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Abstract. The necessary physical conditions for develop-
ment of the ion-acoustic instability in the chromospheric part
of a flaring loop current circuit are investigated. Two possi-
ble scenarios have been studied. First, we consider that pre-
flare loop plasma with the large-scale sub-Dreicer electric
field has a classical Coulomb conductivity and, second, when
anomalous resistance appears due to saturation of Bernstein
turbulence. The Fontenla-Avrett-Loeser (FAL) model of the
solar atmosphere was used to describe the pre-flare plasma.
We have shown that investigated instability can grow and
develop either in the presence of the Coulomb conductiv-
ity or saturated Bernstein turbulence. We demonstrate that
in the case of small-scale instability, the threshold value for
the degree of nonisothermality is high and, therefore, cannot
be reached by inclusion of the ordinary Joule heating. The
ion-acoustic instability can develop at the pre-flare loop foot-
points provided the electrons are more than 10 times hotter
than the ions there.

Keywords. Solar physics, astrophysics, astronomy (photo-
sphere and chromosphere)

1 Introduction

The problem of the solar atmosphere heating is directly
linked to the studies of coronal magnetic loops (see e.g.
Ionson, 1978; Duijveman et al., 1981; Holman, 1985;
Fontenla et al., 2008; Gogoberidze et al., 2009, for details).
Based on Vohkoh, SOHO and TRACE observational data,
Aschwanden(2001) proposed two strategies for the further
investigation of a heating problem: “(a) the inclusion of the

chromosphere and transition region in conventional AC and
DC models and (b) the exploration of magnetic reconnection
models at lower heating efficiencies than in solar flares. Be-
cause coronal holes and the quiet Sun demand two orders
of magnitude less heating than the coronal part that is topo-
logically connected with active regions, the solution of the
coronal heating problem has to be focused on the footpoint
heated, filled, and over dense active region loops.”

The presence of a wide range of plasma instabilities in the
solar atmosphere has been reported byMcClements(1989)
(Langmuir wave instability), Fontenla (2005) (Farley–
Buneman instability (FBI)),Voitenko and Goossens(2002)
(kinetic Alfvén wave instability), etc. Some of these insta-
bilities were studied in the context of the possible energy
dissipation mechanisms (i.e. as processes) which are re-
sponsible for heating of the solar chromosphere. The influ-
ence of the Farley–Buneman instability on magnetohydrody-
namic wave propagation has been analysed numerically by
Fontenla(2005). Later, FBI was investigated further in or-
der to obtain the revised semi-empirical models of the solar
chromosphere, which vary from the quiet solar atmosphere
Vernazza-Avrett-Loeser (VAL) and more recent Fontenla-
Avrett-Loeser (FAL) models (seeFontenla et al., 2008, 1993;
Vernazza et al., 1981). The generation mechanism of small-
scale density irregularities in the partially ionized plasma
of the solar chromosphere by FBI was reported byGogob-
eridze et al.(2009). These small-scale irregularities can be
used for remote diagnostics of strong cross-field currents in
the solar chromosphere. Observations confirm that energy re-
lease in the vicinity of the loop footpoint regions (i.e. at the
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chromospheric part of the loop’s current circuit) is ubiquitous
in the solar chromosphere (e.g.Melnikov et al., 2002).

In the present paper, we explore the excitation mecha-
nisms of the ion-acoustic instability and necessary physical
conditions for its development in the pre-flare plasma at the
footpoint of a coronal flaring loop (see e.g.Kryshtal and
Kucherenko, 1996), i.e. at the region of the loop’s current
circuit within the chromosphere and transition region. The
FAL model of the solar atmosphere is taken into account (see
Fontenla et al., 1993). We assume the presence of a strong
(kilogauss) magnetic fieldB0 and large-scale, quasi-static,
and weak electric field, i.e. sub-Dreicer fieldE0 (see e.g.
Solanki, 1993; Miller et al., 1997). B0 andE0 are consid-
ered as stationary, uniform, parallel to each other and almost
perpendicular to the solar photosphere surface.

The term “pre-flare” plasma is used in a very narrow sense.
The stream (or “drift”) electron velocityu with respect to the
almost immovable ions is much less than the electron ther-
mal velocity V Te. For the time interval when the electron
stream is effectively decelerated by the ions and, therefore,
the percentage of “runaway” electrons is negligibly small,
the stream velocityu can be expressed as

u =
eE0

meνei
, (1)

whereE0 is the electric field,me and e are the mass and
electron charge, andνei is the frequency of electron–ion
collisions. For pair Coulomb collisions, the frequency of
electron–ion collisions is (see e.g.Alexandrov et al., 1988)

νei = 2 · 10−6n
ln3

T
3/2
e,eV

, (2)

wheren is the plasma density, ln3 is the “Coulomb log-
arithm” andTe,eV is the electron temperature expressed in
electron volts. By taking into account the well-known for-
mula for the amplitude of the local Dreicer fieldED (Alexan-
drov et al., 1988), the condition for pre-flare plasma can be
described as

εR ≡
E0

ED
=

u

VTe
� 1. (3)

The additional Stark broadening for the BalmerHβ lines with
principle quantum numbersN > 8 confirms the existence of
large-scale quasi-static electric fields in the solar atmosphere
(Foukal and Hinata, 1991). According to the flare model pro-
posed byHeyvaerts et al.(1977), the preheating phase of the
flare process precedes the impulsive (i.e. “flash” phase). Dur-
ing this phase, Buneman instability develops when stream
velocity u exceeds the electron thermal velocityVTe. In this
sense, we studied the phase of the flare process that precedes
the preheating phase, which only exists if sub-Dreicer field
E0 is present. From a physical and mathematical point of
view, the ion-acoustic instability has interesting and unique

properties. First, this instability can be investigated by pure
analytical methods (i.e. without making physical assump-
tions from the stage of its excitation up to saturation of ion-
acoustic turbulence). Second, the growth of ion-acoustic tur-
bulence leads to the fast heating of a large plasma volume.
Third, under additional conditions the ion-acoustic turbu-
lence can be an important element in the formation of the
pre-flare current layers (Somov et al., 1987).

2 Physical approximations and basic formulas

In present work, the ion-acoustic instability of the pre-
flare plasma has been studied near the loop footpoint
(i.e. at heights 600< h < 1400 km above the photosphere).
In this region the pre-flare plasma can be considered as
“dense” and “cool” with typical values for density and tem-
perature (i.e. 3× 1010 cm−3

≤ ne = ni ≤ 5× 1011 cm−3 and
5000 K≤ (Te)0 = (Ti)0 ≤ 8000 K respectively). For such a
plasma, the condition of quasi-neutrality

ne = ni = n (4)

is satisfied for the low-frequency waves (oscillations). Here
ne andni are the electron and ion number density. By tak-
ing into account that during the linear stage of the ion-
acoustic instability development the ratio2 ≡

Te
Ti

can grow,
for example, due to ordinary Joule heating, we assume that
(Te)0 = (Ti)0 is satisfied for the initial electronTe and ion
Ti temperatures. It is reasonable to use2 = 1 condition at
the beginning of the development of ion-acoustic instabil-
ity (Galeev and Sagdeev, 1973; Kryshtal and Gerasimenko,
2004), plasma heating (Duijveman et al., 1981), or at the
initial phase of pre-flare current layer formation (Somov et
al., 1987). But the most interesting problems begin after this
stage. The main question is the following: how to satisfy
Te
Ti

= const� 1 condition for the values of constants more
than 6. Thus this problem reduces to the problem of the
fast heating of solar plasma, when electron temperatureTe
grows rapidly with respect to the ion temperatureTi . To ex-
plain this, it was proposed to take into account an additional
“heat source”. For example, it could be resonant absorption
of Alfvénic surface waves (Ionson, 1978) or circular cross
current in the vicinity of pre-flare current layer (Somov et
al., 1987). Another way is to find an instability with threshold
which is much less than the threshold of the ion-acoustic in-
stability (see e.g.Galeev et al., 1972; Duijveman et al., 1981;
Somov et al., 1987; Voitenko and Goossens, 2002; Kryshtal
and Gerasimenko, 2004; Fontenla et al., 2008; Gogoberidze
et al., 2009; Kryshtal et al., 2012, for details). Under some
conditions these instabilities can transform into weak and
then later into saturated turbulence. Thus anomalous resis-
tivity can appear in plasma.Duijveman et al.(1981) have
shown that classical resistivity (and classical Joule heating)
cannot exceedTe/Ti > 3.1. The ion-acoustic instability plays
the role of instability with an extremely low threshold. But
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even the ion-acoustic wave heating, which appears after the
“stage of ion-cyclotron turbulence”, cannot satisfy the con-
dition Te/Ti > 6.4. Furthermore,Holman(1985) had shown
that “inertial resistivity”, which was proposed as the possi-
ble process to reachTe/Ti > 10 (see e.g.Duijveman et al.,
1981), is negligible in comparison to the classical Coulomb
resistivity. To the best of our knowledge, the problem of “ad-
ditional heat sources” in the solar atmosphere (i.e. how to
reach2 > 10) is questionable.

In the present paper we have made an attempt to find
the necessary conditions (in particular, the threshold values
of 2) for ion-acoustic instability development, which is su-
perimposed on the Bernstein wave turbulence. This means
that considered instability cannot appear if2 < 2bound. Here
2bound is the finite number, which can be vary for different
types of turbulence. For a classical laboratory plasma, if the
external electricE0 and magneticB0 fields are absent, the
inequality

νee� νei � νii (5)

is satisfied. If parallel electric and magnetic fields are taken
into account, the inequality (Eq.5) is violated and, therefore,
a pure analytical solution is difficult to obtain. However, a
phenomenological approximate solution can be found by as-
suming that the right-hand side of inequality (Eq.5) remains
practically unchanged and the left-hand side is not “strong”:

νee≥ νei � νii . (6)

Let us further assume that

νei � νe0,νi0 (7)

is satisfied for collision frequencies of electrons and ions
with neutral atoms. By applying the Bhatnagar-Gross-Krook
(BGK) model collision integral, the total contribution of all
collisions can be expressed as (see e.g.Alexandrov et al.,
1988)∑
α,β

να,β = σνei, (α,β = e, i) , (8)

whereσ is the free numerical parameter of the problem in
the range of 1≤ σ ≤ σmax. If σ = 1, the development of the
instability is most favourable and, therefore, ion–electron
collisions dominate in the plasma. The opposite case (i.e.
σ = σmax) corresponds to the situation when instability is
completely suppressed by the Coulomb collisions. By ne-
glecting the ion–electron collisionsνei, the condition of the
weakness of electric fieldE0 can be expressed in the form
(see e.g.Pines and Schrieffer, 1961)

e|E0|

kzkBTα

� 1, (α = e, i) , (9)

wherekz is the longitudinal (i.e. along the fieldsE0 ‖ B0)

component of the perturbation wave vector|k| =

√
k2
z + k2

⊥

and kB is Boltzmann’s constant. The phase velocity of the
ion-acoustic wave varies in the range

VTi �

∣∣∣∣ ωkz

− u

∣∣∣∣� VTe, (10)

where VTi is the thermal velocity of singly charged (i.e.
Z = 1) ions. We assume that corrections, which appear due
to have taken into account the Coulomb collisions, could
be neglected in the standard dispersion relation for the ion-
acoustic waves:

ω2
r =

k2
zV

2
s

1+ k2
L

, (11)

whereωr is the real part of frequency,Vs =

√
kBTe
mi

the ion

sound velocity,de =
VTe
ωpe the Debye radius andωpe =

√
4πne2

me

the electron plasma frequency. The standard plasma approx-
imation is applicable whenkL ≡ kzde ≤ 2π (i.e. if the wave-
length of the perturbation exceeds the Debye radius). By as-

suming that inequality
√

βi
8 �

|kz|ρi
εRβA

is satisfied, the influence
of curvature and torsion of the magnetic field lines can be ne-
glected. HereβA =

VTe
VA

, βi =
8πnkBTi

B2
0

is the ion plasma beta,

ρi ≡
VTi
�i

is the ion cyclotron radius,�i is the ion cyclotron
frequency andVA is the Alfvén velocity. For ion-acoustic
waves in the plasma with Coulomb conductivity, the ampli-
tude of the external magnetic fieldB0 is not important. In
the presence of anomalous resistivity, plasma waves can su-
perimpose on turbulence. For example, in plasma with the
Bernstein turbulence, the effective collision frequency of the
electrons stream and pulsations of saturated Bernstein tur-
bulence is higher than electron–ion collisions. This effective
frequencyνeff depends on the cyclotron frequency�e ≡

eB0
mec

and, therefore, on the amplitude of magnetic field|B0| (see
e.g.Galeev and Sagdeev, 1973). The condition in Eq. (3) al-
lows us to neglect the influence of runaway electrons. For
very small values ofεR, the percentage of these electrons can
be written as (see e.g.Alexandrov et al., 1988)

Nr

Ne

∼=
1

2π
exp

(
−

1

εR

)
. (12)

Here,Nr is the number of runaway electrons, andNe is the to-
tal number of the electrons in the unit plasma volume. From
Eq. (12) we obtain an estimate value for the upper limit of
εR � 1. It can be verified that, forεR > 0.2, the valueNr

Ne

becomes of the order of∼ 10−3, and therefore we cannot ne-
glect the influence of the runaway electron beams on the de-
velopment of the ion-acoustic instability. Thus, we consider
the valueεR = 0.15 as the limit of applicability. The disper-
sion relation for the ion-acoustic waves in a semiconductor
plasma with uniform external electric field has been obtained
previously byPines and Schrieffer(1961). By taking into ac-
count the contribution of Coulomb collisions, the dispersion
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relation for the same type of waves in the pre-flare plasma
has been found byKryshtal and Kucherenko(1996):

D(ω,k) = ReD(ω,k) + iImD(ω,k) = 0, (13)

where

ReD(ω,k) = 1+ x2
e

(
1− y2

e

)
−

x2
i

y2
i

(
1+

3

y2
i

)
,

ImD(ω,k) = x2
e

{√
π

2
yeexp

(
−

y2
e

2

)
−

eE0

kzkBTe

}
+

x2
i

y2
i

{
ν̃ +

√
π

2
y3

i exp

(
−

y2
i

2

)
+

3eE0

miω2

}
and

xα ≡
ωPα

kzVT α

, (α = e, i) , yα ≡
ω − kzuα

kzVT α

, (α = e, i) ,

ui ≈ 0.

The dispersion relation (Eq.13) is obtained by assuming that
the equilibrium ion velocity distribution function can be rep-
resented by the usual Maxwell distribution, and the equi-
librium electron distribution function is a shifted Maxwell
distribution with the shift velocityu (see Eq.1). Two dif-
ferent expressions for̃ν have been used to investigate the
development of the ion-acoustic instability:ν̃ =

νei
ω

σ and

ν̃ =
8
5

kzV
2
Ti

ω2 +
νei
ω

σ . The second one is uncertain due to the
inclusion of the ion thermal motions. The instability growth
rate can be calculated by using the following classical for-
mula (see e.g.Alexandrov et al., 1988):

δ = −
ImD(ω,k)
∂

∂ω
ReD(ω,k)

∣∣∣∣∣
ω=ωr

, (14)

whereωr is described by Eq. (11). The reduced growth rate
in the units of plasma frequencyωPe can be represented as
(see e.g.Kryshtal and Kucherenko, 1996)

δ

ωPe
=

√
π

8
µkL

GE

PE
, (15)

where

µ ≡

√
me

mi
≈ 0.0233, (for : mi = 938.28 MeV),

GE = −

(
2k∗

π

) 1
2

{
εRµ

(
2+ 6k2

L + 3k4
L

)
+ σk

3
2
∗

}
ωPekLµ

νei

−2
3
2 exp

(
−

2

2k∗

)
+

(
εRk

1
2
∗ − µ

)
exp

{
−

1

2

(
µk

1
2
∗ − εR

)2
}

,

PE = k2
∗

[
1+ 6k∗2

−1
]
+ µ

[
εRk

1
2
∗ − µ

]
,

and k∗ ≡ 1+ k2
L . In solar/space plasmas, several types of

plasma wave instabilities can develop simultaneously. More-
over, instabilities may exist simultaneously at different devel-
opment stages. Instability with a higher excitation threshold
may superimpose on the saturated turbulence (e.g. instabil-
ity with lower excitation threshold). In the laboratory plas-
mas, the longitudinal instability (for example ion-acoustic or
Langmuir wave instability) has a higher excitation thresh-
old than quasi-perpendicular (withkz

k⊥
� 1 ) instabilities (see

e.g. Alexandrov et al., 1988; Galeev and Sagdeev, 1973).
The instability of the second harmonic of oblique Bernstein
modes in plasma with sub-Dreicer electric field and Coulomb
conductivity has been investigated previously byKryshtal
(1998)andKryshtal et al.(2012). Due to a small but non zero

kz component of the wave vector|k| ≡

√
k2
z + k2

⊥
, such an

instability can be excited by the parallel streams of electrons
in the contrast to the ordinary (i.e. non-oblique Bernstein
wave) instability that is usually excited by the cross currents.
The numerical values of the reduced growth rate0 of this
instability are summarized in Table 1. The highest thresh-
old value for the amplitude of sub-Dreicer field(ε)bound is
1.10× 10−4, and the lowest obtained threshold valueεR for
the ion-acoustic instability is 4× 10−2.

Unfortunately, in the case of Bernstein turbulence, it is
not possible to build a purely analytical solution for the ef-
fective frequencyνeff that describes the transformation from
the linear stage of the instability development to the satu-
rated turbulence. To the best of our knowledge, the exact
expression forνeff does not exist. Estimates forνeff have
been found previously byGaleev et al.(1972) and Galeev
and Sagdeev(1973, 1984). To model the situation in which
the ion-acoustic instability is superimposed on the saturated
Bernstein turbulence, the ion–electron collision frequencyνei
in Eq. (15) has to be replaced by the effective collision fre-
quencyνeff. In our analysis of the ion-acoustic instability, we
have applied three different expressions forνeff :

(a)
νeff

�e
∼

0

ze
, (16)

where0 is the reduced linear growth rate of the second har-

monics of the Bernstein modes,ze ≡
k2
⊥

V 2
Te

�2
e

≡ k2
⊥
ρ2

e (Galeev

et al., 1972);

(b)
νeff

�e
=

ε3
R

`
, (17)

where` = 10 and` = 5 for the first and second harmonics
respectively (Galeev and Sagdeev, 1973, 1984);

(b)
νeff

�e
=

ε3
R

25

[
1+

(
ω∗ε

−2
R

)]−2
. (18)

The limiting ratio of the longitudinal and transversal wave-
lengths of the Bernstein wave instability to the longitudinal
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Table 1.Values of principal characteristics of instability development of second oblique Bernstein harmonics.

Models of the solar
atmosphere (εR)bound× 10−4 (kL)bound (ze)bound 01(+) h, km

FAL P1 0.01 0.0156 0.02 1.49× 10−12 650
FAL P2 0.95 0.0013 0.022 1.096× 10−6 700
FAL P3 1.10 0.0012 0.021 1.41× 10−9 1380
FAL P4 1.05 0.0174 0.019 2.76× 10−11 1375

Table 2.Physical characteristics of the pre-flare plasma at the lower chromosphere of the loop’s current circuit in an active region.

Models of the solar
atmosphere ne, 1011cm−3 (Te)0 = (Ti)0, K B0, mT h, km ωPe, 1010s−1 �e, 1010s−1 νei, 107 s−1

FAL P1 2.5 5220 321 650 2.81 5.64 2.56
FAL P2 3.02 5480 321 700 3.10 5.64 2.89
FAL P3 4.79 7420 145 1380 3.80 2.56 1.23
FAL P4 0.31 6150 145 1375 0.97 2.56 0.093

wavelengths of the ion-acoustic instability can be expressed
as follows:LR ≡

(λz)B
(λz)IA

=
ω∗√
ze

kL
kR

, L∗
R ≡

(λ⊥)B
(λz)IA

=
ω∗√

z
kL . Note

that to avoid the possible resonant effects, the values ofLR
andL∗

R should not be near unity. Formally, the saturated tur-
bulence can decelerate instability as well as sustain it.Krysh-
tal et al.(2012) have shown that in the solar atmosphere de-
scribed by the FAL model, the Bernstein wave instability has
an extremely low threshold value. Therefore, the ion-acoustic
instability and saturated Bernstein turbulence can develop si-
multaneously.

3 Results and discussion

In this work, we have analysed the ion-acoustic instability
growth rate (see Eq.15) for four modifications of the FAL
model: FAL P1, FAL P2, FAL P3 and FAL A3 (see e.g.
Fontenla et al., 1993). The ion-acoustic instability growth
rate has been investigated in application to Machado-Avrett-
Vernazza-Noyes (MAVN) (see e.g.Machado et al., 1980) and
VAL (see e.g.Vernazza et al., 1981) models of the solar at-
mosphere previously byKryshtal and Kucherenko(1996).
Note that the differences between the the FAL and MAVN,
and FAL and VAL models increase with height above the
photosphere. The main physical characteristics of the pre-
flare plasma at the footpoint of the loop (i.e. at 600< h <

1400 km) are summarized in Table 2.

3.1 The pre-flare plasma with the Coulomb
conductivity

In the case of pre-flare plasma with Coulomb conductivity,
the ion-acoustic instability can develop only in the FAL P3
and FAL A3 modifications of the FAL model. In the FAL
A3 model, the instability appears only atσ = 1. Note that in

plasma with the Coulomb conductivity, we have used theνei
frequency in Eq. (15) for the growth rate of the ion-acoustic
instability. The limit values for the ion-acoustic instability in
the pre-flare plasma with Coulomb conductivity are summa-
rized in Table 3.

The plot of the reduced growth rate0 as function of2 and
kL for the FAL P3 model is shown in Fig. 1a.01(+) describes
the first positive value of the reduced growth rate (Eq.15).

The positive growth rate corresponds to the right half
space of the0 = 0(2,kL) with respect to the plane0 = 0.
The existence of the curve0 = 0 confirms the possible evo-
lution of the instability development regime (or wave damp-
ing) into the process of continuous generation of non-damped
small amplitude ion-acoustic waves. Due to the small values
of 01(+), the conversion through the region0 = 0 is smooth
(i.e. without jumps and singularities). Note that these ampli-
tudes are close to the thermal noise level. For the case of
the FAL P3 model, we have found that the maximum value
of the free numerical parameterσ is equal to 4. The ion-
acoustic instability appears to be small-scale: the limit val-
ues of the perturbation wavelengths vary between 20 and 60
Debye radii. Such values of Debye radii correspond to the
0.11≤ (kL)bound≤ 0.31 range of the reduced wave vector
limit (see Table 2). For waves with a high gain bandwidth
and a growth rate that is much lower than the fundamental
frequency, the linear stage of the development of the insta-
bility can continue for many wave periods. Therefore, such
an instability cannot be aperiodic and can be classified as a
wave process (Kadomtsev, 1988). The 2bound limit values
are too high and, therefore, this is the weakness of the inves-
tigated instability. It is impossible to reach the lower limit of
the 2bound= 15 by taking into account only Joule heating,
and, therefore, additional energy sources required.

www.ann-geophys.net/31/2193/2013/ Ann. Geophys., 31, 2193–2200, 2013
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Fig. 1. (a)The reduced growth rate of the ion-acoustic instability in plasma with Coulomb conductivity for the FAL P3 model at(εR)bound=

0.04,σ = 1,2bound= 17,(kL)bound= 0.11 and01(+) = 1.33×10−6; (b) the reduced growth rate of the ion-acoustic instability for the FAL

P2 model at(εR)bound= 0.09,2bound= 17, (kL)bound= 0.21 and01(+) = 9.28× 10−6; (c) cross section of the surface0 = 0(2,kL) by
the plane2 = 17 for the FAL P2 model (see panelb).

Table 3.Limit values of the ion-acoustic instability in the pre-flare plasma with Coulomb conductivity.

Models of the solar
atmosphere (εR)bound σ (2)bound (kL)bound 01(+)

FAL A3 0.099 1 17 0.21 8.2× 10−7

FAL P3 0.099 1 15 0.11 1.25× 10−5

FAL P3 0.1 2 15 0.21 7.3× 10−7

FAL P3 0.1 3 17 0.21 1.44× 10−5

FAL P3 0.102 4 17 0.31 3.7× 10−7

3.2 The pre-flare plasma with saturated Bernstein
turbulence

In the presence of anomalous resistivity, a small change
in the reduced growth rate0 = 0(2,kL) can be observed
for all three cases of the effective collision frequencyνeff:
Eqs. (16), (17) and (18). Firstly, in contrast to case (a), in
the turbulent plasma the ion-acoustic instability can develop
in the range 600< h < 1400 km at all heights for four mod-
els: FAL P1, FAL P2, FAL P3 and FAL A3. Secondly, in
the turbulent plasma the threshold value(εR)bound can be
more than two times less than for the plasma with Coulomb
conductivity. This fact can result in a significantly higher
energetic capacity of the pre-flare current layers (see e.g.
Somov et al., 1987). Changes in the limit values of2 and
kL are not important. A set of the limiting values demon-
strates the minimal changes:2boundsis equal to 13 instead of
15 in plasma with Coulomb conductivity. Therefore, the de-
velopment of the ion-acoustic instability in plasma with satu-
rated Bernstein turbulence is more preferable than in plasma
with Coulomb collisions only. The range ofkL limit values
remains practically the same (i.e. 0.11≤ (kL)bound≤ 0.31).
Also, the general tendency remains unchanged: the smaller
value of(εR)boundcorresponds to the higher value of2bound.
Formally the set of2boundvalues has no upper limit. In this
study the set of2bound values from 14 to 16 remains in the

range 8.6 ≤ 2 ≤ 16, which has been obtained bySomov et
al. (1987) for the thermal instability of a current sheet in the
solar atmosphere. Note the thermal instability can lead to fil-
amentation of current sheet. In plasma withνeff (Eq.16), we
used the limit values of01(+) and (ze)bound for the Bern-
stein wave instability for the second harmonics of the oblique
modes (see e.g.Kryshtal et al., 2012) to obtain the limit val-
ues ofεR, 2 andkL for ion-acoustic instability. For the so-
lar atmosphere models FAL P1, FAL P3 and FAL A3, the
value of(kL)bound= 0.11 remains constant for any values of
(εR)boundand(2)bound. If (εR)bounddecreases from 0.1 up to
0.05, the degree of nonisothermality2 increases from 13 to
16. For2bound≤ 19 the ion-acoustic instability in the case of
FAL P2 has the values of normalized amplitude of the sub-
Dreicer field of (εR)bound∈ [0.06; 0.1], values of reduced
longitudinal wave vector of(kL)bound∈ [0.21; 0.31] and the
values of degree of nonisothermality of2bound∈ [15; 19]. In
plasma withνeff (Eq. 17), the ion-acoustic instability devel-
ops for all four models.

In the case of FAL P1, FAL P3 and FAL A3, the values
are (kL)bound∈ [0.11; 0.31] and (2)bound∈ [15; 19], when
(εR)bound decreases from 0.1 to 0.04. For the model FAL
P2, the(kL)bounddecreases from 0.21 to 0.11 and2bound in-
creases from 17 to 19, when(εR)bound decreases from 0.09
to 0.04.
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The two-dimensional plot of0 = 0(2,kL), and the cross-
cut of 0 = 0(2,kL) surface by plane(εR)bound= 0.09 is
shown in Fig. 2b and c. This is a good example of the pres-
ence of local maximum of growth rate in the investigated re-
gion. In plasma withνeff (Eq.18), the ion-acoustic instability
exists for all four models. Note that(kL)bound= 0.11, when
(εR)bound decreases from 0.11 to 0.05, and2bound increases
from 13 to 16. Finally, note that for FAL P2 and FAL P3 mod-
els, the values of the ratio of the wave length of the Bernstein
instability to the wavelength of the ion-acoustic instability
areLR ' 282 andLR ' 360, respectively. In the case of the
FAL P1 and FAL A3 models, such values areLR ' 67 and
LR ' 14, respectively. Therefore, for FAL P2 and FAL P3
we haveL∗

R ' 0.28 andL∗
R ' 0.36, respectively. At the same

time theL∗
R ' 0.07 for FAL P1 andL∗

R ' 0.014 for FAL A3.
Thus, the last two models are more reasonable, due to sat-
isfaction of the following inequalities:LR � 1 andL∗

R � 1.
These inequalities allow neglecting the resonant effects.

In this paper two possible scenarios – for plasma with
Coulomb conductivity and for the plasma with the presence
of saturated Bernstein turbulence – have been analysed in
order to obtain the necessary conditions for development of
the ion-acoustic instability at the footpoint region of pre-
flare loops. It has been found that threshold values of degree
of plasma nonisothermality remain too high for the usual
Joule heating in both cases. Even after the appearance of
saturated Bernstein wave turbulence, such values remain too
high. This case needs further investigation. When condition
2bound> 13 is satisfied, we have shown that the inclusion
of the anomalous resistivity facilitates development of ion-
acoustic instability, because it allows significant reduction of
amplitude threshold value of the sub-Dreicer field. This is
important for the formation of the pre-flare current layer and
its energetic capability. In this case we have found the princi-
pal possibility of continuous generation of non-damped ion-
acoustic waves of small amplitudes.
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