalculated AGB of all palms using the recommended species-level models and three 244 family-level models (Table 3). For species without a specific model (Astrocaryum gratum, 245 Attalea butyracea, A. cephalotes, A. maripa, and O. mapora; 7.4 % of all palms), we used the 246 model for the same genus. Each of the new palm estimates were compared to estimates made by 247 the two dicot models at the stand level.

248 **3 Results**

249 3.1 Architecture and internal properties

For most species, height-diameter relationships were weak and height could not be predicted from *D* (Figure 1A). Some species had a broad range of heights across a broad range of diameters with very little relationship between the two (*Astrocaryum* and *Attalea*); the two wetland species had a broad range of heights over a very narrow range of diameters (*Mauritia* and *Mauritiella*); others were clustered with very narrow height and diameter ranges (*Oenocarpus* and *Socratea*); while height and diameter were clearly related for *Euterpe* and

256 Iriartea.

257 Dry mass fraction varied between species (Table 2), among individuals of the same 258 species, and along the stem of the same individual (Appendix, Table A.1). There appeared to be 259 a slight negative relationship between *dmf* and height at which the sample was collected (i.e., *dmf* 260 greatest at base) and a very slight positive relationship between mean stem *dmf* and the height of 261 the individual (i.e., mean *dmf* greater in taller individuals). However, no significant relationships 262 could be determined, so we calculated individual *dmf* as the mean of the three samples taken 263 along each stem and species-level *dmf* as the simple mean of the three individuals per species. 264 Mean *dmf* was consistently higher for leaf tissue than stem or root tissues (Table 2). Carbon 265 fraction was usually slightly < 50 % of dry mass in *Mauritia* and *Mauritiella* and similar 266 between the two species in stem and root tissues, but it was more variable and slightly higher and 267 in leaf tissue.

Individual AGB varied across more than three orders of magnitude, from as little as 0.7 kg to as much as 1231 kg. AGB generally increases with stem diameter when all species are combined (Figure 1B), but within a species AGB is more strongly related to stem height (Figure 1C). Belowground root biomass contributed 13–780 kg in *Mauritia* and *Mauritiella*, representing 13–47 % of total plant dry mass. Mean leaf mass varied by over an order of magnitude between species, ranging from 0.2 kg leaf⁻¹ in *Bactris* to 14.2 kg leaf⁻¹ in *Oenocarpus* (Table 2).

275 3.2 Species-level models

Single-species models performed well, with $R^2 > 0.90$ for most species (Table 3, Figure 2). 276 277 Height was the key variable to estimate AGB, and including D added little to or even worsened 278 model performance. Models with H_{stem} alone were better than those with the compound variable $D^2 H_{stem}$ for most of species, and models with H_{tot} alone were always better than those with $D^2 H_{tot}$ 279 280 (Table A.2). Models with only D were only significant for Euterpe, Iriartea, and Socratea. For 281 all other species, AGB could not be estimated from D alone. The recommended models, one for 282 each species, are listed in Table 3. Other models, with different predictor variables, are available 283 in Table A.2. 284 [Table 3]

- 285 [Figure 2]
- 286 3.3 Family-level models

- 287 The transformed model with compound term $dmfD^2H_{stem}$ best estimated AGB of all species
- (Table 3). This model was selected as best from the metrics used to evaluate built models $(R^2,$
- 289 RSE, AIC; Table A.3) and performed well against the test data (Table A.4). Separating these
- 290 variables in a logarithmically-transformed additive model did not improve model performance.
- 291 One individual with no stem ($H_{stem} = 0$ m) had to be removed as an outlier; thus, these models are 292 only valid for individuals with $H_{stem} \ge 1$ m.
- The best family-level model $(dmfD^2H_{stem})$ showed some differences between species, but the glm analysis revealed that slope and intercept were only significantly different for only one species each (*Astrocaryum* and *Mauritia*, respectively; P < 0.05). This model generally underestimated AGB for *Astrocaryum*, *Attalea*, *Mauritia*, and *Oenocarpus* and overestimated mass for *Bactris*, *Euterpe*, *Iriartea*, *Mauritiella*, and *Socratea* (Figure 3A).

298 To permit palm biomass estimation from inventories that have not measured H_{stem} , we explored the use of other predictor variables. Visible trends were observed between AGB and D, 299 H_{tot} , and $D^2 H_{tot}$, but the relationships were subject to outliers or anomalies (Figure A.1). Thus, 300 301 we had to remove outliers, and the resulting equations are only valid within the given range 302 (Table 3). Models with just D, or D and *dmf*, performed reasonably well but are only valid for 303 individuals with diameters between 6 and 40 cm and stem heights > 3 m. Prediction errors from 304 these models showed few differences between species, except that *Mauritia* was almost always 305 underestimated and *Iriartea* with D < 22 cm was usually overestimated (Figure 3B,C). The compound variable $D^2 H_{tot}$ was especially prone to producing outliers when individuals have very 306 307 short stems with tall leaves or short stems with large diameters: three Attalea and one 308 *Oenocarpus* were identified as such, all of which had $H_{stem} \leq 3$ m and $H_{tot} < 5$ m. Models with 309 H_{tot} had a tendency to overestimate AGB of shorter individuals and underestimate taller 310 individuals (data not shown). For both pairs, the models with dmf(D+dmf and $H_{tot}+dmf$) were 311 significantly better than the model with D or H_{tot} alone (P < 0.05). We also tested models with ρ 312 instead of dmf, but ρ was never significant. Likewise, models with a compound predictor variable using ρ never performed as well as those with dmf (i.e., $\rho D^2 H_{stem}$ vs. $dmf D^2 H_{stem}$), so we do not 313 314 report models with ρ .

Leaf mass can be estimated from leaf length (Table 3). We present a mixed species model, created from *Astrocaryum, Attalea, Bactris, Euterpe, Oenocarpus*, and *Socratea*. However, 317 *Iriartea* leaves showed a very clear, and significantly different, relationship between leaf mass

and length, so we have reported separate results for this species (Figure A.2).

319 [Figure 3]

320 3.4 Model evaluation

321 Comparing model predictions to the subset of test data, the recommended family model 322 with the compound term $dmfD^2H_{stem}$ had the lowest bias (mean % error = 0.2 %), but another 323 model using the log-transformed compound variable with total height ($dmfD^2H_{tot}$) performed best 324 by all other criteria (Table A.4). All family-level models performed reasonably well, except the 325 models with H_{tot} and H_{tot} +dmf (Table A.4).

326 Testing model estimates against the full biomass dataset (n = 136), the species model estimates were always best, followed by the family-level $dmfD^2H_{stem}$ model (Table A.5). The two 327 328 models without any height variable, D and D+dmf, and the two dicot models all overestimated AGB and performed very poorly when applied to the full biomass dataset (-0.184 $\leq R^2 \leq 0.145$). 329 330 However, when the dataset was reduced to only the individuals for which all models were valid 331 $(H_{stem} > 3 \text{ m and } 6 \le D < 40 \text{ cm}; n = 125)$, results for the recommended species and family model 332 estimates changed little, but estimates from the palm and dicot models without measured height improved substantially (0.548 $\leq R^2 \leq$ 0.615; Table A.5). The species-level and Feld 1 models 333 334 slightly overestimated AGB (mean % error = 3 and 6 %, respectively), the recommended familylevel and Feld 2 models slightly underestimated AGB (mean % error = -5 and -7 %. 335 336 respectively), while the D and D+dmf model estimates were nearly neutral (mean % error = 0.6 337 and -0.03, respectively). By nearly all metrics, all palm models were better estimators of palm 338 AGB than the dicot models.

339 The dicot models were poor estimators of individual palm AGB, with errors ranging from 340 -844 to +1651 kg. Whether each one over- or underestimates palm mass was largely dependent 341 upon species, diameter, and stem height. The magnitude of errors increased considerably with 342 diameter, but the direction of errors was largely dependent on stem height (Figure 4). The dicot 343 models typically overestimated AGB of palms with short stems but underestimated AGB of 344 taller stemmed individuals. This crossover occurred at $H_{stem} c$. 14 and 15 m for the Feld 1 and 2 345 models, respectively. Prediction errors between species are consistent between the two dicot 346 models, but the Feld 2 model estimates were usually lower. Both dicot models tended to 347 overestimate AGB of Astrocaryum, Oenocarpus, and any palm with D > 40 cm and to

348 underestimate AGB of *Mauritia*, *Socratea*, most palms with $H_{stem} > 15$ m, and all palms with

349 $H_{stem} > 22 \text{ m}.$

350 [Figure 4]

351 **3.5 Implications for forest biomass**

352 Across the nine plots in Tambopata, palms represented between 3 and 32 % of all stems (D 353 > 10 cm) and, based on species-level equations, contributed from 5 to 43 Mg of above ground 354 biomass per hectare. The two dicot models yielded different AGB estimates, for both trees and 355 palms the Feld 2 (with estimated height) estimates were lower than the Feld 1 estimates (Table 356 4). Using estimates from the recommended species models (Table 3), palm AGB density in the 357 nine plots was on average 29 or 40 % greater than would have been estimated with the Feld 1 358 and 2 dicot models, respectively. However, plot means may be artificially large due to large 359 relative differences in two plots with very low palm presence (TAM05 and TAM07; Table 4). 360 Thus, if palm biomass on all plots is combined as one unit, the overall difference in palm mass 361 across all nine plots is 14 or 27 % greater than Feld 1 and 2 estimates, respectively. Total AGB 362 density estimates of the whole stand (i.e., dicot trees and palms combined) were between 1 and 2 363 % greater than the Feld models (Table 4).

Stand-level palm AGB estimated from the other three palm models was usually lower than the species-level palm model estimates. Among the family-level equations, the model with *D* only yielded the most similar results to the species-level estimates, followed by the $dmfD^2H_{stem}$ model, but the *D*+*dmf* model produced much lower estimates. In some plots the family-level models gave lower AGB estimates than did the dicot models, but across all plots palm AGB is still higher than would have been estimating using dicot models (Table 4).

370 [Table 4]

371 4 Discussion

372 4.1 Architecture and intrinsic properties

Our data appear to have captured several different growth patterns of arborescent palms, as demonstrated by the differing relationships between diameter, height, and AGB among species (Figures 1 and A.1). These differing allometries have implications for the best single- and mixedspecies biomass models. For example, *Iriartea* (Rich, 1987a), *Socratea* (Rich et al., 1986), and *Euterpe* (Avalos and Fernandez Otarola, 2010) can continue to increase in diameter via sustained cell expansion (Rich, 1987a; Renninger and Phillips, 2012), and as a result these are the same three genera for which we were able to estimate AGB from *D* alone. For other genera, such as *Mauritiella*, stem diameter is virtually the same at every height, so including *D* in allometric
equations adds little or no explanatory value.

382 Variable moisture content between species, between individuals of the same species, and 383 within a single stem make it difficult to determine the exact dry mass of palms. As with stem 384 density (Rich, 1987b), dry mass fraction tends to be greatest at the base and decreases along the 385 stem. Mean stem *dmf* may also increase with increasing stem height, as reported by Rich 386 (1987b), perhaps because cell walls thicken with age (Rich, 1987a; Tomlinson, 2006). 387 Nonetheless, our data show that using species mean *dmf* values works well. Using the test data, 388 the differences in dry mass estimates, when calculated from fresh mass and either species mean 389 dmf or dmf measured for each individual, are very small: the mean difference between the two 390 calculations was only 2.5 kg or 1.9 %. Therefore, we consider the results reported here to be 391 reliable and to represent an advance in improving palm biomass estimates. When utilising these models, values for *dmf* can be found in Table 2. For the genera included in this study, we 392 393 recommend using mean stem *dmf* for the respective taxon and the overall mean (0.370) for all 394 other genera.

395 **4.2** New models

396 As hypothesised, height was always a very important parameter to consider in palm 397 biomass equations. Total height was sometimes a better estimator than stem height. However, 398 total height is likely to be a less reliable measurement than stem height, as it can be subjective 399 and often difficult to measure if only one leaf is extending upwards. Thus, we recommended the second best model for each of these species, which includes H_{stem} in all cases. Estimating palm 400 mass using compound variables ($D^2 H_{stem}$ or $D^2 H_{tot}$) was often not necessary for single-species 401 402 models but was best for family-level models because H-D relationships differed between 403 species. As expected, accounting for dry mass fraction also improved mixed-species model 404 estimates, and *dmf* was a better variable than ρ to account for internal species differences, perhaps because of the difficulty of measuring palm ρ accurately. 405

406 There proved to be a reasonable relationship between these two variables when all species 407 were combined, and family-level models with *D* alone or D+dmf performed remarkably well 408 given the weak relationship of diameter with biomass at the species-level. These models 409 appeared to be unbiased when tested on the full biomass dataset and in plot estimates. However,

410 these models should be applied with caution, as estimates made outside the diameter and height 411 ranges used to build the models can be erroneous (Table A.5). We provide species- and family-412 level palm models with a variety of input data to accommodate existing inventories, and these 413 models could be used to create new palm biomass estimates from existing forest inventory data 414 (i.e., D and species). These estimates would be more accurate than estimates from dicot 415 equations, but estimates from palm models including height would be far more accurate (Tables 416 A.4, A.5). Likewise, because AGB could not usually be predicted from D within a single species, 417 it is likely that the relationship between AGB and D within an individual is also unreliable and, 418 therefore, that productivity of individual palm trees should preferably also be estimated from 419 models that include stem height or total height.

420 4.3 Implications for forest biomass

421 Contrary to our expectations, palm biomass estimates were greater in each of the nine plots 422 examined when applying our most reliable palm equations, compared to palm biomass estimated 423 from standard dicot models. Although palms do not have branches or relatively dense stems, they 424 often weigh more than dicot trees at small diameters because they can be much taller (Rich et al., 425 1986). As a result, AGB of many tall palms with small diameters can be underestimated by the 426 dicot models (Figure 4). Evaluating model estimates on our directly-measured biomass dataset 427 could not fully reflect this because the destructive dataset was designed to create reliable 428 regression models across a broad range of sizes, and, thus, includes a higher proportion of short stemmed individuals than inventoried in mature forests in Tambopata ($D \ge 10$ cm). Mean H_{stem} of 429 430 palms in the forest plots (15.3 m) was slightly greater than in the biomass dataset (12.7 m) and 431 above the limit at which dicot models underestimate AGB of most palms (14–15 m). The effect 432 of using new palm biomass models will also likely be determined by the species composition and 433 the interaction between size and composition. In Tambopata, for example, *Iriartea deltoidea* 434 makes up 54% of all registered palms with $D \ge 10$ cm, followed by *Euterpe precatoria* (14 %), 435 Socratea exorrhiza (12%), and Mauritia flexuosa (7%). In the destructive biomass dataset, the 436 dicot models estimated AGB of *Iriartea* moderately well but consistently underestimated AGB 437 of Socratea and Mauritia (Figure 4). Thus, palm AGB estimates may be considerably higher 438 than previously estimated in stands where these species, especially *Mauritia flexuosa*, are 439 dominant. Conversely, new palm equations may slightly reduce AGB estimates, as compared to 440 dicot model estimates, in forests where *Oenocarpus bataua* is the major palm component, such

441 as in central Amazonia (Emilio et al., 2013), or in stands where the palm population is dominated
442 by shorter individuals (Kahn and Mejia, 1990).

443 Our results show higher palm AGB density estimates in plots than would have been 444 estimated from dicot equations, but the magnitude of this increase depends on the palm equation 445 used to estimate AGB. When tested on the directly-measured biomass dataset, the species models slightly overestimated AGB but the recommended family-level model ($dmfD^2H_{stem}$; 446 447 Table 3) underestimated AGB by a greater amount. Likewise, the Tambopata plot estimates were 448 greater using the species-level models than this family model. Thus, the true 'increase' in palm 449 AGB is likely to be in between these estimates but closer to the species model estimates. The 450 overall differences (when all plots are combined) in palm AGB estimates between the two palm 451 estimates discussed above are similar. Thus, despite some sensitivity to the palm model used, 452 true palm AGB in Tambopata is greater than would have been estimated by dicot equations.

This dataset and new models do not, however, represent small palms, nor do they capture the reproductive parts of mature individuals. Though stemless and juvenile palms can be abundant in some ecosystems (Kahn and Mejia, 1990), they are not generally included in forest inventories and contribute little to forest biomass (Nascimento and Laurance, 2002). We also found that although palm leaves are large, they weigh little compared to the woody tissues. Because no individuals in the biomass dataset were fruiting at the time of harvest, these estimates do not accurately account for reproductive parts.

These new palm biomass equations should have multiple applications and facilitate more accurate estimates of carbon stocks and cycling in tropical forests. Though increases in whole forest estimates are locally small (0.9–1.8 % at Tambopata), this increase could be expected to impact total carbon stock estimates in tropical forests more broadly, particularly in forests with hydromorphic soils. These models may also finally assist accurate quantification of above- and belowground carbon stocks of the palm community in the extensive, carbon-rich peat ecosystems which cover *c*. 150,000 km² in Amazonia (Lahteenoja et al., 2009).

These new equations can also be used to improve palm productivity estimates. Palm stem productivity may also be greater than previously estimated by dicot models using diameter —as commonly measured in permanent plot inventories— because palms grow in height with little or no corresponding increase in stem diameter (Rich et al., 1986). Estimating leaf mass by either the species mean or leaf length will allow researchers to account for litterfall from palms, which is 472 usually ignored due to the technical difficulties of sampling palm leaf fall (Chave et al., 2010). 473 Though other structures, such as inflorescences, bracts, and fruits, can contribute substantially to 474 forest productivity (Phillips, 1993), they still remain poorly quantified or ignored in 475 comprehensive studies (Chave et al., 2010; Malhi et al., in press). These 'missing terms' in forest 476 productivity estimates (Malhi et al., 2009) need to be incorporated, particularly as they can be 477 expected to vary substantially in space and time. For example, because palms are more abundant 478 in the western Amazon (Kahn et al., 1988; Terborgh and Andresen, 1998; Eiserhardt et al., 479 2011), it is possible that the magnitude of increase in aboveground forest productivity from east 480 to west across Amazonia may be even greater than previously considered (Malhi et al., 2004; 481 Aragão et al., 2009; Quesada et al., 2012).

482 5

Conclusions and future directions

483 This study is the first to create a comprehensive dataset of arborescent palms and family-484 level allometric equations to estimate aboveground biomass. We report both single- and mixed-485 species models with a variety of input variables to accommodate different forest inventory 486 methods. Single species models estimated palm biomass very well, as does the recommended family-level model with $dm f D^2 H_{stem}$. The family-level models without a height variable provide 487 488 unbiased estimates of palm AGB, but should be applied with caution. With these new models, 489 we can finally estimate palm biomass and productivity more reliably. When equations were 490 applied to forest plots at one location in western Amazonia, palm biomass density was on 491 average 14 or 27 % greater than would have been estimated using two pantropical biomass 492 models for dicot trees. In other forests, the effect of new palm equations on plot biomass 493 estimates will depend on palm sizes, abundance, and species composition. The magnitude of 494 palm productivity and carbon cycling fluxes will also likely be greater than previously estimated 495 by dicot models, but the magnitude of this effect has yet to be formally explored. We recommend 496 that palm stem height should be measured in future inventories to accurately estimate palm 497 biomass and, especially, biomass changes in this important forest component.

498 6 Acknowledgements

499 This project was financially supported by School of Geography at University of Leeds, 500 World Wildlife Fund (WWF)–Peru, and by Moore Foundation and US Forest Service grants to 501 of the Amazon Forest Inventory Network (RAINFOR). In-kind support has been provided by 502 Maderacre, Instituto de Investigaciones de la Amazonía Peruana (IIAP), and WWF in Puerto

504 RAINFOR and ForestPlots.net. For their logistical support during field work, we thank Nelson 505 Gutierrez, Juan Carlos Riveros, and Cecilia Alvarez at WWF-Peru and Ronald Corvera at IIAP 506 in Puerto Maldonado. We extend specials thanks to Cesar Vela, Sebastian Tapia, Erasmo 507 Otárola, Carlos Linares, Percy Martínez, Gustavo Adolfo, Joel Millward-Hopkins, Amador 508 Pfuro, and all the field assistants for their hard work during the field campaign. RCG was 509 supported by the Fully-funded International Research Scholarship from University of Leeds 510 during the research. OLP is supported by an Advanced Grant from the European Research 511 Council and a Royal Society Wolfson Research Merit Award. All fieldwork was conducted with 512 permits from the Dirección General Forestal y de Fauna Silvestre within the Peruvian Ministry of

Maldonado. We thank Gabriela Lopez-Gonzalez for providing plot inventory data from

513 Agriculture.

503

514 **7 References**

- 515 Alvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, I., Lema, A.,
- 516 Moreno, F., Orrego, S., Rodríguez, L., 2012. Tree above-ground biomass allometries for carbon
- 517 stocks estimation in the natural forests of Colombia. For. Ecol. Manage. 267, 297-308.
- 518 Aragão, L.E.O.C., Malhi, Y., Metcalfe, D.B., Silva-Espejo, J.E., Jimenez, E., Navarrete, D.,
- 519 Almeida, S., Costa, A.C.L., Salinas, N., Phillips, O.L., Anderson, L.O., Alvarez, E., Baker, T.R.,
- 520 Goncalvez, P.H., Huaman-Ovalle, J., Mamani-Solorzano, M., Meir, P., Monteagudo, A., Patino,
- 521 S., Penuela, M.C., Prieto, A., Quesada, C.A., Rozas-Davila, A., Rudas, A., Silva, J.A., Vasquez,
- 522 R., 2009. Above- and below-ground net primary productivity across ten Amazonian forests on
- 523 contrasting soils. Biogeosciences 6, 2759-2778.
- 524 Avalos, G., Fernandez Otarola, M., 2010. Allometry and stilt root structure of the neotropical
- palm *Euterpe precatoria* (Arecaceae) across sites and successional stages. Am. J. Bot. 97, 388394.
- 527 Baccini, A., Goetz, S.J., Walker, W.S., Laporte, N.T., Sun, M., Sulla-Menashe, D., Hackler, J.,
- 528 Beck, P.S.A., Dubayah, R., Friedl, M.A., Samanta, S., Houghton, R.A., 2012. Estimated carbon
- 529 dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim.
- 530 Change 2, 182-185.
- 531 Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen,
- 532 T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L., Lloyd, J., Monteagudo, A., Neill, D.A.,

- 533 Patino, S., Pitman, N.C.A., Silva, J.N.M., Martinez, R.V., 2004. Variation in wood density
- determines spatial patterns in Amazonian forest biomass. Global Change Biol. 10, 545-562.
- 535 Baskerville, G.L., 1972. Use of logarithmic regression in the estimation of plant biomass. Can. J.
- 536 For. Res./Rev. Can. Rech. For. 2, 49-53.
- 537 Basuki, T.M., van Laake, P.E., Skidmore, A.K., Hussin, Y.A., 2009. Allometric equations for
- estimating the above-ground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manage.257, 1684-1694.
- 540 Bremer, K., Friis, E.M., Bremer, B., 2004. Molecular phylogenetic dating of asterid flowering
- 541 plants shows early Cretaceous diversification. Syst. Biol. 53, 496-505.
- 542 Brown, S., 1997. Estimating Biomass and Biomass Change of Tropical Forests: a Primer In.
- 543 Food and Agriculture Organization of the United Nations, p. 55.
- 544 Brown, S., Delaney, M., Shoch, D., 2001. Carbon monitoring, analysis, and status report for the
- 545 Rio Bravo Carbon Sequestration Pilot Project. In, Report to the Programme for Belize. Report to
- 546 the Programme for Belize, Winrock International, Arlington, VA, USA.
- 547 Brown, S., Gillespie, A.J.R., Lugo, A.E., 1989. Biomass estimation methods for tropical forests
- 548 with applications to forest inventory data For. Sci. 35, 881-902.
- 549 Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Folster, H.,
- 550 Fromard, F., Higuchi, N., Kira, T., Lescure, J.P., Nelson, B.W., Ogawa, H., Puig, H., Riera, B.,
- 551 Yamakura, T., 2005. Tree allometry and improved estimation of carbon stocks and balance in
- tropical forests. Oecologia 145, 87-99.
- 553 Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., 2009. Towards a
- 554 worldwide wood economics spectrum. Ecol. Lett. 12, 351-366.
- 555 Chave, J., Navarrete, D., Almeida, S., Alvarez, E., Aragao, L.E.O.C., Bonal, D., Chatelet, P.,
- 556 Silva-Espejo, J.E., Goret, J.Y., von Hildebrand, P., Jimenez, E., Patino, S., Penuela, M.C.,
- 557 Phillips, O.L., Stevenson, P., Malhi, Y., 2010. Regional and seasonal patterns of litterfall in
- tropical South America. Biogeosciences 7, 43-55.
- 559 Delaney, M., Brown, S., Powell, M., 1999. Carbon-Offset Report for the Noel Kempff Climate
- 560 Action Project, Bolivia. In. Report to The Nature Conservancy, Winrock International,
- 561 Arlington, VA, USA.

- 562 Eiserhardt, W.L., Svenning, J.-C., Kissling, W.D., Balslev, H., 2011. Geographical ecology of
- 563 the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Ann.
- 564 Bot. 108, 1391-1416.
- Emilio, T., Quesada, C.A., Costa, F.R.C., Magnusson, W.E., Schietti, J., Feldpausch, T.R., 565
- 566 Brienen, R.J.W., Baker, T.R., Chave, J., Álvarez, E., Araújo, A., Bánki, O., Castilho, C.V.,
- 567 Honorio C, E.N., Killeen, T.J., Malhi, Y., Oblitas Mendoza, E.M., Monteagudo, A., Neill, D.,
- 568 Alexander Parada, G., Peña-Cruz, A., Ramirez-Angulo, H., Schwarz, M., Silveira, M., ter
- 569 Steege, H., Terborgh, J.W., Thomas, R., Torres-Lezama, A., Vilanova, E., Phillips, O.L., 2013.
- 570 Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecol. Div., 1-571 15.
- 572 Feldpausch, T.R., Lloyd, J., Lewis, S.L., Brienen, R.J.W., Gloor, M., Monteagudo Mendoza, A.,
- 573 Lopez-Gonzalez, G., Banin, L., Abu Salim, K., Affum-Baffoe, K., Alexiades, M., Almeida, S.,
- 574 Amaral, I., Andrade, A., Aragao, L.E.O.C., Araujo Murakami, A., Arets, E.J.M.M., Arroyo, L.,
- 575 Aymard, G.A., Baker, T.R., Banki, O.S., Berry, N.J., Cardozo, N., Chave, J., Comiskey, J.A.,
- 576 Alvarez, E., de Oliveira, A., Di Fiore, A., Djagbletey, G., Domingues, T.F., Erwin, T.L.,
- 577 Fearnside, P.M., Franca, M.B., Freitas, M.A., Higuchi, N., Honorio, E., Iida, Y., Jimenez, E.,
- 578 Kassim, A.R., Killeen, T.J., Laurance, W.F., Lovett, J.C., Malhi, Y., Marimon, B.S., Marimon-
- 579 Junior, B.H., Lenza, E., Marshall, A.R., Mendoza, C., Metcalfe, D.J., Mitchard, E.T.A., Neill,
- 580 D.A., Nelson, B.W., Nilus, R., Nogueira, E.M., Parada, A., Peh, K.S.H., Pena Cruz, A., Penuela,
- 581 M.C., Pitman, N.C.A., Prieto, A., Quesada, C.A., Ramirez, F., Ramirez-Angulo, H., Reitsma,
- 582 J.M., Rudas, A., Saiz, G., Salomao, R.P., Schwarz, M., Silva, N., Silva-Espejo, J.E., Silveira, M.,
- 583 Sonke, B., Stropp, J., Taedoumg, H.E., Tan, S., ter Steege, H., Terborgh, J., Torello-Raventos,
- 584 M., van der Heijden, G.M.F., Vasquez, R., Vilanova, E., Vos, V.A., White, L., Willcock, S.,
- 585 Woell, H., Phillips, O.L., 2012. Tree height integrated into pantropical forest biomass estimates.

Frangi, J.L., Lugo, A.E., 1985. Ecosystem dynamics of a sub-tropical floodplain forest. Ecol.

- 588 Monogr. 55, 351-369.

586

587

Biogeosciences 9, 3381-3403.

- 589 Freitas, L., Otárola, E., del Castillo Torres, D., Linares, C., Martínez, C., Malca, G.A., 2006.
- 590 Servicios Ambientales de Carbono y Secuestro de Carbono de Ecosistema Aguajal en la Reserva
- 591 Nacional Pacaya Samiria, Loreto - Perú In. Instituto de Investigaciones de la Amazonía Peruana
- 592 (IIAP), Iquitos, Perú.

- 593 Gallardo-Ordinola, J.L.E., Luizão, F.J., Fernandes, E.C., Wandelli, E., Afonso Meira, R., 2001.
- 594 Root carbon and nutrient stocks in central Amazonian abandoned pastures and agroforestry
- 595 systems. In. INPA-Ecology, Cornell University and EMBRAPA-CPAA.
- 596 Goodman, R.C., Phillips, O.L., Baker, T.R., in press. The importance of crown dimensions to
- 597 improve tropical tree biomass estimates. Ecol. Appl.
- 598 Govaerts, R., Dransfield, J., 2005. World checklist of palms. Royal Botanic Gardens, Kew,
- 599 Richmond, UK.
- Hughes, R.F., 1997. Effects of deforestation and land use on biomass, carbon, and nutrient pools
- 601 in the Los Tuxtlas Region, Mexico. In, Department of Forest Science. Oregon State University,
- 602 Corvallis, Oregon, p. 105.
- 503 Johnson, D. (Ed.), 1996. Palms: Their Conservation And Sustained Utilization. IUCN, World
- 604 Conservation Union, Gland, Switzerland.
- Kahn, F., 1991. Palms as key swamp forest resources in Amazonia. For. Ecol. Manage. 38, 133-142.
- 607 Kahn, F., Mejia, K., 1990. Palm communities in wetland forest ecosystems of Peruvian
- 608 Amazonia. For. Ecol. Manage. 33-4, 169-179.
- Kahn, F., Mejia, K., Decastro, A., 1988. Species richness and density of palms in terra firme
- 610 forests of Amazonia. Biotropica 20, 266-269.
- 611 Kumar, B.M., 2011. Species richness and aboveground carbon stocks in the homegardens of
- 612 central Kerala, India. Agric. Ecosyst. Environ. 140, 430-440.
- 613 LaFrankie, J.V., Saw, L.G., 2005. The understorey palm Licuala (Arecaceae) suppresses tree
- regeneration in a lowland forest in Asia. J. Trop. Ecol. 21, 703-706.
- 615 Lahteenoja, O., Ruokolainen, K., Schulman, L., Oinonen, M., 2009. Amazonian peatlands: an
- 616 ignored C sink and potential source. Global Change Biol. 15, 2311-2320.
- 617 Lewis, S.L., Phillips, O.L., Baker, T.R., Lloyd, J., Malhi, Y., Almeida, S., Higuchi, N., Laurance,
- 618 W.F., Neill, D.A., Silva, J.N.M., Terborgh, J., Lezama, A.T., Vásquez Martinez, R., Brown, S.,
- 619 Chave, J., Kuebler, C., Núñez Vargas, P., Vinceti, B., 2004. Concerted changes in tropical forest
- 620 structure and dynamics: evidence from 50 South American long-term plots. Philos. Trans. R.
- 621 Soc. Lond., Ser. B: Biol. Sci. 359, 421-436.
- 622 Lopez-Gonzalez, G., Lewis, S.L., Burkitt, M., Baker, T.R., Phillips, O.L., 2012.
- 623 <u>www.forestplots.net</u>. In. ForestPlots.net Database.

- 624 Lopez-Gonzalez, G., Lewis, S.L., Burkitt, M., Phillips, O.L., 2011. ForestPlots.net: a web
- application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 22,626 610-613.
- 627 Malhi, Y., Aragao, L., Metcalfe, D.B., Paiva, R., Quesada, C.A., Almeida, S., Anderson, L.,
- 628 Brando, P., Chambers, J.Q., da Costa, A.C.L., Hutyra, L.R., Oliveira, P., Patino, S., Pyle, E.H.,
- 629 Robertson, A.L., Teixeira, L.M., 2009. Comprehensive assessment of carbon productivity,
- allocation and storage in three Amazonian forests. Global Change Biol. 15, 1255-1274.
- Malhi, Y., Baker, T.R., Phillips, O.L., Almeida, S., Alvarez, E., Arroyo, L., Chave, J., Czimczik,
- 632 C.I., Di Fiore, A., Higuchi, N., Killeen, T.J., Laurance, S.G., Laurance, W.F., Lewis, S.L.,
- 633 Montoya, L.M.M., Monteagudo, A., Neill, D.A., Vargas, P.N., Patino, S., Pitman, N.C.A.,
- 634 Quesada, C.A., Salomao, R., Silva, J.N.M., Lezama, A.T., Martinez, R.V., Terborgh, J., Vinceti,
- B., Lloyd, J., 2004. The above-ground coarse wood productivity of 104 Neotropical forest plots.
- 636 Global Change Biol. 10, 563-591.
- 637 Malhi, Y., Farfán Amézquita, F., Doughty, C.E., Silva-Espejo, J.E., Girardin, C.A.J., Metcalfe,
- 638 D.B., Aragão, L.E.O.C., Huaraca-Quispe, L.P., Alzamora-Taype, I., Eguiluz-Mora, L.,
- 639 Marthews, T.R., Halladay, K., Quesada, C.A., Robertson, A.L., Fisher, J.B., Zaragoza-Castells,
- 540 J., Rojas-Villagra, C.M., Pelaez-Tapia, Y., Salinas, N., Meir, P., Phillips, O.L., in press. The
- 641 productivity, metabolism and carbon cycle of two lowland tropical forest plots in SW Amazonia,
- 642 Peru. Plant Ecol. Div.
- Malhi, Y., Phillips, O.L., Lloyd, J., Baker, T., Wright, J., Almeida, S., Arroyo, L., Frederiksen,
- T., Grace, J., Higuchi, N., Killeen, T., Laurance, W.F., Leano, C., Lewis, S., Meir, P.,
- Monteagudo, A., Neill, D., Vargas, P.N., Panfil, S.N., Patino, S., Pitman, N., Quesada, C.A.,
- 646 Rudas-Ll, A., Salomao, R., Saleska, S., Silva, N., Silveira, M., Sombroek, W.G., Valencia, R.,
- 647 Martinez, R.V., Vieira, I.C.G., Vinceti, B., 2002. An international network to monitor the
- 648 structure, composition and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 13, 439-
- 649 450.
- May, P.H., Anderson, A.B., Balick, M.J., Frazao, J.M.F., 1985. Subsistence benefits from the
- Babassu palm (Orbignya martiana). Econ. Bot. 39, 113-129.
- Montufar, R., Pintaud, J.-C., 2006. Variation in species composition, abundance and
- 653 microhabitat preferences among western Amazonian terra firme palm communities. Bot. J. Linn.
- 654 Soc. 151, 127-140.

- 655 Nascimento, H.E.M., Laurance, W.F., 2002. Total aboveground biomass in central Amazonian
- rainforests: a landscape-scale study. For. Ecol. Manage. 168, 311-321.
- 657 Parthasarathy, M.V., Klotz, L.H., 1976. Palm "wood" .1. Anatomical aspects. Wood Sci.
- 658 Technol. 10, 215-229.
- 659 Peters, C.M., Balick, M.J., Kahn, F., Anderson, A.B., 1989. Oligarchic forests of economic
- plants in Amazonia utilization and conservation of an important tropical resource. Conserv.Biol. 3, 341-349.
- 662 Peters, H.A., Pauw, A., Silman, M.R., Terborgh, J.W., 2004. Failing palm fronds structure
- Amazonian rainforest sapling communities. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 271, S367-S369.
- Phillips, O., 1993. The potential for harvesting fruits in tropical rainforests: new data fromAmazonian Peru. Biodivers. Conserv. 2, 18-38.
- 667 Phillips, O., Gentry, A., 1993. The useful plants of Tambopata, Peru: I. Statistical hypotheses
- tests with a new quantitative technique. Econ. Bot. 47, 15-32.
- 669 Phillips, O., Higuchi, N., Vieira, S., Baker, T.R., Chao, K.J., Lewis, S.L., 2008. Changes in
- Amazonian Forest Biomass, Dynamics, and Composition, 1980–2002. Geoph. Monog. Series186, 373-387.
- 672 Quesada, C.A., Phillips, O.L., Schwarz, M., Czimczik, C.I., Baker, T.R., Patino, S., Fyllas, N.M.,
- Hodnett, M.G., Herrera, R., Almeida, S., Alvarez Davila, E., Arneth, A., Arroyo, L., Chao, K.J.,
- 674 Dezzeo, N., Erwin, T., di Fiore, A., Higuchi, N., Honorio Coronado, E., Jimenez, E.M., Killeen,
- T., Lezama, A.T., Lloyd, G., Lopez-Gonzalez, G., Luizao, F.J., Malhi, Y., Monteagudo, A.,
- Neill, D.A., Nunez Vargas, P., Paiva, R., Peacock, J., Penuela, M.C., Pena Cruz, A., Pitman, N.,
- 677 Priante Filho, N., Prieto, A., Ramirez, H., Rudas, A., Salomao, R., Santos, A.J.B., Schmerler, J.,
- 678 Silva, N., Silveira, M., Vasquez, R., Vieira, I., Terborgh, J., Lloyd, J., 2012. Basin-wide
- 679 variations in Amazon forest structure and function are mediated by both soils and climate.
- 680 Biogeosciences 9, 2203-2246.
- 681 Renninger, H.J., Phillips, N., 2012. "Secondary stem lengthening" in the palm Iriartea deltoidea
- 682 (Arecaceae) provides an efficient and novel method for height growth in a tree form. Am. J. Bot.
- 683 *99*, 607-613.
- Rich, P.M., 1987a. Developmental anatomy of the stem of Welfia georgii, Iriartea gigantea, and
- other arborescent palms implications for mechanical support. Am. J. Bot. 74, 792-802.

- Rich, P.M., 1987b. Mechanical structure of the stem of arborescent palms. Botanical Gazette148, 42-50.
- Rich, P.M., Helenurm, K., Kearns, D., Morse, S.R., Palmer, M.W., Short, L., 1986. Height and
- 689 stem diameter relationships for dicotyledonous trees and arborescent palms of Costa Rican
- tropical wet forest. Bulletin of the Torrey Botanical Club 113, 241-246.
- 691 Roucoux, K.H., Lawson, I.T., Jones, T.D., Baker, T.R., Coronado, E.N.H., Gosling, W.D.,
- Lähteenoja, O., 2013. Vegetation development in an Amazonian peatland. Palaeogeogr.,
- 693 Palaeoclimatol., Palaeoecol. 374, 242-255.
- 694 Runk, J.V., 1998. Productivity and sustainability of a vegetable ivory palm (Phytelephas
- aequatorialis, Arecaceae) under three management regimes in northwestern Ecuador. Econ. Bot.
- 69652, 168-182.
- 697 Segura-Madrigal, M.A., 1997. Almacenamiento y fijación de carbono en Quercus costaricensis,
- 698 en un bosque de altura en la Cordillera de Talamanca, Costa Rica. In, Escuela Ciencias
- Ambientales, Facultad de Ciencias de la Tierra y el Mar. Heredia, Universidad Nacional, CR, p.147.
- Sierra, C.A., del Valle, J.I., Orrego, S.A., Moreno, F.H., Harmon, M.E., Zapata, M., Colorado,
- G.J., Herrera, M.A., Lara, W., Restrepo, D.E., Berrouet, L.M., Loaiza, L.M., Benjumea, J.F.,
- 703 2007. Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. For. Ecol.
- 704 Manage. 243, 299-309.
- 705 Terborgh, J., Andresen, E., 1998. The composition of Amazonian forests: patterns at local and
- regional scales. J. Trop. Ecol. 14, 645-664.
- 707 Thenkabail, P.S., Stucky, N., Griscom, B.W., Ashton, M.S., Diels, J., Van der Meer, B., Enclona,
- E., 2004. Biomass estimations and carbon stock calculations in the oil palm plantations of
- African derived savannas using IKONOS data. Int. J. Remote Sens. 25, 5447-5472.
- 710 Tomlinson, P.B., 2006. The uniqueness of palms. Bot. J. Linn. Soc. 151, 5-14.
- 711 West, G.B., Brown, J.H., Enquist, B.J., 1997. A general model for the origin of allometric
- scaling laws in biology. Science 276, 122-126.
- 713 Williamson, G.B., Wiemann, M.C., 2010. Measuring Wood Specific Gravity ... Correctly. Am. J.
- 714 Bot. 97, 519-524.
- 715 Zambrana, N.Y.P., Byg, A., Svenning, J.-C., Moraes, M., Grandez, C., Balslev, H., 2007.
- 716 Diversity of palm uses in the western Amazon. Biodivers. Conserv. 16, 2771-2787.

- 717 Zanne, A.E., Lopez-Gonzalez, G., Coomes, D.A., Ilic, J., Jansen, S., Lewis, S.L., Miller, R.B.,
- 718 Swenson, N.G., Wiemann, M.C., Chave, J., 2009. Global wood density database. In. Dryad
- 719 Digital Repository.
- 720
- 721

722 Tables

- Table 1. Directly measured biomass data analysed in this study from Madre de Dios (MdD) and
- Loreto, Peru: number of individuals (*n*), diameter at 1.3 m or above roots (*D*), stem height
- 725 (H_{stem}), and total height (H_{tot}).

Location	Species	n	D (cm)	H _{stem} (m)	H _{tot} (m)
MdD	Astrocaryum murumuru	19	15-29	1.5-9.0	7.1-14.7
MdD	Attalea phalerata	21	17-50	0-20.1	7.1-25.6
MdD	Bactris gasipaes	3	11-15	9.3-18.1	13.0-20.8
MdD	Euterpe precatoria	8	12-19	10.2-20.4	13.3-22.8
MdD	Iriartea deltoidea	21	6-33	3.3-21.8	5.6-25.1
Loreto	Mauritia flexuosa	16	19-36	5.1-30.5	9.1-38.4
Loreto	Mauritiella aculeata	18	8-15	3.5-20.6	5.3-26.1
MdD	Oenocarpus bataua	10	21-41	2.9-14.5	14.2-25.9
MdD	Socratea exorrhiza	20	4-24	2.0-21.9	3.2-23.9
Total	9 species	136	4-50	0-30.5	3.2-28.4

726

- Table 2. Dry mass fraction (dry mass / fresh mass) and carbon fraction (dry mass_{carbon} / dry
- mass_{total}) in stem, leaf, and root tissue, and mean and standard deviation of individual leaf dry
- mass of the nine species sampled.

Species	Stem	Leaf	Root	Leaf dry n	nass (kg)		
Species	Dry	mass fra	ction	mean	SD		
Astrocaryum murumuru	0.400			2.687	1.057		
Attalea phalerata	0.357			2.649	0.938		
Bactris gasipaes	0.619			0.471	0.132		
Euterpe precatoria	0.398			0.620	0.269		
Iriartea deltoidea	0.244			4.065	3.787		
Oenocarpus bataua	0.338			9.315	1.683		
Socratea exorrhiza	0.339			1.764	1.629		
mixed species (above)		0.463					
Mauritia flexuosa	0.367	0.517	0.402	11.444	5.845		
Mauritiella aculeata	0.269	0.320	0.297	0.951	0.447		
mean	0.370	0.433	0.350	3.774	1.754		
Carbon fraction							
Mauritia flexuosa	0.481	0.494	0.491				
Mauritiella aculeata	0.480	0.529	0.485				
mean	0.481	0.512	0.488				

730 Table 3. Recommended models for each genus and mixed-species to estimate aboveground biomass (AGB; kg dry mass) or

belowground root biomass (BGB; kg dry mass) from stem height (H_{stem} ; m), diameter (D; cm), and dry mass fraction (dmf; g g⁻¹), and

132 leaf dry mass (kg) from mean leaf length (m). All models follow the form $y = a + bx_1 + cx_2$. The family-level model with $dmfD^2H_{stem}$

is only valid for individuals with $H_{stem} \ge 1$ m; and the family-level models without a height term are only valid for individuals with

734 $H_{stem} > 3 \text{ m and } 6 \le D < 40 \text{ cm.}$

Genus or							2						
group	у	X ₁	X ₂	а	b	С	R^2	n	RSE	F	dfe	<i>Pr</i> < F	AIC
	Aboveground biomass												
Astrocaryum	AGB	H _{stem}			21.302		0.957	18	26.1	379	17	< 0.0001	171.4
Attalea	ln(AGB)	ln(H _{stem} +	-1)	3.2579	1.1249		0.858	21	0.371	115	19	< 0.0001	21.9
Euterpe	AGB	H _{stem}		-108.81	13.589		0.973	8	8.37	215	6	< 0.0001	60.4
Iriartea	ln(AGB)	$ln(D^2H_{ste})$	em)	-3.483	0.94371		0.967	21	0.311	560	19	< 0.0001	14.5
Mauritia	ln(AGB)	ln(H _{stem})		2.4647	1.3777		0.897	16	0.273	121	14	< 0.0001	7.7
Mauritiella	AGB	H _{stem}			2.8662		0.972	18	8.21	591	17	< 0.0001	129.9
Oenocarpus	ln(AGB)	H _{stem}	H _{stem}		0.1387		0.784	10	0.237	29	8	0.000658	3.4
Socratea	ln(AGB)	$ln(D^2H_{ste})$	em)	-3.7965	1.0029		0.976	20	0.227	740	18	< 0.0001	1.3
	AGB ^{0.25}	$(dmf \times D^2)$	H_{stem}) ^{0.25}	•	0.55512		0.990	106	0.367	10410	105	< 0.0001	91.5
Family-level	ln(AGB)	ln(D)		-3.3488	2.7483		0.802	97	0.588	384	95	< 0.0001	176.1
	ln(AGB)	ln(D)	ln(dmf)	-2.0752	2.6401	0.8426	0.815	97	0.570	208	94	< 0.0001	171.1
				Belov	wground r	oot biom	ass						
Mauritia	ln(BGB)	ln(H _{stem})		-0.3688	2.0106		0.929	16	0.323	184	14	< 0.0001	13.1
Mauritiella	ln(BGB)	H _{stem}		1.0945	0.11086		0.951	18	0.132	310	16	< 0.0001	-18.0
					Leaf dry	mass							
Family-level	mass ^{0.3}	length		0.66020	0.10896		0.732	76	0.171	202	74	< 0.0001	-48.5
Iriartea	ln(mass)	length		-5.1751	1.4547		0.803	21	0.649	78	19	< 0.0001	45.4

735

- 737 Estimates were made using two recent pantropical dicot models (Feldpausch et al., 2012) based on diameter and wood density (F 1) or
- diameter, wood density, and estimated height (F 2); three family-level palm equations $(D, D+dmf, \text{ and } dmfD^2H_{stem}; \text{ Table 3})$; and the
- recommended species-level model for each species or genera (Table 3). Percent differences are shown for each palm model compared
- to each dicot model. Results are summarised as mean of all plots, sum of all plots, and overall percent difference.

741

	No	%		Aboveg	ground	l biomass	estimate (N	(Ig)	%	6 Diffe	rence: (Palm -	Dicot)/	Dicot ×	100 %	, O
Plot	stems	palm stems	Di	cot		Paln	n equation		Γ)	D+c	lmf	dmfI	$O^2 H_{st}$	Spe	cies
		stems	F 1	F 2	D	D+dmf	$dmfD^2H_{st}$	Species	F 1	F 2	F 1	F 2	F 1	F 2	F 1	F 2
TAN01	598	31.9	279	233					3.4	5.1	0.9	2.1	2.7	4.2	1.4	2.7
TANIOT	191		27	25	36.5	29.3	34.4	30.9	35.4	48.6	8.9	19.5	27.6	40.1	14.9	26.1
там02	659	28.8	262	223					2.6	3.9	0.7	1.7	2.8	4.1	1.8	2.9
171102	190		24	22	31.1	26.0	31.5	28.8	28.4	39.3	7.3	16.4	29.9	40.9	18.9	29.0
TAM03	617	15.9	372	312					-0.2	1.6	0.4	2.3	-0.7	0.9	0.3	2.2
11100	98		42	36	41.1	43.3	39.0	42.9	-1.5	13.6	3.7	19.7	-6.6	7.7	2.8	18.6
	714	9.0	354	299					-0.3	0.1	-0.6	-0.3	-0.6	-0.3	1.1	1.7
TAM04	64		14	13	12.8	11.7	11.6	17.7	-7.7	1.6	- 15.7	-7.2	- 16.3	-7.9	27.3	40.1
	526	3.8	316	262					-0.1	0.0	-0.1	-0.1	0.1	0.2	0.6	0.8
TAM05	20		3	3	2.6	2.4	3.2	4.8	-8.0	-2.8	- 14.6	-9.7	13.1	19.5	70.3	79.9
TAMOS	660	31.8	359	297					2.7	4.4	0.8	2.2	1.7	3.2	0.4	1.7
TAMUU	210		34	30	43.6	36.9	40.0	35.4	28.8	43.0	9.0	21.0	18.2	31.2	4.6	16.1
	507	3.4	267	224					-0.4	-0.4	-0.4	-0.4	-0.3	-0.4	0.8	1.0
TAM07	17		3	3	1.7	1.8	1.9	4.9	- 39.2	- 36.8	- 35.2	- 32.6	- 33.2	- 30.5	74.9	81.8
TAM08	513	12.3	266	222					0.6	1.0	-0.1	0.2	0.5	0.9	1.1	1.6
1710100	63		9	9	10.9	9.1	10.6	12.3	15.6	25.0	-3.8	4.1	12.8	22.0	30.2	40.8
ΤΔΜΟ9	552	15.2	271	228					1.5	2.3	0.4	0.9	1.0	1.7	0.6	1.3
171100	84		13	11	16.5	13.5	15.3	14.2	32.0	45.4	7.6	18.6	22.2	34.7	13.6	25.1
Mean	594		305	256					1.1	2.0	0.2	0.9	0.8	1.6	0.9	1.8
of all plots	104	16.9	19	17	21.9	19.3	20.8	21.3	9.3	19.7	-3.6	5.5	7.5	17.5	28.6	39.7
n or all % ff.				Sum of	all plo	ots (Mg)			Ov	erall %	6 Differ	ence (∑	Diff ∕∑	Estim	× 100 9	%)
Sun ver di	4673		2745	2300					1.0	2.0	0.2	1.0	0.7	1.6	0.9	1.8
0	938	20.1	168	152	197	174	187	192	17.0	29.8	3.4	14.8	11.4	23.7	14.1	26.6

742	Figure captions
743	
744	Figure 1. Raw data showing the relationships between (A) stem height and diameter and (B)
745	aboveground biomass and diameter, and (C) aboveground biomass and stem height for each
746	species.
747	
748	Figure 2. Aboveground biomass (AGB) data and recommended model (line) for each genus to
749	estimate AGB (kg dry mass) from stem height (H_{stem} ; m) and diameter at 1.3 m or above stilt
750	roots (D; cm). Equations are given in Table 3.
751	
752	Figure 3. Aboveground biomass (AGB) data for all species (points) and three family-level model
753	estimates (lines) using (A) $dmfD^2H_{stem}$, (B) D, and (C) $D+dmf$. Equations are given in Table 3.
754	
755	Figure 4. Errors (AGB _{estimated} -AGB _{observed}) for harvested palm aboveground biomass (AGB)
756	when estimated by dicot models using and diameter and wood density (Feld 1) and diameter,
757	

wood density, and estimated height (Feld 2; Feldpausch et al., 2012) compared with diameterand stem height.

Figure 2 Click here to download high resolution image

Supplementary Material for online publication only Click here to download Supplementary Material for online publication only: FOREC012435_Suppl Material.docx

Figure A1 Click here to download high resolution image

Figure A2 Click here to download high resolution image

