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A Review of Uncertainty in Data Visualization

Ken Brodlie, Rodolfo Allendes Osorio and Adriano Lopes

Abstract Most visualization techniques have been designed on the assumption that
the data to be represented are free from uncertainty. Yet this is rarely the case. Re-
cently the visualization community has risen to the challenge of incorporating an in-
dication of uncertainty into visual representations, and in this article we review their
work. We place the work in the context of a reference model for data visualization,
that sees data pass through a pipeline of processes. This allows us to distinguish the
visualization of uncertainty - which considers how we depict uncertainty specified
with the data - and the uncertainty of visualization - which considers how much in-
accuracy occurs as we process data through the pipeline. It has taken some time for
uncertain visualization methods to be developed, and we explore why uncertainty
visualization is hard - one explanation is that we typically need to find another dis-
play dimension and we may have used these up already! To organise the material
we return to a typology developed by one of us in the early days of visualization,
and make use of this to present a catalogue of visualization techniques describing
the research that has been done to extend each method to handle uncertainty. Fi-
nally we note the responsibility on us all to incorporate any known uncertainty into
a visualization, so that integrity of the discipline is maintained.
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1 Introduction

Understanding uncertainty is one of the great scientific challenges of our time. It
impacts on many crucial issues facing the world today - from climate change pre-
diction, to economic modelling, to interpretation of medical data. Visualization is
now well accepted as a powerful means to allow scientists to explore large datasets,
and to present their results to a wider audience. Yet most visualization techniques
make the assumption that the data they are displaying are exact. We may encounter
error bars on graphs, but we rarely see the equivalent on contour maps or isosurfaces.
Indeed the very crispness of an isosurface gives an impression of confidence that is
frankly often an illusion. This is a major issue when visualizations are used in deci-
sion making - such as planning evacuations based on a visualization of the predicted
hurricane path. Indeed as computation power and capability continue to increase we
see a rise in ensemble computing, where many simulations of a phenomenon are
carried out for different initial conditions, or different settings of unknown parame-
ters - leading not to a unique data value, but to a set of values - so-called multivalue
data. There is a growing awareness of the uncertainty problem within the visual-
ization community, and many traditional techniques are being extended to represent
not only the data, but also the uncertainty information associated with the data. We
call this visualization of uncertainty. In addition it is important to realise that, even
if there is certainty about the data, errors can occur in the process of turning the
data into a picture. We call this uncertainty of visualization. In this paper we aim to
review the current state of the art in uncertainty in scientific visualization, looking
at both of these aspects.

There are a growing number of application areas where uncertainty visualiza-
tion is being put to good effect. Here is a brief list, together with relevant cita-
tions: agriculture [38]; astrophysics [42]; biology [22]; climate studies [63, 65]; fluid
flow [10, 34, 58, 75, 81]; geography [1, 24, 26, 29, 33, 48, 51, 52]; geophysics [78];
medicine [41, 49, 66]; meteorology [8, 50, 70]; oceanography [3, 7, 25]; under-
ground assets [11]; visual analytics [20].

Historically the geovisualization community were perhaps the first to realise the
importance of uncertainty. This community have long been concerned with issues
of data quality so that the limitations of the data are understood when looking at
maps. Buttenfield and Beard [15] suggested that:

Computer generated maps, a standard output of GIS, generally imply an accuracy not war-
ranted by the data.

The paper by Goodchild et al [29] presents a view of the 1994 state of art in vi-
sualizing data validity, while MacEachren et al [52] provides a view of the field in
2005. Interest within the scientific visualization community developed rather later:
the paper by Pang et al [60] provides possibly the first significant review of the field.
Important subsequent reviews include the papers by Griethe and Schumann [30] and
by Zuk and Carpendale [80] (who look at the area from the perspective of percep-
tual theory and in particular the work of Bertin, Tufte and Ware), while important
awareness-raising papers are Johnson and Sanderson [37] and Johnson [36] who
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includes the representation of error and uncertainty as one of his top ten research
problems. Recent theses include those of Allendes [2] and Zuk [79].

The structure of our review is as follows. We begin in section 2 with a reference
model for uncertainty visualization that can help us understand where uncertainty
occurs in visualization. We then reflect in section 3 on why visualization of uncer-
tainty, and uncertainty of visualization, are hard problems. We then organise the
main body of the review under a classification similar to that introduced by Brodlie
et al [13] and used and extended by Pang et al [60] in their review. Section 4 in-
troduces the notation and is followed by two sections: section 5 focuses on visual-
ization of uncertain data, where most of the research has been done; and section 6
looks at the uncertainty of visualization.

2 Uncertainty Reference Model

We can understand the different sources of uncertainty by re-visiting the visualiza-
tion reference model presented by Haber and McNabb [32]. In Figure 1, we show
the traditional model of data passing through a pipeline. The first step is to filter,
or reconstruct through interpolation or approximation, creating a model of the en-
tity underlying the data. This model is then passed to a mapping stage, where a
visualization algorithm produces geometry. Finally this geometry is rendered as an
image. Uncertainty occurs at all stages - visualization of uncertainty focusses on the
data stage, while the uncertainty of visualization begins at the filter stage and passes
through to the render stage.
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Fig. 1 Haber and McNabb model: visualization of uncertainty and uncertainty of visualization

data The source of the data may be measurement or simulation. In either case,
the data may have associated uncertainty information - this may be in the form
of a known range of error; or the data may be described as a random variate with
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a given probability distribution; or the data may be multi-valued as a result of an
ensemble of simulations or multiple measurements.

filter The filtering stage builds an empirical model from the data - we are making
plausible inferences from incomplete information. In the case of exact data, the
empirical model is typically created by interpolation - calculating a curve, sur-
face or volume through the given data. Of course uncertainty is introduced here
because we are only guessing at the behaviour between data points. When we
have uncertain data, then a different approach is needed. One option is to take a
representative value at each datapoint (this might be the mean if several possible
values are given), and to associate with it a measure of the uncertainty (perhaps
a standard deviation); the representative is then used as though it were exact, and
interpolation used to create an empirical model, but with the associated uncer-
tainty model attached to it. A variation of this is to estimate the distribution at a
datapoint as a Probability Density Function (PDF), and build an empirical model
as an interpolation of these PDFs. A different option, if we have prior knowl-
edge of the form of the model, is to fit a parameterised form of the model to the
data forming in some sense a best approximation - for example, if the model is
linear, then linear regression would be appropriate; more generally, spline data-
fitting using least-squares will enable a useful approximation to be constructed.
The E02 chapter of the NAG Library is a good source of software for data fitting
(www.nag.co.uk). This second option of data fitting has not been the focus of the
recent uncertainty visualization research, and so we shall not discuss it further
here - but it remains a very important practical approach.

map The map process, or visualization algorithm, where a geometric model is
created, may involve computation that is subject to error - for example the ap-
proximation of curved surfaces by polygons, or the creation of streamlines by
numerical solution of ordinary differential equations.

render The render process which rasterises the geometry involves a discretisation
step that may hide information - for example if the resolution of the output image
is of a lower order of magnitude than the resolution of the data. Here focus and
context ideas might usefully be employed to overcome this difficulty.

Other authors have similarly used the Haber and McNabb model as a reference
for uncertainty, including Pang et al [60], Griethe and Schumann [30], Lopes and
Brodlie [45] and Correa et al [20].

We tend to see the pipeline as a left-to-right output process, with uncertainty
accumulating as data passes through. In interactive work, we also traverse the model
from right-to-left, and uncertainty needs to be borne in mind as we pass back along
the pipeline.

3 Why is Uncertainty So Hard?

Most visualization techniques have been developed, and used, under an assumption
that the given data are exact - and any uncertainty information is not included in the
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picture. While this situation is changing, it has taken a long time. Why is uncertainty
a hard topic in visualization? Here are some possible explanations:

Uncertainty is complex Uncertainty, by its very nature, is a difficult subject. In-
deed as Davis and Keller [24] note, even the terminology is often unhelpful:

The self-referential problem of uncertainty about uncertainty terminology has been a
notable stumbling block in this avenue of inquiry.

A useful step forward here is the typology for uncertainty in geospatially ref-
erenced information presented by Thomson et al [71] (building on earlier work
in standardisation bodies - see [74]). They distinguish nine categories in their
typology: accuracy/error (these are often confusing, and used interchangeably
to refer to difference between observed and true or modelled values, but in this
typology are sensibly combined as a single category), precision (exactness of
measurement), and a number of more qualitative categories - completeness, con-
sistency, currency/timing, credibility, subjectiveness and interrelatedness. A final
category, lineage, covers the provenance information associated with a dataset.
Although this typology is specific to geovisualization, it would be a useful exer-
cise to extend it to the wider area of scientific data visualization - looking perhaps
at further issues introduced by the multiple simulations of ensemble computing.

Uncertainty information is presented in different ways In scientific visualiza-
tion, we are normally presented with a dataset (assuming scalar data for simplic-
ity) fi(x1, . . . ,xn), i = 1,2, . . . ,m, being unique values at a given set of m points
in n-dimensional space. The additional uncertainty information may be supplied
in different ways:

as a PDF Rather than a unique value f , statistical analysis may have resulted
in data at each point being provided as a random variate, F say, with Proba-
bility Density Function (PDF), g(F), where

Pr(a≤ F ≤ b) =
∫ b

a
g( f )d f

as multivalue data If the data results from several simulations as in ensemble
computing, or from several physical measurements of the same entity, then we
will have many values at each datapoint. That is, we will have p values at each
point:

f j
i (x1, . . . ,xn), j = 1,2, . . . , p

This data can then be passed for visualization as a multivalued dataset, or a
PDF can be estimated from the data (in which case we generate a PDF, and
we have the case above).

as bounded data Sometimes the data may be given simply as falling within
finite bounds. Olston and McKinlay [57] refer to this as bounded uncertainty
to contrast with statistical uncertainty, where we do not know bounds but we
know the probability distribution, typically normal with mean and standard
deviation (i.e. the PDF case above).
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Uncertainty propagates When we calculate with uncertain data, we propagate
the uncertainty. In the pipeline of Figure 1, the original data goes through a num-
ber of transformations before an image is created. We need to understand how
to propagate uncertainty in the data, through to uncertainty in the image. Careful
mathematics and statistics are required, and a good primer is the NPL report by
Cox and Harris [21]. The propagation problem can be stated formally as follows:
given a model Y = g(X) where X = (X1, . . . ,Xn)

T , and the Probability Density
Functions fXi(xi) for the input quantities Xi, with i = 1, . . . ,n, determine the PDF
fY (y) for the output quantity Y . Occasionally this can be solved analytically, but
often a Monte Carlo approach is required.
In the context of visual analytics, Correa et al [20] describe uncertainty propaga-
tion for two common data analysis operations: Principal Components Analysis
and clustering using k-means.

Uncertainty adds a dimension to the visualization The most elementary exam-
ple will illustrate this. A single data point (2,8.8) is plotted in Figure 2 - the
marker is zero-dimensional, i.e. a point. But if there is uncertainty in the y-value,
say 8.8± 0.3, then adding an error bar increases the dimension by one, as the
marker becomes a line. (The dimension of the data remains the same - i.e. zero
- but we have required an extra dimension in the visualization to display the
additional uncertainty variable.) Similarly we shall see that isolines with uncer-
tainty become areas, and isosurfaces become volumes. For lower dimensions this
poses little problem - but on a two-dimensional display surface, we have enough
problems visualizing exact 3D or higher dimensional data without introducing
another dimension for uncertainty.
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Fig. 2 Error Bars add a dimension: the point becomes a line

Even if we do not increase the spatial dimension, we still need to find a ‘dimen-
sion’ from somewhere. Various ideas have been tried with varying degrees of
success:

juxtaposition A common approach is to provide a visualization of the un-
certainty in a separate picture, alongside a standard representation (perhaps
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showing a standard deviation plot alongside a mean value plot). See for ex-
ample Aerts et al [1].

animation A number of authors have used animation, making use of time
as an extra dimension. A simple example is to replace the above juxtaposi-
tion approach with a toggle facility, where the user can swap between the
normal view and a view of the associated uncertainty. Experiments by Aerts
et al [1] showed that in fact juxtaposition was better than toggling. Another
use of animation is to display a sequence of different possible realisations
of a model. For example, looking at uncertainty in Digital Elevation Mod-
els (DEMs), Ehlschlaeger et al [26] create a sequence of different realisations
of a given DEM, and then generate in-between frames in order to produce a
smooth animation showing the range of possibilities. Animation must be used
carefully - Brown [14] gives a good overview of the pitfalls, and suggests a
useful ‘vibration’ technique, again illustrated on DEMs. In medical visualiza-
tion, animation has been used by Lundstrom et al [49].

overlay With some visualizations, it is possible to overlay a visualization of
uncertainty on top of the normal visualization. For example, Bingham and
Haines [7] overlay a contour map of an error field on top of a heatmap of the
mean value of a multivalue dataset.

sound There were a number of early attempts to use sound to encode uncer-
tainty - see Lodha [43] and Fisher [28]. A difficulty is that sound is essentially
a local feature (you get feedback on uncertainty at a point), whereas images
give a global view - perhaps this explains why there seems to have been little
recent work on using sound.

colour A number of authors have experimented with use of the hue, satu-
ration, value components of colour to encode uncertainty. See for example
MacEachren [51], and Hengl [33] who adds white to indicate degree of un-
certainty.

Uncertainty tends to dominate certainty In most natural visual representations
of uncertainty, the greatest emphasis is placed on data of greatest uncertainty.
Consider error bars: long bars correspond to high uncertainty. However as
Hlawatsch et al [34] note in the context of fluid flow, it is sometimes areas of
certainty that are more important.

Uncertainty adds another discipline Some of the best visualizations have been
created by multidisciplinary teams, bringing together domain scientists, numeri-
cal analysts, visualization scientists and artists. See for example the storm cloud
visualizations from NCSA (access.ncsa.illinois.edu/Stories/supertwister/index.htm).
There is a further discipline to be added now: statistics is the branch of mathe-
matics that deals with uncertainty, and we need increasing collaborations with
statisticians in order to improve the rigour of uncertainty visualization.

The above reasons help to explain why visualization of uncertainty is hard. But
the area of uncertainty of visualization is difficult too, perhaps for the following
reason:
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Linearity adds uncertainty Computer graphics hardware - from early graph
plotters to current graphics cards - encourages the approximation of curves and
surfaces by straight lines and triangles, inevitably introducing error.

4 Notation

In this section we re-visit an early attempt to classify scientific visualization algo-
rithms by Brodlie et al [13] in 1992. This work saw data as discrete items being
sampled from some underlying entity, and visualization as the process of viewing a
continuous empirical model built from the data. The classification was based on the
dimensions of the independent variable (often spatial or temporal), and the type of
dependent variable - point, scalar, vector or tensor. The classification has since been
extended by a number of authors, notably Tory and Moller [72] who have extended
the work to information visualization, and Pang et al [60] who used it for uncertainty
visualization classification.

An E notation was introduced in the 1992 paper, with a subscript indicating the
number of independent variables and a superscript indicating the type of dependent
variable. Thus:

ES
1

represented a model of a scalar function of one variable, such as temperature mea-
sured over time. In the case of multifield data, where there are several variables at a
datapoint, the notation extends to, for example:

EkS
1

for k variables, such as temperature, pressure, . . . . In the original work, the character
E had no real meaning (other than underlying Entity) and was redundant. With
serendipity, we now interpret it as ‘Exact’, to act as a notation for certain data. For
uncertain data, we simply replace E by U .

The following table organises the main visualization algorithms according to this
classification. We subdivide the scalar class into three distinct approaches: embed,
where we place the visualization into a higher dimensional display space (e.g. a
surface view where we view a 2D data set in a 3D space); dense, where we view
the data at every point in the domain; and sparse, where we extract an important
feature such as a contour line. For vector visualization, we follow the subdivision
suggested by Post et al [61]: direct, dense, geometric and feature–based. The table
is not complete - there are many more visualization techniques to include - but it
acts as a roadmap for the techniques that have been enhanced to include uncertainty
and are discussed in this article.
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Table 1 Classification of Techniques - Key: SP = Scatter Plot; PC = Parallel Coordinates; CSV =
Coloured Surface View
Dim Point Scalar E/US Multifield Vector E/UV

E/UP embed dense sparse kE/US direct dense geometric feature
E/U0 Point SP & PC
E/U1 Graph Col Line
E/U2 Markers Surface view Heatmap Contour CSV Glyphs LIC Particles Topology
E/U3 Vol Render Isosurface IBFV Streamlines

5 Visualization of Uncertainty

5.1 Introduction

In this section we review the efforts that have been made to extend existing ‘exact’
visualization techniques to cater for uncertainty information. To organise this large
body of research, we use the U notation of the previous section.

5.2 Point Data UP

Occasionally the underlying entity is simply a collection of points in nD space, with
no dependent variable associated with the points. An example in 3D would be the
positions of stars in the universe, which are typically described in terms of a distance
component (along line of sight from earth) and equatorial coordinates (RA,Dec)
to describe the direction. Li et al [42] consider this very problem: uncertainty in
distance is much greater than in RA/Dec, and so error bars on the line of sight are
possible, or an ellipsoid centred on the star if the RA/Dec component is important.

5.3 Scalar Data US

5.3.1 Zero dimensional data US
0

This is the very simple case: with exact data, we are just plotting one point! In
the uncertain case, we are typically presented with many observations of a sin-
gle scalar variable. A standard uncertainty visualization is the boxplot proposed by
Tukey [73], showing the five summary statistics of upper and lower bounds, upper
and lower quartiles and median. See Figure 3 which takes the data point of Figure 2
and assumes now that a large number of measurements have been made - notice the
dimensionality increase in the visualization as uncertainty is added - rectangle, lines
and outlier point rather than just a point (arguably the rectangle is only 1D as its
width is not significant). There have since been many extensions and modifications
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(see Potter et al [64] for a review, and suggestion of a summary plot which incor-
porates further descriptive statistics such as skew and kurtosis). Cumming et al [22]
provide important guidelines for the use and interpretation of error bars.
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Fig. 3 Tukey box plot - on left, a single point represents the exact observation; on right, the un-
certainty of multiple observations is summarised as rectangle, line and outlier point, an increase of
display dimension

5.3.2 One dimensional data US
1

Embed - Graph This is the ubiquitous one-dimensional graph - probably the
most common of all visualizations. There are a variety of ways that an indication
of uncertainty can be added: error bars can be added to the data point markers, or
the markers themselves can encode the uncertainty through size or colour of the
glyph. A continuous model of uncertainty can be provided by colour coding the
graph itself, using an uncertainty colour map. Sanyal et al [69] compare differ-
ent approaches: their user study found different methods were best depending on
whether the task was to locate least uncertainty (glyph size best) or highest un-
certainty (colour best). Figure 4 shows two examples from their study: showing
uncertainty by glyph size and by graph colour, in the latter case using different
levels of saturation of blue following the early suggestion of MacEachren [51].

5.3.3 Two dimensional data US
2

Embed - Surface Views When surface views are used, the third space dimension
is used for the visualization itself, and so another ‘dimension’ is needed for uncer-
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Fig. 4 Examples from Sanyal et al user study [69]: (a) glyph size; (b) graph colour. Images kindly
created for this article by J. Sanyal and R.J. Moorhead

tainty. The time dimension is commonly used and animated effects are described
by Ehlschlaeger [26] and Brown [14].
Sanyal et al [69] do a similar study as for 1D graphs mentioned above. They ex-
amine adding glyphs at the data points on the surface, varying size and colour;
adding error bars to the surface; and colour mapping the surface with an uncer-
tainty measure. Here surface colour worked well, except for counting of uncer-
tainty features - where possibly perception of the shape of the mean surface was
affected by the uncertainty colour mapping.

Sparse - Contouring There are two distinct approaches to the visualization of
uncertainty in contouring. The first is to draw a crisp isoline of the mean, and
overlay some indication of uncertainty of the data, say standard deviation. The
second is to draw some indication of the spread of contour lines that is possible
for a given threshold. The first is showing uncertainty in the value of the de-
pendent variable, along the mean contour; the second is showing the uncertainty
in the space of the independent variable, for a given threshold. We call the first
value uncertainty, and the second positional uncertainty.
Value uncertainty is explored in Sanyal et al [70]. They draw uncertainty ribbons
in which the thickness of the ‘mean’ contour lines gives an indication of the
relative uncertainty at that point on the contour. Another possibility (not tried to
our knowledge) is to simply colour the contour lines with a measure of the value
uncertainty.
Positional uncertainty has been studied by a number of researchers. The standard
approach of meteorologists for example is to draw a spaghetti plot, in which a
contour line is drawn for each model in an ensemble. Sanyal et al [70] and Potter
et al [65] describe the use of spaghetti plots - the former comparing spaghetti
plots with uncertainty ribbons, and discussing the merits of value and positional
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uncertainty visualization. Juang et al [38] use juxtaposition to look at contour
plots from different realisations of a model.
Allendes and Brodlie [3] take an image-based approach to positional uncertainty,
identifying pixels where the probability of a value close to the contour threshold
is sufficiently high. This gives a contour band - an area rather than a line, showing
again the dimension increase that comes with uncertainty visualization. In con-
trast to the uncertainty ribbons in [70], the width of the band indicates positional
rather than value uncertainty. In a further variation, by mapping the probability to
intensity, a fuzzy contour effect is produced, with high intensity indicating high
probability of a contour passing through the pixel.
Pöthkow et al [62] describe a similar method: from a set of gridded data, defined
as random variates with associated PDF, they interpolate to gain a PDF defined
continuously over the domain; at any point, they calculate the probability of tak-
ing two samples from the distribution, and having one sample greater than the
contour threshold, and the other less. This too gives a fuzzy contour effect. The
method depends on the assumption that the data at grid points is independent.
This is rarely the case: in an ensemble situation, if the value from one model at a
data point is greater than the ensemble mean, then it is likely that the model will
similarly be above the mean at adjacent datapoints. Therefore in a subsequent
paper Pöthkow et al [63] take the spatial correlation of the data into account; the
effect is to sharpen the areas of uncertainty.
There is one further method which does not fall neatly into either category. Love
et al [48] consider the situation where it makes sense to regard not just the data
as a random variate, but also the threshold. They look for the greatest similarity
between the distributions of data and the distribution of threshold. These give
edge intersections which are linked as in normal contouring.
In order to illustrate some of these ideas, we make use of an oceanography case
study, described by Bingham and Haines [7]. The study of Ocean Dynamic To-
pography (ODT), the height of the sea surface above its rest state (the geoid), is
of importance to oceanographers, as it allows them to understand the circulation
patterns of oceans and the associate surface currents, one of the main players
in the regulation of the Earth’s climate. Calculation of the ODT is difficult and
so scientists focus on computation of the associated Mean Dynamic Topography
(MDT). Several models for calculation of the MDT exist; Bingham and Haines
collected data from eight such models, allowing them to calculate an average
value, together with a formal estimate of the error. In their paper they use an
overlay approach, in which the contours of the average MDT are overlaid on a
heatmap of an error field.
We shall use a simple method for positional uncertainty, and apply it to this prob-
lem, working directly with the ensemble data rather than estimating PDFs. Since
we can interpolate each model, we assume we have values for each model ev-
erywhere in the domain. At any point, we will wish to test the null hypothesis
that the data comes from a distribution whose mean value equals the contour
threshold, say zero: i.e.

H0 : m = 0
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The alternative hypothesis is non-directional:

H1 : m 6= 0

A t-test is applied to test the hypothesis and leads to two uncertain contour repre-
sentations: a contour band, similar to that of Allendes and Brodlie [3], where the
95% confidence interval is displayed, that is, all points where the null hypothesis
would not normally be rejected (see Figure 5); and a fuzzy contour, where the
value of the t-statistic is mapped to a colour scale between sea-blue and black,
giving an inky effect (see Figure 6). For comparison, Figure 7 shows a spaghetti
plot of all eight models. (Note that we only do the calculation at points where we
have data from all eight models - hence the ‘unusual’ geography in places!)

Fig. 5 Contour band: This shows the extent of the 95% confidence interval for the zero contour,
with the zero contour for the average data at each point shown for comparison.

Fuzzy Contour with Mean : t−test

Fig. 6 Fuzzy contour: This shows the value of the t-statistic from the hypothesis test with a colour
mapping from sea-blue to black based on the size of the t-statistic.
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Fig. 7 Spaghetti Plot: zero contours from each of the eight individual models, superimposed on
95% confidence band

Finally note that it would be possible to combine both positional and value un-
certainty in a single representation - for example by modifying the contour band
shown in white in Figure 5 so that a measure of the value error (say, standard
deviation) was colour mapped on to the band.

Dense - Heatmap A heatmap uses colour mapping (sometimes called pseudo-
colouring) to visualize a scalar function over a 2D region. Various approaches
have been suggested for uncertainty: a straightforward idea is to map uncertain
data to a derived scalar such as mean or standard deviation (see for example Love
et al [48]); Hengl [33] suggests addition of whiteness in areas of uncertainty;
Cedilnik and Rheingans [17] superimpose a grid where the grid lines are subtly
modified to indicate uncertainty (for example, through mapping uncertainty to an
intensity/width combination); Coninx et al [18] add Perlin noise effects.

5.3.4 Three dimensional data US
3

The problem gets harder! The three space dimensions are already in use for the
normal, ‘certain’, visualization, either by isosurfacing or volume rendering, and so
the uncertainty problem becomes challenging. Embedding is no longer an option.

Sparse - Isosurface The approaches here mirror those for contouring. Again
there is a choice between visualization of value uncertainty (mean isosurface
with indication of uncertainty in data), or positional uncertainty (indication of
the spread of isosurfaces possible for the defined threshold).
For value uncertainty, the ‘mean’ isosurface can be enhanced with an indication
of uncertainty, either through colour (Rhodes et al [68]) or glyphs (Newman et
al [55]). Grigoryan and Rheingans [31] displace surface points in the direction of
the surface normal, by a distance proportional to the uncertainty.
Positional uncertainty of isosurfaces has been addressed by the same researchers
who studied positional uncertainty in contouring, as the extensions are straight-
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forward: see the thesis of Allendes [2], and the papers by Pöthkow et al [62]
and [63], the second incorporating spatial correlation. The fuzzy contours from
the 2D case become fuzzy regions in 3D. Perception gets harder as the dimen-
sionality increases, and the addition of a crisp, opaque isosurface of the mean
of the data is necessary. Figure 8 shows uncertain isosurfaces using the methods
of [62] and [63]: in (a) the isosurface is drawn without taking spatial correlation
into account, while in (b) the use of spatial correlation gives a more localised
spatial distribution of the uncertain isosurface.

K. Pöthkow & B. Weber & H.-C. Hege / Probabilistic Marching Cubes

(a)

(b)

Figure 8: Uncertain isosurfaces ϑ = 0◦C in a 3D temperature field. In Fig. (a) the probabilities computed using the formulation
in [PH10] (not considering correlation) are shown. For Fig. (b) correlation was considered and the level crossing probabilities
reveal a more localized spatial distribution of the uncertain isosurface.

cases. This property is shared by both the approach pre-
sented here and the one from [PH10].

Due to the consideration of correlation our approach leads
to more accurate results compared to [PH10]. In contrast
to [PH10] we associate a probability for the existence of a
level crossing with each cell (of each dimension 1, ..., d)
in some grid and not with every point in a continuous do-
main. To compute level crossing probabilities for rectangles
or cuboid cells, we solve 4- or 8-dimensional integrals us-
ing a Monte Carlo method. This is computationally more
expensive than the evaluation of the analytic formulas used
in [PH10] (partly as approximations). In special cases where
the input data contains spatially uncorrelated distributions or
the correlation structure can be safely omitted the approach

in [PH10] should be preferred because of greater simplic-
ity and speed. In case a correlation structure is known and
realtime computation is not required our approach should
be preferred to get more accurate results. The Monte Carlo
computations are embarrassingly parallel. Currently, we are
working on an efficient implementation for GPUs and expect
that this will improve performance significantly.
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Fig. 8 Uncertain isosurfaces: these are drawn using the methods of [62] and [63]: in (a) the iso-
surface is drawn without taking spatial correlation into account, while in (b) the use of spatial
correlation gives a more localised spatial distribution of the uncertain isosurface. We are grateful
to the authors for permission to use this picture which first appeared in [63]
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Zehner et al [78] look at both value and positional approaches: in their value
method, they extend Hengl’s [33] idea of saturation mapping to indicate standard
deviation; in their positional method, they construct three isosurfaces (mean, up-
per and lower bounds of a confidence interval), drawing the mean isosurface plus
rays emanating from this to the upper and lower surfaces. Finally Love et al [48]
extend their contour method that matches a target distribution for the threshold
with the distribution of the data.

Dense - Volume Render This is a rather difficult technique to extend, since it
already uses all three space dimensions plus colour and opacity. Early work by
Djurcilov et al [25] explored two approaches: first, the transfer function used in
volume rendering was modified to map data to colour and uncertainty to opacity;
second, a post-processing step was added to incorporate special effects (holes,
noise, texture) in areas of uncertainty.
Not surprisingly, the time dimension has also been exploited, for example by
Lundstrom et al [49]. Their application is to medical visualization where they
note different transfer functions (used because the classifications are uncertain)
may give different indications of how wide a vessel might be. Clinicians will
generally try different preset transfer functions in order to make a decision on the
stenosis. Lundstrom et al work from a probabilistic classification model, where
explicit material probabilities are assigned to each CT value. An animation is
then produced where areas of confident tissue classification appear static, while
uncertain parts change with time. In a user trial, radiologists came close to per-
forming as well with the single animation, as with lengthy experimentation with
different transfer functions.
Segmentation uncertainty is also considered in Kniss et al [41] and Prabni et
al [66].

5.4 Multifield Scalar Data kUS

5.4.1 Zero dimensional data UkS
0

This is the case of multivariate data where we have measurements of a set of vari-
ables, but no specific dependency on space, time or anything else. It is often visu-
alized as a scatter plot, but is essentially a different datatype to UP. Parallel coor-
dinates is another popular technique. Uncertainty has been incorporated into scatter
plots and parallel coordinates by Xie et al [77] who compare different visual encod-
ings such as hue, and by Feng et al [27] , who use density plots based on representing
the data as PDFs.
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5.4.2 Higher dimensional data UkS
>0

There is increasing interest in the visualization of multifield data defined over 2D
and 3D domains, sometimes with time as an additional dimension - see for exam-
ple, Janicke et al [35]. It is not easy to find visualizations that represent sensibly in
a single picture a number of separate variables.The addition of uncertainty makes
the problem even harder. Consider for example one of the simplest cases of multi-
field visualization, where we use a surface view to depict a 2D dataset, with height
representing one variable and colour representing another. The use of colour for
the second variable prohibits us using colour for uncertainty information about the
first variable, as mentioned earlier in section 5.3.3. This is an interesting challenge.
Advances in multifield visualization may help uncertainty visualization (because an
uncertainty measure such as standard deviation can be treated as an extra variable),
and vice versa.

5.5 Vector Data UV

5.5.1 Two dimensional data UV
2

Direct - Glyphs Glyphs in the form of arrows provide a simple 2D vector visu-
alization technique, especially for steady flows. Wittenbrink et al [75] consider
carefully the design of uncertainty glyphs, proposing an arrow shape that widens
to indicate uncertainty in bearing, with extra arrow heads for uncertainty in mag-
nitude. Zuk et al [81] re-visit the topic for dense, bi-directional fields.
For unsteady flow, glyphs can be animated but the load placed on the human
memory is considerable, and certainly challenging when uncertainty is added.
Hlawatsch et al [34] suggest a static glyph representation for unsteady flow: a
glyph in the form of a small curve is traced out in polar coordinates at each data
point, with the direction mapped to angle, θ , and time mapped to radius, r. For
uncertainty, curves can be drawn for the upper and lower bounds of the sequence
of angles over time, and the area between the curves shaded to give an indication
of the range of directions at each data point.

Geometric - Particle advection and streamlines Euler’s equation gives a very
simple (but not always accurate) means of calculating particle paths in a flow
field:

xn+1 = xn + v(xn)∗∆ t (1)

where xn is position at time step n, v(x) is the velocity at x and ∆ t is the timestep.
With uncertain data, we can think of v(x) as a random variate with associated
PDF (perhaps estimated from multivalue data). Luo et al [50] and Love et al [48]
suggest a number of approaches:
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1. a representative scalar can be used at each step, for example the mean of the
distribution, and the particle path constructed as normal, without any indica-
tion of uncertainty

2. a set of paths (e.g. corresponding to the multiple values in case of multivalue
data) are followed from the seed-point for the first time-step; then the centroid
of the resulting end-points is calculated and used to initiate another set of
paths, and so on

3. equation 1 is interpreted directly in terms of PDFs, and generates a result
at each time step which is a PDF - a simple means of adding two PDFs is
suggested.

Although Euler’s method is used here for simplicity, it would be straightforward
to extend to, say, Runge-Kutta.

Dense - Texture-based approaches A number of important approaches use tex-
tures to give a visual impression of the flow field: either as a dense, noise-like
pattern or as a sparse effect produced from a simulation of injecting dye. A lead-
ing method is Line Integral Convolution, or LIC, in which a dense texture is cre-
ated by considering a random noise pattern, and integrating the noise forwards
and backwards along streamlines through a pixel. The effect for surface veloc-
ity in the ocean example of section 5.3.3 is studied in Allendes and Brodlie [4].
They explore different ways of encoding uncertainty within LIC: by varying the
frequency of the noise pattern (low frequency - giving blur - is used for high
uncertainty); with colour, by assigning hue to uncertainty, and lightness to nor-
mal LIC; and by adding fog to indicate uncertainty. Figure 9 shows the effect of
colouring the LIC.

Fig. 9 Uncertain LIC: here hue is used to encode the uncertainty while lightness is used to repre-
sent the LIC computation.

Another popular texture approach is based on semi-Lagrangian texture advec-
tion. An example is Image-Based Flow Visualization (IBFV), in which texture
is advected by the flow field and a visualization created by blending successive
frames to show flow lines. Allendes [2] explores the use of multiple frequen-
cies (as in LIC); he also connects the opacity used in blending with the level
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of uncertainty in order to blur flow lines in areas of high uncertainty. Similarly,
Botchen et al [10] explore the incorporation of uncertainty into semi-Lagrangian
methods: in two of their methods, they apply a post-processing step which has
a smearing effect proportional to the uncertainty - either by adding an advection
perpendicular to the flow, or by diffusing in all directions; in a final method, pre-
rather than post-processing, they also use multi-frequency noise. An advantage of
the post-processing methods is that they work both for dense and sparse texture
effects.

Feature - Topology-based methods An increasingly important set of methods
focus on identifying the topological characteristics of the flow field. This enables
a global view to be taken, in which critical points (zero velocity) are identified
and the domain is segmented into regions with common flow behaviour. Otto et
al [58] have extended the topological analysis to the case of uncertain flow data.
Faced with the particle advection difficulty of uncertain velocities in equation 1,
they consider streamline integration not in terms of a single particle at point (x,y)
but rather a particle density function defined over the whole domain. This density
function is then advected in the flow. With an initial distribution concentrated at a
seed point, the integration will typically converge to a ‘critical point distribution’.

5.5.2 Three dimensional data UV
3

The work on uncertain 2D flow visualization largely carries forward into 3D. So for
example, Otto et al [59] extend their 2D topological analysis to the 3D case. The
trajectory of stars is studied by Li et al [42] where cones are used to visualize the
range of possible trajectories - over 50,000 years!

6 Uncertainty of Visualization

Even when we are certain about the data, we may introduce uncertainty when we
generate a visualization. We take a brief look at this area now. There are two aspects:
at the filter stage, we incur error when we build an interpolant from the data as an
empirical model of the true entity; and in the map and render stages, we incur error
when we represent the model in a visualization. Again we use the classification of
section 4, although Point Data in this case is trivial so we omit it.
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6.1 Scalar Data ES

6.1.1 One dimensional data ES
1

Interpolation plays a major role in scalar visualization - it lets us see not only the
data but also suggests the behaviour where there is no data. A simple 1D example
(used before - see Brodlie [12] - but still relevant) highlights this. Consider coal
burning in a furnace, with the percentage of oxygen measured in the flue gas. Data
is collected at intervals of time, as shown in Table 2. The perils are illustrated in
Figure 10. The top left image shows just the data; top right is a piecewise linear
interpolant - but do we really believe the rate of change of oxygen jumps dramati-
cally at each data point?; bottom left shows a smoothly changing model, using cubic
spline interpolation - but how can we have a negative percentage of oxygen?; bottom
right is more credible - but still just an estimate.

Table 2 Oxygen in flue gas

x (time in mins)
0 2 4 10 28 30 32

y (% of oxygen) 20.8 8.8 4.2 0.5 3.9 6.2 9.6

6.1.2 Two dimensional data ES
2

In 2D, bilinear interpolation dominates for rectangular gridded data. For contour
drawing, this gives contour lines that are hyperbolas. Graphics systems tend to
work in straight lines and so an approximation to the hyperbola is made, often very
crudely by joining the intersections of the contour lines with cell edges. Lopes and
Brodlie [46] show the sort of error that can occur. The calculation of edge intersec-
tions can itself be a difficult task numerically: if the values at the end points of an
edge are close to each other, and close to the threshold, the intersection calculation
is ill-conditioned, as Pöthkow et al [62] demonstrate.

Higher order interpolation can be used - Preusser [67] provides a bicubic con-
touring routine.

If the grid is triangular, linear interpolation can be used - resulting in straight line
contours.

6.1.3 Three dimensional data ES
3

In isosurfacing, the normal practice is to use trilinear interpolation to build an empir-
ical model inside each cell of a rectilinear grid. This again causes difficulty further
down the pipeline: the shape of an isosurface is complex and hard to represent con-
sistently using the triangular facets required by typical graphics systems such as
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Fig. 10 Perils of interpolation: oxygen burning in furnace - top left is data; top right is piecewise
linear (with sharp changes in slope); bottom left is smooth spline, but how can a percentage be
negative?; bottom right is a monotonic curve, credible because positive, but is minimum at 10
minutes exactly?

OpenGL (see, for example, Lopes and Brodlie [47] who also explore issues of ro-
bustness - for example, how sensitive the representation of the isosurface is to small
changes in the threshold).

Again, tetrahedral grids allow linear interpolation and triangular facet isosur-
faces. Thus for rectilinear grids, it is tempting to split each cell into a set of tetrahe-
dra in order to simplify the isosurface construction. Beware! Carr et al [16] nicely
demonstrate the different results obtained when various different tetrahedral decom-
positions are used. Figure 11 shows the visual artifacts created from isosurfacing a
test dataset; the data is sampled from a sum of nine Gaussians with most of the peaks
aligned in a zig-zag pattern along the grid, the ‘ground truth’ isosurface being a set
of spheres. Subimage (a) shows a marching cubes visualization - piecewise linear
approximation to trilinear interpolation on rectangular cells; subimages (b) and (c)
both show piecewise linear interpolants after cell subdivision into five tetrahedra,
but doing the subdivision in two, different, equally plausible ways; subimages (d)
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and (e) show piecewise linear interpolants after cell subdivision into six tetrahedra,
but using different major diagonals of the cell to do the split. Each image (b) - (e)
in Figure 11 uses the same data, uses the same interpolation (piecewise linear), but
shows quite different results. Further subdivisions, illustrating further artifacts, are
included in the paper.

!"#$

!%#$

!&#$

!'#$

!(#$

Fig. 11 Effect of simplicial subdivision on isosurfaces: subimage (a) shows a marching cubes visu-
alization - piecewise linear approximation to trilinear interpolation on rectangular cells; subimages
(b) and (c) both show piecewise linear interpolants after cell subdivision into five tetrahedra, but
doing the subdivision in two, different, equally plausible ways - notice the different topologies
that result; subimages (d) and (e) show piecewise linear interpolants after cell subdivision into six
tetrahedra, but using different major diagonals of the cell to do the split. Images kindly created for
this article by H.Carr

It can be frustrating for scientists who carry out simulations using higher order
approximations, to find that linear approximations are required in order to visual-
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ize their results - with consequent loss of accuracy. Thus there is growing interest
in being able to pass the higher order data through the visualization pipeline. For
example, Nelson and Kirby [53] show how isosurfaces can be drawn by direct ray-
tracing of high order finite element data. The cost is a loss of interactivity compared
with sampling on a ‘fairly well-spaced’ mesh and using marching cubes with its
piecewise trilinear interpolation. However Nelson and Kirby show that for high ac-
curacy it is better to ray trace the high order data directly, than to run marching cubes
on a very finely sampled mesh. Subsequent work by the authors [54] demonstrates
interactivity is possible for cut surfaces (ie ES

2 ) extracted from high order finite el-
ement data, and visualized using GPU hardware; however, accurate and interactive
isosurface rendering of high order data remains a challenging topic.

6.2 Multifield Scalar Data kES

Interpolation is important in design studies, where there are a number of parameters
as independent variables, and a number of values that are calculated and used in
multiobjective optimization. Visualization can be used to guide the optimization
process by showing models of the objective functions, interpolated from sample
values. Often however the calculation of a sample can be a major task, and so the
data points have to be chosen with care. Wright et al [76] show how visualization
can help steer the selection of good sample points. Berger et al [5] use statistical
learning techniques to improve the process, and provide sensitivity analysis.

6.3 Vector Data EV

For vector data, we again require interpolation. In some applications involving flow,
interpolation error is a long standing issue. For example, in meteorology, Kahl and
Sampson [39] describe how substantial errors in spatial and to a lesser extent tem-
poral interpolation can lead to false conclusions about air pollution. More recently,
Boller et al [8] perform a study in which they aim to bound the interpolation error in
each grid cell and visualize the resulting uncertainty as ribbons of varying thickness
around the estimated path.

For particle advection methods, there is the additional step of numerical integra-
tion in order to calculate the path over time. Lodha et al [44] explore a number of
approaches to visualizing the error in the integration, such as creating a ribbon be-
tween a pair of streamlines generated by different integration methods (Euler and
Runge-Kutta). Similarly, Lopes and Brodlie [45] use the error estimates provided
by NAG Library ODE solvers to provide indications of trajectory errors; figure 12
shows an envelope of trajectories formed by re-integrating with a smaller tolerance.

As in the scalar case, there is a very useful simplification for triangular or tetra-
hedral meshes. If we use linear interpolation in such cells, it is possible to solve the
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Fig. 12 Uncertainty of Particle Advection: the yellow tube indicates an envelope within which the
exact path might lie, based on integrating with different tolerances.

ODE analytically, removing the need for numerical integration. This idea is due to
Nielson and Jung [56], and has been further developed by Kipfer et al [40] and by
Bhatia et al [6].

Accurate particle advection for high order data has been studied by Coppola et
al [19].

7 Conclusions

We have reviewed the state of the art in uncertainty visualization, looking at both
the visualization of uncertainty of data and also the uncertainty of the visualization
process itself. We have seen that the visualization research community has enthusi-
astically taken up the challenge of uncertainty and most of the popular visualization
techniques have been extended in some way to handle uncertain data. There is some
way to go however before these techniques are standard facilities in visualization
software toolkits.
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A measure of the increasing interest in uncertainty visualization is that another
state-of-the-art paper is underway, following discussions at a Dagstuhl seminar in
2011 [9]; it will act as a companion paper to this review.

There remain significant research challenges ahead. While incorporation of un-
certainty into 1D and 2D visualization, both scalar and vector, is relatively straight-
forward, there are difficult perceptual issues in adding an indication of uncertainty
in 3D. There is also work to be done in linking uncertainty and risk: Daradkeh et
al [23] for example look at the influence of uncertainty associated with the input
variables of a model, on the risk associated with decision-making. In this review we
have looked separately at visualization of uncertainty, and uncertainty of visualiza-
tion: we need to study how both can be incorporated in a single representation.

We have mentioned that uncertainty is hard. But it is simple to ignore. Fred
Brooks, in a keynote address to the IEEE Visualization conference in 1993, re-
minded the audience of the need to present data honestly - while in some areas,
such as realistic rendering, there is a ground truth against which the correctness of
an image may be judged, in visualization we rely on the integrity of the visual-
ization scientist. This gives us the responsibility to include in our visualizations an
indication of the reliance we may place on the picture we have drawn.
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