This is an author produced version of a paper published in Quaternary Science Reviews.

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/77904/

Paper:

http://dx.doi.org/10.1016/j.quascirev.2013.11.012
Ice-stream initiation, duration and thinning on James Ross Island, northern Antarctic Peninsula

N.F. Glasser¹, B.J. Davies¹, J.L. Carrivick², A. Rodes³, M.J. Hambrey¹, J.L. Smellie⁴, E. Domack⁵

¹Department of Geography and Earth Sciences, Aberystwyth University, Wales, SY23 3DB, UK.
²School of Geography, University of Leeds, LS2 9JT, UK
³SUERC, East Kilbride, UK
⁴Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK
⁵Department of Geosciences, Hamilton College, Clinton, New York 13323, USA

†Email: nfg@aber.ac.uk

ABSTRACT
Predicting the future response of the Antarctic Ice Sheet to climate change requires an understanding of the ice streams that dominate its dynamics. Here we use cosmogenic isotope exposure-age dating (²⁶Al, ¹⁰Be and ³⁶Cl) of erratic boulders on ice-free land on James Ross Island, north-eastern Antarctic Peninsula, to define the evolution of Last Glacial Maximum (LGM) ice in the adjacent Prince Gustav Channel. These data include ice-sheet extent, thickness and dynamical behaviour. Prior to ~18 ka, the LGM Antarctic Peninsula Ice Sheet extended to the continental shelf-edge and transported erratic boulders onto high-elevation mesas on James Ross Island. After ~18 ka there was a period of rapid ice-sheet surface-lowering, coincident with the initiation of the Prince Gustav Ice Stream. This timing coincided with rapid
increases in atmospheric temperature and eustatic sea-level rise around the Antarctic Peninsula. Collectively, these data provide evidence for a transition from a thick, cold-based LGM Antarctic Peninsula Ice Sheet to a thinner, partially warm-based ice sheet during deglaciation.

INTRODUCTION

The Antarctic Peninsula is one of the most rapidly warming areas of the Earth (Turner et al., 2005, Vaughan et al. 2003), with warming and snow-melt rapidly accelerating over the last century (Abram et al., 2013), increases in precipitation (Turner et al., 2009), a longer melt season (Barrand et al., 2013) and enhanced moss growth and microbial activity (Royles et al., 2013). The north-eastern Antarctic Peninsula is sensitive to even small changes in atmospheric temperature, with glacier acceleration, thinning and recession, and the collapse of several large ice shelves observed in recent decades (Cook et al. 2005, 2010; Pritchard et al., 2012).

Documented changes in Antarctica also include the rapid and dynamic fluctuations of the Siple Coast ice streams (Joughin et al. 2002) and the recent recession, acceleration and thinning of Pine Island Glacier (Pritchard et al., 2012). Increased discharge of cold water from shrinking ice shelves has also been related to increases in the extent of Antarctic sea ice, which may offset projected future precipitation increases around Antarctica in a warming climate (Winkelmann et al., 2012; Bintanja et al., 2013). Oceanic warming in Antarctica has been linked to increases in the upwelling of warm Circumpolar Deep Water, which melts tidewater glaciers and ice shelves from below (Pritchard et al., 2012). Upwelling of Circumpolar Deep Water, in association with El Niño–Southern Oscillation (ENSO) and Southern Annular Mode...
climatic oscillations, is projected to continue, raising questions regarding the dynamic response of ice sheets and ice streams to these changes.

Predicting the wider future response of the Antarctic Ice Sheet to climate change therefore requires understanding of the ice streams that dominate its dynamics. Changes in dynamical ice-stream behaviour are a first-order control on rates of deglaciation and meltwater discharge to the oceans, both now and in the immediate future (Gregoire et al., 2012). Although there is abundant marine geological evidence that, at the Last Glacial Maximum (LGM), the Antarctic Peninsula Ice Sheet was drained by ice streams (Davies et al., 2012a), little is known about ice-stream dynamical behaviour, including the timing of ice-stream initiation, ice-stream duration and the rate of ice-stream thinning (Livingstone et al., 2012). Marine geological studies (for example, Ó Cofaigh et al. 2005, 2008; Graham and Smith 2012) also provide only a snapshot of ice-stream behaviour during deglaciation (Bentley and Anderson, 1998; Evans et al., 2005, Heroy and Anderson, 2007; Graham et al. 2009).

Constructing ice sheet chronologies from marine geological evidence is problematic because of the large marine reservoir effect that hinders radiocarbon dating (Davies et al., 2012a). An alternative approach in Antarctica is to use isolated coastal and inland nunataks as “dipsticks” to measure vertical changes in the ice sheet using cosmogenic nuclide methods (Bentley et al., 2006; Mackintosh et al., 2007; Balco et al., 2011, 2013). This dipstick approach has yielded important data about vertical changes in the Antarctic Ice Sheet above its present surface elevation. Questions of ice sheet thickness and ice stream dynamical behaviour therefore rely on glacial
geology investigations on nunataks and ice-free ground, but this is difficult as ~99% of the Antarctic continent is glacierised. The Ulu Peninsula, James Ross Island, is one of the largest ice-free areas on the north-east Antarctic Peninsula, and it preserves a detailed record of glacial fluctuations. The aim of this paper is therefore to use cosmogenic isotope exposure-age dating of terrestrial erratic boulders on ice-free land on James Ross Island, north-eastern Antarctic Peninsula, to define the evolution of Last Glacial Maximum (LGM) ice in the Prince Gustav Channel region between Trinity Peninsula and James Ross Island (Fig. 1).

STUDY AREA

During the LGM, at ~18 ka, ice draining from the north-eastern Antarctic Peninsula coalesced with the Mount Haddington Ice Cap on James Ross Island (Bentley and Anderson, 1998; Camerlenghi et al., 2001; Evans et al., 2005; Heroy and Anderson, 2007; Johnson et al. 2011; Davies et al., 2012a). Isotopic evidence from an ice core on Mount Haddington (see Fig. 1 for location) indicates that it existed as an independent ice dome throughout the LGM, and was not overrun by isotopically colder ice from Trinity Peninsula (Mulvaney et al., 2012). Ice coalesced from the Mount Haddington Ice Cap and accumulation areas on Trinity Peninsula to form a palaeo-ice stream flowing northwards and southwards to the continental shelf edge, with an ice divide in central Prince Gustav Channel. The geological record of Prince Gustav Ice Stream is largely derived from marine sediment cores and swath bathymetry, which reveal subglacial tills and mega-scale glacial lineations in Prince Gustav Channel and Vega Basin (Fig. 1) (Camerlenghi et al., 2001; Evans et al., 2005). The LGM history of the Antarctic Peninsula Ice Sheet and its post-LGM recession is reconstructed here using cosmogenic isotope exposure-age dating of
erratic boulders transported by the Antarctic Peninsula Ice Sheet onto James Ross Island (Figs 1 and 2).

Ulu Peninsula on James Ross Island is largely ice-free, with several small glaciers and ice domes on flat-topped volcanic mesas. It is uniquely placed to provide a terrestrial record of the dynamics of the LGM ice sheet because Trinity Peninsula and James Ross Island are geologically distinct (Fig. 1). The Antarctic Peninsula is dominated by Permo-Triassic metamorphic rocks of the Trinity Peninsula Group, into which are intruded granitic rocks (Aitkenhead, 1975; Smellie et al., 1996). James Ross Island is formed entirely of Cretaceous sedimentary rocks and unconsolidated sediments, overlain by the cliff-forming Neogene basaltic James Ross Island Volcanic Group, with glacigenic strata (diamictites) at the base and within (Pirrie et al., 1997; Hambrey and Smellie, 2006; Hambrey et al., 2008; Smellie et al., 2008, 2013). Lavas in the James Ross Island Volcanic Group are flood basalts associated with hyaloclastite deltas that together form flat-topped mesas above the Cretaceous strata (Nelson, 1975; Nývlt et al., 2011; Smellie et al., 2013). Granitic and metamorphic erratic boulders from Trinity Peninsula (Bibby, 1966; Nelson et al., 2009; Riley et al., 2011) record incursions of Trinity Peninsula ice onto James Ross Island (Hambrey and Smellie, 2006; Hambrey et al., 2008; Johnson et al., 2011; Fig. 2).

Climatic records indicate that the region has been warming since the 1930s (Vaughan et al. 2003), although ice-core records suggest that warming began 600 years ago (Mulvaney et al. 2012), with summer snow-melt accelerating during the twentieth century (Abram et al. 2013). This warming has been associated with
changes in the westerly winds around Antarctica, which produce warming over the Antarctic Peninsula. Most land-terminating glaciers on Ulu Peninsula are receding (Carrivick et al., 2012; Davies et al., 2012b; Engel et al., 2012), with up to 100 m of recession since their most recent readvance. These glaciers are surrounded by prominent ice-cored moraines (Carrivick et al., 2012; Davies et al., 2013). More widely, tidewater glaciers around the northern Antarctic Peninsula are also shrinking in response to continued atmospheric warming (Davies et al. 2012b), which also resulted in the collapse of Prince Gustav Ice Shelf in 1995 (Skvarca et al. 1995; Cooper, 1997).

METHODS

Cosmogenic nuclide exposure-age dating

Sampling strategy

Cosmogenic isotope dating of glacially transported and erratic boulders is now a widely accepted method for dating glacigenic landforms such as moraines, where it is possible to use crest-line boulders to establish the age of moraine formation (Gosse and Phillips, 2001; Cockburn and Summerfield, 2004; Balco, 2011; Applegate et al., 2012). It is particularly useful in Antarctica, where there are few terrestrial organic remains and the large marine-reservoir effect makes conventional radiocarbon dating difficult (Ingólfsson, 2004; Davies et al., 2012a). The high winds and arid climate reduce the probability of perpetual burial by drifting snow or sediment (Bentley et al., 2006; Mackintosh et al., 2007). However, Antarctic glaciers are frequently cold-based or polythermal, and may be frozen to their beds. Glacially transported boulders and overridden bedrock surfaces may therefore suffer little
erosion, and thus retain an inherited cosmogenic nuclide signal. Additionally, in the
study area on James Ross Island, granite erratics may be reworked from much older
Neogene diamictites (Nývlt et al., 2011). We therefore collected and analysed
granitic samples for both 26Al and 10Be and show our results on plots of 26Al/10Be
versus 10Be to discriminate samples that may be reworked from Neogene diamictites
(cf. Bentley et al., 2006; Wilson et al., 2008).

Samples were collected following the guidelines of Gosse and Phillips (2001) and
Balco (2011). We sampled boulders with a b-axis >1.0 m wherever possible (Tables
1 and 2; Figure 3) because using larger boulders reduces the possibility of burial or
exhumation during periglacial recycling of clasts within the active layer. Larger
boulders standing proud on the land surface are also likely to be wind-scoured and
therefore clear of snow during the winter. Only boulders on stable moraine crests
were sampled, avoiding boulders on uneven or unstable surfaces, which may have
moved since deposition. Samples were collected only from the upper surfaces of the
boulders using a hammer and chisel, and all samples were less than 5 cm thick
(considerably less for many of the granite boulders, which generally produced >1 cm
thick surface flakes when sampled). Detailed site descriptions (e.g.
geomorphological context, surrounding sediment texture, boulder dimensions,
weathering characteristics) were made for each sample. Sample locations were
recorded using a hand-held GPS, accurate to ±5 m in the horizontal dimension.
Skyline measurements were collected with a compass-clinometer at all sites to
check for possible topographic shielding (i.e. to check if the angle to the horizon was
greater than 20$^\circ$). To avoid complexities associated with possible marine inundation
and recent iceberg transportation, all boulders were collected from sites above 30
metres above sea level (m a.s.l.), the highest regional Holocene marine level (Hjort et al., 1997; Fretwell et al., 2010).

Chemical analysis

The granite boulders yielded quartz, which was analysed with 10Be and 26Al, and basalt boulders were crushed and the whole-rock chemistry was analysed for 36Cl. The sample preparation and 10Be/26Al measurement procedures followed standard protocols (Wilson et al., 2008; Glasser et al., 2009; Ballantyne et al., 2009). We added 250 μg Be to each sample as a carrier. Inherent Al concentrations in quartz were determined with an ICP-OES at the Scottish Universities Environmental Research Centre (SUERC). An aluminium carrier was added to most samples so that 2 mg Al per sample was reached.

The 10Be and 26Al exposure ages and internal uncertainties (Tables 1 and 2) were calculated with the CRONUS-earth online calculators version 2.2 (http://hess.ess.washington.edu/mathy/; Wrapper script: 2.2; Main calculator: 2.1; Objective function: 2; Constants: 2.2.1; Muons: 1.1; see Balco et al. 2008). Because production rates vary globally, Table 3 provides 10Be and 26Al ages calculated using the mid-latitude southern hemisphere New Zealand calibration dataset for reference and completeness (Putnam et al., 2010).

Samples for 36Cl analysis were crushed, sieved to 125–250 μm, enriched in pyroxene by magnetic separation, and leached in hot 2 M HNO3 to remove meteoric 36Cl contamination. Each sample was then split into two fractions: c. 2 g for elemental analysis and c. 20 g for analysis of 36Cl with accelerator mass
spectrometry (AMS). ICP-OES and ICP-MS measurements were used to determine the Ca, K, Ti, Fe, U, Th and REE contents. Chlorine was extracted and purified to produce AgCl for AMS analysis according to the procedures described in Vincent et al. (2010). A high 36Cl/37Cl carrier was used to determine the total Cl concentration by AMS Isotope Dilution technique (AMS-ID; Di Nicola et al., 2009).

36Cl exposure ages and internal uncertainties were calculated according to Schimmelpfennig et al. (2009). Sea level-high latitude 36Cl production rates of 48.8±3.4, 162±25,13±3 and 1.9±0.2 atoms 36Cl g$^{-1}$ a$^{-1}$, from Ca, K, Ti and Fe respectively, were used (Schimmelpfennig et al., 2009) and scaled according to the Stone (2000) scaling scheme. The time-independent Lal/Stone scheme was chosen to be consistent with calculated 36Cl ages and other ages published for the Antarctic Peninsula (Bentley et al., 2006; Davies et al., 2012a).

Calculation of uncertainties

Primary Standards NIST-SRM4325, PRIME-Z92-0222 and PRIME-Z93-0005, with nominal ratios 2.79E-11 10Be/Be, 4.11E-11 26Al/Al and 1.2E-12 36Cl/Cl, were used for the AMS measurements (Freemnan et al., 2004). These agree with those prepared by Nishiizumi et al. (2007), which were used as secondary standards. The reported uncertainties of the cosmonuclide concentrations include 2.5% for the AMS and chemical preparation. Blank corrections ranged between 4 and 11% for 10Be/Be ratios; between 0.1 and 3.2% for 26Al/Al ratios; and between 5 and 7% for 36Cl/Cl ratios. These corrections are included in the stated uncertainties.

RESULTS: GLACIAL GEOLOGY AND GEOMORPHOLOGY
Ulu Peninsula is characterised by several small cirque and valley glaciers, with ice domes on flat-topped volcanic mesas (Figs. 2, 3A, 3B). On the tops of the mesas (above 370 m a.s.l.), the flood basalts and hyaloclastite deltas have been broken down to form blockfields where periglacial action is evident. Rare isolated granite boulders occur in these locations (Fig 3B). The interior of Ulu Peninsula is widely mantled by an erratic-poor, basaltic pebble-cobble gravel. Subangular pebbles and cobbles form a lag on the surface, with frequent basalt and rare granitic boulders. This surface has been deflated, and fine to coarse sand is present beneath the pebble lag (Fig. 3E). There is evidence of localised stone-sorting by periglacial processes in these areas (Davies et al., 2013).

Coastal areas, both to the west and east of Ulu Peninsula, are commonly characterised by glaciogenic deposits with far higher proportions of Trinity Peninsula erratic material, and with many more large granite boulders. Some of this drift is associated with moraine fragments (for example at Kaa Bluff and St Martha Cove; Figs. 2, 3C, 3D). Large (up to 2 m b-axis) Trinity Peninsula granite boulders and sub-rounded, striated, faceted, glacially transported, locally derived boulders are scattered widely across the surface of Ulu Peninsula (Fig. 2). Together with streamlined bedrock ridges, smoothed and sculpted cols and passes, the glacial drifts indicate that the area was inundated by the Antarctic Peninsula Ice Sheet.

RESULTS: COSMOGENIC ISOTOPE DATING

Cosmogenic 26Al and 10Be data from granite erratic boulders and 36Cl from locally derived glacially transported basalt boulders on James Ross Island indicate the timing and duration of deglacial ice-streaming events (Figs. 2, 4; Tables 1 and 2).
The 26Al/10Be ratios of all granite samples were statistically equal to or greater than the production rate ratio (Fig. 5), suggesting that they have been constantly exposed and not subjected to repeated burial and exhumation, which may be an issue in cold Antarctic environments (Bentley et al., 2006) and where there is the potential for reworking of older Neogene glacial deposits (Nývlt et al., 2011). Boulder ages are presented as a weighted mean of the 26Al and 10Be ages (Wilson et al., 2008). Following the convention in Antarctica, we use the oldest age in cases where there is geological scatter in the sample ages because boulders may slip downslope, rotate, or be shielded by snow (Balco et al., 2011). This method is appropriate because the co-isotope plot suggests that inheritance is not a problem in the samples.

Two large white granite boulders embedded on the summit of Lachman mesa at 370 metres above sea level (JRI49 and JRI50; Figs. 2, 4; Table 1) yielded cosmogenic isotope ages of 17.7 ± 0.8 and 15.1 ± 0.4. Near Davies Dome, basalt samples JRI33 and JRI34 yield 36Cl ages of 19.9 ± 7.2 and 22.1 ± 6.6 ka (Fig. 2). These ages indicate that the age of deglaciation of Lachman mesa is ~ 18 ka, synchronous with the observed ice-sheet recession across the continental shelf (Heroy and Anderson, 2005; 2007). Somewhat younger deglaciation ages of 11.8 and 13.8 ka were obtained for basalt bedrock at Crisscross Crags and Patalamon Mesa (Figure 1), at c. 600 m elevation, by Johnson et al. (2009). However, the younger ages probably relate to the persistence of local ice domes (both localities sustain ice domes today) that took longer to decay and expose bedrock than at Lachman mesa.

In the most northerly part of Ulu Peninsula, a lower elevation sample (JRI35) in the granite-rich drift (45 m.a.s.l.) on Cape Lachman on the NW of James Ross Island,
provides an exposure age of 6.3 ± 0.2 ka. South of Brandy Bay, samples JRI01 and JRI03, which are large granite erratic boulders in the coastal erratic-rich drift at elevations of ~100 m.a.s.l. on “San Carlos Hill”, south of San Carlos Point (Fig. 2), provide exposure ages of 12.2 ± 0.4 and 11.3 ± 0.4 ka respectively. A large granite erratic boulder in Sharp Valley, NW of James Ross Island (JRI09), provides a cosmogenic isotope age of 8.9 ± 0.2 ka. Further west, sample JRI 62 collected at Kaa Bluff at 144 m.a.s.l. (Figs. 3C, 4), NW James Ross Island, indicates that Peninsula ice receded from James Ross Island around 7.6 ± 0.3 ka. In the interior of Ulu Peninsula, sample JRI26 is an isolated granite boulder, located on a basalt drift at San Jose Pass, which indicates ice recession at 6.7 ± 0.3 ka. On the eastern side of the island, a granite erratic boulder in granite-rich drift on a subdued, degraded moraine ridge (sample JRI29 at St. Martha Cove, Fig. 2) was dated to 6.1 ± 0.3 ka.

DISCUSSION: IMPLICATIONS FOR THE LAST GLACIAL MAXIMUM ANTARCTIC ICE SHEET

The location of the erratic boulders and their exposure ages indicate that at ~18 ka, a relatively thick Antarctic Peninsula Ice Sheet deposited erratic boulders derived from Trinity Peninsula at elevations of up to ~370 m a.s.l. on James Ross Island (our data) and on Seymour Island (Johnson et al., 2011). Subsequent surface-lowering of the LGM ice sheet is indicated by the younger exposure ages at lower elevations. This surface-lowering marks a dynamical change coincident with the onset of the LGM Prince Gustav Ice Stream. This dynamical change occurred after ~18 ka but before 12.2 ± 0.4 ka, which is the exposure age of the oldest erratic boulder (JRI01) in the coastal erratic-rich drift of the Ulu Peninsula (Fig. 2). The coastal erratic-rich drift is interpreted as demarking a region of enhanced wet-based glacial deposition
(Davies et al., 2013), which, combined with the offshore lineations mapped in Vega Basin (Evans et al., 2005; Camerlenghi et al., 2001; Fig. 2) is interpreted as the lateral margin of the Prince Gustav Ice Stream. Sample JRI62 is located on a moraine fragment on Kaa Bluff at 144 m.a.s.l., and this location effectively delimits the maximum height of the lateral margins of the Prince Gustav Ice Stream. The ice surface therefore lowered at least 230 m during the interval 18 to 12.2 ka. Younger ages for granite erratic boulders occupying low-lying coastal sites on western Ulu Peninsula indicate that the ice stream continued to impinge on the shores of James Ross Island until ~7 ka. Local ice from Mount Haddington Ice Cap remained on Ulu Peninsula, flowing east out of St. Martha Cove until 6.1 ± 0.3 ka. An ice-sheet configuration similar to that of today was achieved after ~6 ka.

These data are supported by field observations and cosmogenic-nuclide exposure ages from ice-free areas adjacent to the Sjögren, Boydell, and Drygalski Glaciers on the north-eastern Antarctic Peninsula (Fig. 1), where the LGM ice-surface elevation near the present coastline was ~500 m a.s.l., with cold-based ice at elevations above 100-150 m a.s.l., and wet-based ice below (Balco et al., 2013). The ice-surface elevation decreased from ~500 m a.s.l. to near present-day sea-level between 9 ka and ~4 ka, confirming previous interpretations that deglaciation took place between >14 ka and ~6 ka (Ingólfsson et al., 2003). The minimum age for deglaciation in Prince Gustav Channel is 10.6 cal. ka BP, following a period of rapid warming recorded in the James Ross Island ice core (Figs. 1 and 6; Mulvaney et al., 2012). These data confirm our estimate of 144 m a.s.l. for the Prince Gustav Ice Stream at 7.6 ± 0.3 ka and complete withdrawal of the ice stream from Ulu Peninsula by ~6 ka. Radiocarbon ages from glaciomarine sediments in southern Prince Gustav Channel
(Fig. 1) indicate ice-free conditions here by ~9 cal. ka BP (Pudsey and Evans, 2001). Published exposure ages Johnson Mesa (260-304 m a.s.l.) and Terrapin Hill (80-85 m a.s.l.) from James Ross Island (Fig. 1) also indicate the recession of Prince Gustav Ice Stream and imply deglaciation in Prince Gustav Channel around 6-8 ka (Johnson et al., 2011).

Deglaciation in early Holocene time is also indicated by the relative sea-level record at Beak Island, north of Ulu Peninsula (Figs. 1, 6), which became ice-free with the onset of glaciomarine sedimentation at 10.7 cal. ka BP (Roberts et al., 2011). A sea level high-stand at 8 cal. ka BP indicates rapid eustatic sea-level rise, which outpaced isostatic readjustment at this time. The Beak Island sea-level record agrees with other published sea-level data in this region (Hjort et al., 1997) and with isostatically coupled sea-level models (Huybrechts, 2002; Peltier, 1998). These relative sea-level data confirm the interpretation of rapid ice-stream thinning, recession and drawdown during a period of rapid warming in the early Holocene Epoch (cf. Mulvaney et al., 2012; Fig. 6).

On the western Antarctic Peninsula, oxygen isotope data from diatoms in marine sediment cores in the Palmer Deep indicate that the period from 13.0-12.1 ka was characterised by rapid deglaciation, coincident with ice-stream retreat in the outer and inner Anvers Trough, the breakup of Marguerite Bay ice shelf and decreases in sea ice in Maxwell Bay (Pike et al., 2013). Our study shows that by 12 ka, the Prince Gustav Ice Stream on the eastern Antarctic Peninsula was already thinning and receding, suggesting that ice-stream response was coincident on both the western and eastern Antarctic Peninsula. This region-wide glacier recession has been linked
to increased upwelling of upper Circumpolar Deep Water onto the continental shelf, associated with strong winds in the Southern Ocean westerlies (Pike et al., 2013). After 12 ka, a slow-down in glacial recession is noted by decreased glacial discharge both in the Palmer Deep (Pike et al., 2013), and in the slower recession of Prince Gustav Ice Stream around Ulu Peninsula. The final recession of Prince Gustav Ice Stream around 7.6 ka is also coincident with increased upwelling of Circumpolar Deep Water.

These changes in the upwelling of Circumpolar Deep Water have been related to variations in ENSO as well as the Southern Annular Mode (Pike et al., 2013), and recent increases in summer melt on James Ross Island have also been related to a strengthening of the Southern Annular Mode (Abram et al., 2013). Our new data on previous ice-stream response to past climatic variations confirm that the northeastern Antarctic Peninsula is a dynamic environment, sensitive to small changes in oceanic and atmospheric circulation. This has important implications for future ice dynamics as global atmospheric temperatures approach those of the mid-Holocene climatic optimum (Marcott et al., 2013).

CONCLUSIONS

Cosmogenic isotope dating of granite and basalt erratic boulders indicates a three-phase LGM ice-sheet evolution on James Ross Island (Fig. 6). Firstly, until ~18 ka James Ross Island was inundated by a thick Antarctic Peninsula Ice Sheet. An important change occurred after ~18 ka when the ice sheet became more dynamic. The development of the Prince Gustav Ice Stream resulted in lowering of the
regional ice-sheet surface. Secondly, ice-sheet thinning and the onset of Prince Gustav Ice Stream from 18-12 ka coincided with rapid eustatic sea-level rise (Roberts et al., 2011) and rapidly increasing air temperatures recorded in the Mount Haddington ice cores (Fig. 1; Mulvaney et al., 2012). Finally, after ~8 ka, rapid isostatic uplift produced falling relative sea level, coincident with ice-stream recession and deglaciation of Ulu Peninsula. By 6 ka, ice sheet configuration was similar to present. We conclude that ice streams exerted a strong control on the deglaciation of the LGM Antarctic Peninsula Ice Sheet. Although deglacial ice-stream initiation has been inferred for former mid-latitude ice sheets, this is the first robustly dated example of Antarctic ice-stream initiation, duration and thinning.

ACKNOWLEDGEMENTS

This work was funded by the UK Natural Environment Research Council (NERC) under the Antarctic Funding Initiative NE/F012942/1). Transport, logistics and fieldwork on James Ross Island were supported by the British Antarctic Survey, and we thank the captain and crew of the RRS Ernest Shackleton and the RRS James Clark Ross for their support. We thank Alan Hill for his field logistical support. 10Be, 26Al and 36Cl analyses were supported by a NERC CIAF grant (9035/0407), and we also acknowledge Joyce Wilcox and Allan Davidson (both SUERC) for help with these analyses.

FIGURE CAPTIONS

Figure 1. Geographical and geological context of James Ross Island and Trinity Peninsula, with bathymetric data (50 m resolution). Inset shows wider location of James Ross Island. Previously published ages are from Hjort et al. (1997), Pudsey
and Evans (2001), Heroy and Anderson (2005; 2007), Johnson et al. (2009, 2011) and Balco et al. (2013). Circles are calibrated radiocarbon ages (ka BP) and diamonds are 10Be cosmogenic nuclide exposure ages (ka). Mega-scale glacial lineations are shown in Prince Gustav Channel. JRIVG = James Ross Island Volcanic Group. Location of Fig. 2 is indicated.

Figure 2. Geomorphological map of Ulu Peninsula showing sample location and ID with cosmogenic nuclide ages in bold (green stars and triangles). Ages are in ka. The coastal ‘erratic-rich drift’, which denotes the lateral margins of Prince Gustav Ice Stream, is indicated by cross-hatching. Red circles indicate mapped granite erratic boulders with a b-axis > 1 m. Large, prominent ice-cored moraines occur around modern cirque glaciers, and a large moraine flanks Brandy Bay. Degraded ridges, interpreted as moraine fragments, occur at Kaa Bluff and St. Martha Cove. Previously published cosmogenic nuclide exposure ages are shown. Spot heights are given in metres above sea level (in italics).

Figure 3. A) Ulu Peninsula from Johnson Mesa. Note the flat-topped volcanic mesas with small ice domes, small cirque glaciers and smooth terrain. B) Cosmogenic nuclide samples JRI 49 on Lachman mesa. An isolated granite boulder on a volcanic blockfield. C) Moraine below Kaa Bluff, with a distinct ridge with numerous white granite boulders and cobbles. Sample JRI 62 in the foreground. D) Cape Lachman, northern promontory on James Ross Island. Numerous granite boulders are present in the saddle at the neck of the promontory. E) Looking down towards the Abernethy Flats, with a boulder-train of Holocene age in the foreground and rare granite boulders.
Figure 4. James Ross Island boulder samples, showing context and age (ka). The first four boulders are situated at high elevations on mesa surfaces. Samples JRI26 and JRI29 are situated in San Jose Pass and St. Martha Cove respectively, and document the recession of ice across the interior of the Ulu Peninsula. The remaining samples are from erratic-rich drifts deposited by the Prince Gustav Ice Stream, which receded in a south-westerly direction from Cape Lachman (12 - 13 ka) to San Carlos Hill (~12 ka) and back towards Kaa Bluff (~7 ka).

Figure 5. Co-isotope plot of 26Al/10Be versus 10Be. Theoretical cosmogenic concentrations in a surface affected by no erosion and in a surface in erosion equilibrium are depicted by black lines according to CRONUS production rates. External uncertainties of these lines as a result of a 6% error in both 10Be and 26Al production rates are represented by the grey areas. No samples plot in the zone of complex exposure, indicating that the samples have not been buried for a substantial period of time and then exhumed.

Figure 6. A) Local temperature changes from the Mount Haddington ice core (see Fig. 1 for location) (Mulvaney et al., 2012). Temperature anomaly compared with 1961-1990 mean; 100-year average. B) Relative sea level (RSL) curve for Beak Island, Prince Gustav Channel (Fig. 1; Roberts et al., 2011) and a suite of coupled sea-level models (Peltier, 1998; Huybrechts, 2002), and marine microfossils from James Ross Island (Ingólfsson et al., 1992; Hjort et al., 1997). C) Sample altitude and mean age showing ice-sheet thinning, and the cluster of 10Be ages related to the recession of Prince Gustav Ice Stream (this study). Triangles indicate granite
boulders on basalt-rich lag surfaces at high elevations (>360 m a.s.l.) (4 samples) deposited by a thick, cold Antarctic Peninsula Ice Sheet. Diamonds indicate Trinity Peninsula erratic boulders on coastal areas of James Ross Island within the erratic-rich drift (5 samples), deposited by Prince Gustav Ice Stream. Squares (2 samples) indicate lower elevation samples deposited by the thinning ice sheet in the interior of Ulu Peninsula. The period of rapid ice-sheet thinning and onset of Prince Gustav Ice Stream observed on Ulu Peninsula coincides with rapid regional temperature increases and rapid eustatic sea-level rise; the youngest deglaciation ages coincide with a period of rapid isostatic uplift on nearby Beak Island (Fig. 1; Roberts et al., 2011).

TABLE CAPTIONS

Table 1. Sample details used to calculate 10Be ages in the Cronus-earth online calculators (Balco et al. 2008).

Table 2. Summary of new cosmogenic nuclide ages from Ulu Peninsula. The 10Be ages are presented in the text and figures because the 26Al/10Be ratios are statistically equal or greater than the production ratio, suggesting no complex exposure or burial history. JRI = James Ross Island, APIS = Antarctic Peninsula Ice Sheet.
Table 3. Calculations of 10Be ages using the Cronus-earth online calculator (Balco et al. 2008) with the New Zealand-Macaulay calibration dataset (Putnam et al., 2010) and the global time-independent Lal/Stone scheme. There is a difference of ~16% between the ages when calculated using these different production rates.

REFERENCES

Ballantyne, C.K., Schnabel, C. and Xu, S. 2009. Exposure dating and
reinterpretation of coarse debris accumulations (‘rock glaciers’) in the Cairngorm

Barrand, N. E., Vaughan, D. G., Steiner, N., Tedesco, M., Kuipers Munneke, P., van
surface melting conditions from observations and regional climate modeling.

the ice sheet configuration in the Weddell Sea-Antarctic Peninsula region during

evidence and cosmogenic 10Be/26AL exposure ages for the Last Glacial Maximum
and deglaciation of the Antarctic Peninsula Ice Sheet. Geological Society of
America Bulletin 118, 1149-1159.

Bibby, J.S., 1966, The stratigraphy of part of north-east Graham Land and the James
Ross Island Group, 37 British Antarctic Survey, London.

Bintanja, R., van Oldenborgh, G.J., Drijfhout, S.S., Wouters, B. and Katsman, C.A.
2013, Important role for ocean warming and increased ice-shelf melt in Antarctic

Camerlenghi, A., Domack, E., Rebesco, M., Gilbert, R., Ishman, S., Leventer, A.,
in northern Prince Gustav Channel (NW Weddell Sea, Antarctica). Marine
Geophysical Researches 22, 417-443.

chlorine concentrations in whole rock samples with prompt-gamma activation
analysis (PGAA) and isotope dilution AMS. *Quaternary Geochronology* 4, 501-
507.

Engel, Z., Nývlt, D., and Láska, K., 2012. Ice thickness, areal and volumetric
changes of Davies Dome and Whisky Glacier (James Ross Island, Antarctic

Evans, J., Pudsey, C.J., Ó Cofaigh, C., Morris, P. and Domack, E. 2005. Late
Quaternary glacial history, flow dynamics and sedimentation along the eastern
margin of the Antarctic Peninsula Ice Sheet. *Quaternary Science Reviews* 24,
741-774.

Freeman, S., Xu, S., Schnabel, C., Dougans, A., Tait, A., Kitchen, R., Klody, G.,
with the SUERC accelerator mass spectrometer. *Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions with Materials and

Holocene isostatic uplift of the South Shetland Islands, Antarctic Peninsula,
modelled from raised beaches. *Quaternary Science Reviews* 29, 1880-1893.

Tropical glacier fluctuations in the Cordillera Blanca, Peru between 12.5 and 7.6
ka from cosmogenic Be-10 dating. *Quaternary Science Reviews* 28, 3448-3458.

and application. *Quaternary Science Reviews* 20, 1475-1560.

Livingstone, S.J., O Cofaigh, C., Stokes, C.R., Hillenbrand, C.-D., Vieli, A. and
Jamieson, S.S.R. 2012. Antarctic palaeo-ice streams: *Earth-Science Reviews*
111, 90-128.

Exposure ages from mountain dipsticks in Mac. Robertson Land, East Antarctica,
indicate little change in ice-sheet thickness since the Last Glacial Maximum.

Geology 35, 551-554.

Marcott, S.A., Shakun, J.D., Clark, P.U. and Mix, A.C. 2013. A Reconstruction of
Regional and Global Temperature for the Past 11,300 Years. *Science* 339, 1198-
1201.

Mulvaney, R., Abram, N.J., Hindmarsh, R.C.A., Arrowsmith, C., Fleet, L., Triest, J.,
relative to Holocene climate and ice-shelf history. *Nature* 489, 141-144.

Nelson, A.E., Smellie, J.L., Hambrey, M.J., Willaims, M. Vautravers, M., Salzmann,
James Ross Island, northern Antarctic Peninsula, and their implications for
regional climate history. *Quaternary Science Reviews* 28, 3138-3160.

Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C., McAninch,
J. 2007. Absolute calibration of 10Be AMS standards. *Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions with Materials and
Atoms*, 258, 403 - 413

Mendel Formation: Evidence for Late Miocene climatic cycllicity at the northern tip

Vincent, P. J., Wilson, P., Lord, T.C., Schnabel, C., Wilcken, K.M. 2010. Cosmogenic isotope (36Cl) surface exposure dating of the Norber erratics, Yorkshire Dales:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Date Sampled</th>
<th>Skyline</th>
<th>Lithology</th>
<th>Altitude (m a.s.l.)</th>
<th>Length (m)</th>
<th>Width (m)</th>
<th>Height (m)</th>
<th>Max Sample thickness (cm)</th>
<th>SUERC AMS ID ((^{10})Be)</th>
<th>(^{10})Be at/g Qtz</th>
<th>SUERC AMS ID ((^{26})Al)</th>
<th>(^{26})Al at/g Qtz</th>
<th>SUERC AMS ID ((^{36})Cl)</th>
<th>(^{36})Cl at/g rock</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRI 01</td>
<td>22/01/2011</td>
<td>N</td>
<td>Granite</td>
<td>104</td>
<td>1.62</td>
<td>1.28</td>
<td>0.3</td>
<td>3</td>
<td>b5325</td>
<td>76081 ± 2720</td>
<td>a1514</td>
<td>547648 ± 40912</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JRI 03</td>
<td>22/01/2011</td>
<td>N</td>
<td>Granite</td>
<td>103</td>
<td>1.36</td>
<td>1.23</td>
<td>0.63</td>
<td>2</td>
<td>b5326</td>
<td>66821 ± 2759</td>
<td>a1515</td>
<td>564669 ± 28952</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JRI 09</td>
<td>23/01/2011</td>
<td>N</td>
<td>Granite</td>
<td>39</td>
<td>3.6</td>
<td>3.15</td>
<td>1.2</td>
<td>1</td>
<td>b5331</td>
<td>51771 ± 1852</td>
<td>a1519</td>
<td>374483 ± 12691</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JRI 26</td>
<td>29/01/2011</td>
<td>N</td>
<td>Granite</td>
<td>170</td>
<td>1.9</td>
<td>1.3</td>
<td>0.3</td>
<td>1</td>
<td>b5332</td>
<td>43227 ± 2337</td>
<td>a1536</td>
<td>347123 ± 22320</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JRI 29</td>
<td>30/01/2011</td>
<td>N</td>
<td>Granite</td>
<td>25</td>
<td>2.1</td>
<td>1.4</td>
<td>1</td>
<td>2</td>
<td>b5346</td>
<td>35897 ± 2099</td>
<td>a1529</td>
<td>242612 ± 28338</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JRI 33</td>
<td>04/02/2011</td>
<td>N</td>
<td>Basalt</td>
<td>312</td>
<td>1.4</td>
<td>1.2</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>c2664</td>
<td>213916 ± 76286</td>
<td>-</td>
</tr>
<tr>
<td>JRI 34</td>
<td>04/02/2011</td>
<td>N</td>
<td>Basalt</td>
<td>244</td>
<td>1.7</td>
<td>1.3</td>
<td>0.7</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>c2665</td>
<td>258360 ± 75191</td>
<td>-</td>
</tr>
<tr>
<td>JRI 35</td>
<td>06/02/2011</td>
<td>N</td>
<td>Granite</td>
<td>45</td>
<td>3.4</td>
<td>2.1</td>
<td>0.6</td>
<td>1</td>
<td>b5333</td>
<td>36124 ± 1505</td>
<td>a1520</td>
<td>283267 ± 14631</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JRI 49</td>
<td>11/02/2011</td>
<td>N</td>
<td>Granite</td>
<td>360</td>
<td>1.55</td>
<td>0.9</td>
<td>0.55</td>
<td>1</td>
<td>b5348</td>
<td>147849 ± 7181</td>
<td>a1532</td>
<td>897051 ± 121146</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JRI 50</td>
<td>11/02/2011</td>
<td>N</td>
<td>Granite</td>
<td>370</td>
<td>1.55</td>
<td>1.1</td>
<td>0.75</td>
<td>1</td>
<td>b5349</td>
<td>116577 ± 5140</td>
<td>a1533</td>
<td>911094 ± 33796</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>JRI 62</td>
<td>20/02/2011</td>
<td>N</td>
<td>Granite</td>
<td>144</td>
<td>0.9</td>
<td>0.65</td>
<td>0.45</td>
<td>1</td>
<td>b5529</td>
<td>47779 ± 1938</td>
<td>a1600</td>
<td>414063 ± 26819</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1
<table>
<thead>
<tr>
<th>Sample</th>
<th>Elevation (m a.s.l.)</th>
<th>GPS (S)</th>
<th>GPS (W)</th>
<th>Location and context</th>
<th>10Be age</th>
<th>26Al age</th>
<th>26Al/10Be</th>
<th>36Cl age</th>
<th>Considered Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRI01</td>
<td>104</td>
<td>63.84267</td>
<td>58.03217</td>
<td>San Carlos Hill; indicates age of incursion of APIS onto NW shore of JRI</td>
<td>12117 ± 435</td>
<td>12873 ± 968</td>
<td>7.2 ± 0.6</td>
<td>-</td>
<td>12244 ± 397</td>
</tr>
<tr>
<td>JRI03</td>
<td>103</td>
<td>63.84306</td>
<td>58.03126</td>
<td>San Carlos Hill; indicates age of incursion of APIS onto NW shore of JRI</td>
<td>10566 ± 437</td>
<td>13186 ± 680</td>
<td>8.5 ± 0.6</td>
<td>-</td>
<td>11332 ± 368</td>
</tr>
<tr>
<td>JRI09</td>
<td>39</td>
<td>63.85701</td>
<td>58.07312</td>
<td>Sharp Valley; indicates age of incursion of APIS onto NW shore of JRI</td>
<td>8637 ± 312</td>
<td>9264 ± 315</td>
<td>7.2 ± 0.4</td>
<td>-</td>
<td>8948 ± 222</td>
</tr>
<tr>
<td>JRI26</td>
<td>170</td>
<td>63.90809</td>
<td>57.89289</td>
<td>San Jose Pass; indicates exposure of interior of JRI</td>
<td>6321 ± 342</td>
<td>7486 ± 483</td>
<td>8.0 ± 0.7</td>
<td>-</td>
<td>6710 ± 279</td>
</tr>
<tr>
<td>JRI29</td>
<td>25</td>
<td>63.93596</td>
<td>57.81215</td>
<td>St. Martha Cove; indicates withdrawal of ice from eastern coast of JRI</td>
<td>6159 ± 361</td>
<td>6083 ± 713</td>
<td>6.8 ± 0.9</td>
<td>-</td>
<td>6143 ± 322</td>
</tr>
<tr>
<td>JRI33</td>
<td>312</td>
<td>63.90371</td>
<td>58.02856</td>
<td>Large basaltic boulder on drift sheet below Davies Dome; indicates exposure of interior of JRI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19929 ± 7285</td>
<td>19929 ± 7285</td>
</tr>
<tr>
<td>JRI34</td>
<td>244</td>
<td>63.90198</td>
<td>58.02380</td>
<td>Large basaltic boulder on drift sheet below Davies Dome; indicates exposure of interior of JRI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22114 ± 6614</td>
<td>22114 ± 6614</td>
</tr>
<tr>
<td>JRI35</td>
<td>45</td>
<td>63.80006</td>
<td>57.81549</td>
<td>Cape Lachmann; indicates incursion of APIS ice onto Cape Lachmann. Excluded as it is the youngest boulder in a case of geological scatter</td>
<td>6019 ± 251</td>
<td>6955 ± 360</td>
<td>7.8 ± 0.5</td>
<td>-</td>
<td>6325 ± 206</td>
</tr>
<tr>
<td>JRI49</td>
<td>360</td>
<td>63.83208</td>
<td>57.87360</td>
<td>Summit of Lachmann Mesa; indicates age of thick APIS over-riding JRI</td>
<td>17951 ± 876</td>
<td>16096 ± 2191</td>
<td>6.1 ± 0.9</td>
<td>-</td>
<td>17695 ± 813</td>
</tr>
<tr>
<td>JRI50</td>
<td>370</td>
<td>63.83592</td>
<td>57.87108</td>
<td>Summit of Lachmann Mesa; indicates age of thick APIS over-riding JRI. Excluded as it is the youngest boulder in a case of geological scatter</td>
<td>14004 ± 620</td>
<td>16192 ± 605</td>
<td>7.0 ± 0.5</td>
<td>-</td>
<td>15125 ± 433</td>
</tr>
<tr>
<td>JRI62</td>
<td>144</td>
<td>63.85960</td>
<td>58.10838</td>
<td>Stonely Point-Kaa Bluff; indicates age of incursion of APIS onto NW shore of JRI</td>
<td>7178 ± 292</td>
<td>9178 ± 597</td>
<td>8.7 ± 0.7</td>
<td>-</td>
<td>7564 ± 262</td>
</tr>
</tbody>
</table>

Table 2
<table>
<thead>
<tr>
<th>Sample</th>
<th>NZ 10Be</th>
<th>NZ 26Al</th>
<th>Global 10Be</th>
<th>Global 26Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRI01</td>
<td>14099</td>
<td>14968</td>
<td>12117</td>
<td>12873</td>
</tr>
<tr>
<td>JRI03</td>
<td>12293</td>
<td>15332</td>
<td>10566</td>
<td>13186</td>
</tr>
<tr>
<td>JRI09</td>
<td>10105</td>
<td>10766</td>
<td>8687</td>
<td>9264</td>
</tr>
<tr>
<td>JRI26</td>
<td>7355</td>
<td>8703</td>
<td>6321</td>
<td>7486</td>
</tr>
<tr>
<td>JRI29</td>
<td>7107</td>
<td>7067</td>
<td>6159</td>
<td>6083</td>
</tr>
<tr>
<td>JRI35</td>
<td>7000</td>
<td>8081</td>
<td>6019</td>
<td>6955</td>
</tr>
<tr>
<td>JRI49</td>
<td>20909</td>
<td>18739</td>
<td>17951</td>
<td>16096</td>
</tr>
<tr>
<td>JRI50</td>
<td>16309</td>
<td>18851</td>
<td>14004</td>
<td>16192</td>
</tr>
<tr>
<td>JRI62</td>
<td>8351</td>
<td>10670</td>
<td>7178</td>
<td>9178</td>
</tr>
</tbody>
</table>

Table 3
Figure
Sample: JRI 49 Lithology: Granite
Altitude: 360 m Age: 17.7 ± 0.8
Context: Lachman Mesa on hyaloclastite blockfield.

Sample: JRI 26 Lithology: Granite
Altitude: 170 m Age: 6.7 ± 0.3
Context: San Jose pass. Interior ice sheet.

Sample: JRI 34 Lithology: Basalt
Altitude: 244 m Age: 22.1 ± 6.6

Sample: JRI 01 Lithology: Granite
Altitude: 104 m Age: 12.2 ± 0.4
Context: San Carlos Hill. Coastal erratic-rich drift.

Sample: JRI 03 Lithology: Granite
Altitude: 103 m Age: 11.3 ± 0.4
Context: San Carlos Hill. Coastal erratic-rich drift.

Sample: JRI 35 Lithology: Granite
Altitude: 45 m Age: 6.3 ± 0.2
Context: Cape Lachman. Coastal erratic-rich drift.

Sample: JRI 09 Lithology: Granite
Altitude: 39 m Age: 8.9 ± 0.2

Sample: JRI 30 Lithology: Granite
Altitude: 25 m Age: 6.1 ± 0.3
Context: St. Martha Cove. LGM moraine fragment. Interior ice sheet.

Sample: JRI 62 Lithology: Granite
Altitude: 144 m Age: 7.6 ± 0.3
Context: LGM moraine fragment on erratic-rich drift, Kaa Bluff. Coastal erratic-rich drift.

Sample: JRI 50 Lithology: Granite
Altitude: 370 m Age: 15.1 ± 0.4
Context: Lachman Mesa on hyaloclastite blockfield.

Sample: JRI 33 Lithology: Basalt
Altitude: 312 m Age: 19.9 ± 7.3

Sample: JRI 03 Lithology: Granite
Altitude: 103 m Age: 11.3 ± 0.4
Context: San Carlos Hill. Coastal erratic-rich drift.

Sample: JRI 09 Lithology: Granite
Altitude: 39 m Age: 8.9 ± 0.2

Sample: JRI 30 Lithology: Granite
Altitude: 25 m Age: 6.1 ± 0.3
Context: St. Martha Cove. LGM moraine fragment. Interior ice sheet.