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Combinatorial Libraries And The Evaluation Of 
Diversity 
 
Peter Willett 
 
 
 
Introduction 
 
The dramatic developments in combinatorial chemistry and high-throughput screening 
that have occurred over the last decade have enabled the pharmaceutical and 
agrochemical industries to move from an inherently sequential to an inherently parallel 
mode of processing, in which large numbers of compounds are synthesised and tested 
simultaneously.  However, simple synthetic strategies can lead to the creation of closely-
related molecules, which are likely to exhibit comparable bioactivity profiles and which 
thus provide little useful information to guide a discovery programme.  How, then, can 
we minimise such redundant experimentation whilst still ensuring the identification of 
sufficient, structurally disparate molecules to permit the development of robust structure-
activity relationships?  Molecular diversity analysis is the name generally given to the 
computational techniques that are being developed to answer this question, with the term 
‘diversity’ being taken to imply concepts such as ‘different’, ‘dissimilar’ and 
‘heterogeneous’; more specifically a diverse set of molecules is normally taken to be one 
that covers the largest possible expanse of chemical space (however defined) in the 
search for novel bioactive leads.  There are many aspects to molecular diversity analysis 
[1-4]: here, we focus on just two, these being the ways in which diversity can be 
expressed in quantitative terms, and the ways in which libraries of compounds can be 
designed to be maximally diverse.  We illustrate these aspects by reference to a program, 
called SELECT, that we have developed for the design of structurally diverse, druglike 
combinatorial libraries [5]. 
 
Quantification Of Diversity 
 
Although widely used, ‘diversity’ is frequently expressed in qualitative terms, it needs to 
be defined in quantitative terms if we are to develop computer programs that seek to 
identify maximally diverse libraries. This is commonly (but not invariably) done by 
calculating the similarities between sets of molecules.  There are many ways in which 
inter-molecular similarities can be calculated [6], with the two most important 
components of any similarity measure being the structural descriptors that are used to 
characterise the molecules, and the similarity coefficient that is used to quantify the 
degree of similarity between pairs of molecules. 
 
Most molecular diversity studies have involved characterising molecules by sets of 
fragment substructures or sets of calculated physicochemical properties.  The presence of 
fragment substructures (normally two-dimensional [2D] substructures containing 
patterns of connected atoms and bonds) within a molecule are encoded by setting bits in 



a bit-string (or fingerprint).  Examples of the sorts of fragment substructure that are used 
for this purpose are shown in Figure 1.  Structure representations such as these have been 
used successfully in very many diversity studies, and there is also increasing interest in 
the use of three-dimensional (3D) substructural descriptors based upon sets of potential 
pharmacophoric patterns, such as H-bond donors and acceptors or ring centroids.  
Alternatively, physicochemical properties (normally calculated from a 2D molecular 
structure, but increasingly also from a 3D one generated by a program such as 
CONCORD or CORINA) can be used to describe topological, electronic, lipophilic or 
geometric features, with a molecule represented by a real-numbered vector that includes 
several such properties.  Once molecules have been characterised in this way, the 
similarity between a pair of them is calculated by means of a similarity coefficient, 
which provides a numeric quantification of the degree of resemblance between two sets 
of such characterisations [7].  Similarity calculations employing substructural data (both 
2D and 3D) have generally used association coefficients, typically the Tanimoto 
coefficient, based on the numbers of fragments common and not-common to a pair of 
molecules.  Conversely, similarity calculations employing property data have generally 
involved distance coefficients such as the Euclidean distance, which is widely used in 
many applications of multivariate statistics.  The use of these two types of coefficient is 
detailed in Figure 2. 
 
A quantitative measure of the degree of diversity in a set of molecules is normally 
referred to as a diversity index, and many such indices have been described in the 
literature.  A common approach is to calculate an index based on the inter-molecular 
structural similarities for a dataset, as reviewed recently by Waldman et al. [8].  For 
example, one might take the sum of all the pairwise similarities, or the sum of the 
similarities for just the nearest neighbour (i.e., most similar) compound for each member 
of the dataset; in either case, the smaller the sum of the similarities, the greater the 
degree of diversity.  Other quantitative measures of diversity can be obtained from 
counting the number of different fragments, whether in 2D or 3D, that can be generated 
from a dataset, and from the number of occupied bins in the partition-based selection 
schemes discussed in the following section. 
 
A diversity index provides a simple way of comparing the degree of structural 
heterogeneity in different datasets.  For example, a pharmaceutical company looking to 
increase the range of structural types in its corporate database might compare the 
diversities of datasets offered by several different external compound suppliers; or a 
synthetic chemist might decide which of several combinatorial libraries to synthesise 
based on their calculated diversities.  It must, however, be remembered that what is 
being calculated here is a measure of structural diversity, whereas the rationale for 
carefully selecting the compounds to be synthesised and tested is to ensure biological 
diversity: either as many different activities as possible in the case of broad screening 
libraries, or as wide a range of activity against a specific biological target, e.g., an IC50, 
in the case of focused libraries.  It is a common working assumption in medicinal 
chemistry that similar compounds exhibit similar activities, and that changes in structure 
are reflected in changes in activity, an assumption that is referred to as the similar 
property [9] or neighbourhood [10] principle; however, this principle is just a helpful 



rule-of-thumb to which there are innumerable exceptions, and thus structural diversity 
alone cannot be expected to ensure the identification of useful leads. 
 
Selection Of Database Subsets  
 
The similarities or distances obtained as above often provide the principal input to the 
various methods that are available for selecting a structurally diverse set of compounds 
[11].  Early approaches to rational compound selection were based on the use of cluster 
analysis.  Cluster-based selection involves applying a clustering method to a set of 
molecules, yielding clusters that exhibit a high degree of both intra-cluster similarity and 
inter-cluster dissimilarity; a diverse subset is then obtained by choosing one compound 
from each of the clusters in turn.  However, cluster-based selection is increasingly being 
complemented, or even replaced, by partition-based selection and dissimilarity-based 
selection.  
 
Partition-based (or cell-based) selection requires the identification of a small number of 
characteristics, these typically being molecular properties that would be expected to 
affect binding at a receptor site.  The range of values for each such characteristic is sub-
divided into a set of sub-ranges, and the combinatorial product of all possible sub-ranges 
then defines the set of cells that make up the partition.  Each molecule is assigned to the 
cell that matches the set of characteristics for that molecule, and a subset is then obtained 
by selecting one (or some small number) of the molecules from each of the resulting 
cells.  This approach is limited to low-dimensionality datasets but is proving increasingly 
popular: it is exceedingly fast in operation; it facilitates the comparison of different 
databases; and it enables the identification of those sections of structural space that are 
under-represented, or even unrepresented, in a database.  Cell-based selection is 
illustrated in Figure 3. 
 
Cluster-based and partition-based approaches identify a diverse subset by first 
identifying groups of similar molecules, and then picking one molecule from each cluster 
or cell, respectively.  Dissimilarity-based approaches seek to identify a diverse subset 
directly, typically by iteratively selecting compounds that are as dissimilar as possible to 
those that have already been selected.  The identification of a subset that is maximally 
dissimilar is computationally infeasible but approximate procedures have been found to 
work well in practice and several different algorithms have been described.  One such 
procedure is shown in algorithmic form in Figure 4.  Dissimilarity-based selection (and 
also cluster-based selection) can be used with both low-dimensional datasets and high-
dimensional datasets, such as fragment bit-strings. 
 
Thus far, we have not taken any account of the natures of the molecules that are being 
processed.  However, there is little point in selecting compounds that are unlikely to 
yield potential leads, and druglikeness or drugability filtering methods are being 
increasingly used to focus attention on those compounds that have the greatest a priori 
probability of exhibiting the properties of previous leads or known drugs.  By far the 
most common filter is the use of a “Rule of Five”-like criterion [12] based on analysis of 
a set of known drug molecules.  Thus, Lipinski’s much-cited paper suggests that poor 



absorption or permeation are likely when at least two of the following criteria are 
satisfied: there are more than 5 H-bond donors; there are more 10 H-bond acceptors; 
MW>500; logP>5.  Molecules meeting two or more of these criteria are considered to be 
non-druglike and are hence routinely removed from any database prior to further 
analysis, as are molecules that contain reactive or toxic fragment substructures.  If sets of 
both known drugs and (assumed) non-drugs are available then data mining techniques 
can be used to develop rules to classify or to rank molecules in decreasing order of drug-
likeness, and low-ranked molecules again removed from further consideration.  
Examples of techniques that have already been used for this purpose include genetic 
algorithms, binary decision trees and neural networks [13, 14]. 
 
Selection methods of the sort discussed  thus far can be used in many ways.  Perhaps the 
simplest is to select a diverse subset of an entire database, such as a company’s corporate 
compound collection or a publicly available database such as the Available Chemicals 
Directory.  However, this cherrypicking approach is not appropriate when combinatorial 
libraries, rather than individual molecules, are required: in this case, a choice needs to be 
made between reactant-based and product-based selection algorithms.  These three 
types of library design procedure are shown in Figure 5.   
 
Design of Combinatorial Libraries Using SELECT 
 
We will conclude this short review by describing a program that we have developed, 
called SELECT, for product-based selection of drug-like combinatorial libraries that 
takes direct account of the combinatorial constraint by means of a genetic algorithm (or 
GA).  A GA is a simple, but powerful, tool for generating good approximate solutions to 
combinatorial optimisation problems, even if they have massively large solution spaces.  
GAs have proved to be applicable to a broad range of problems in chemoinformatics [15] 
including that of designing a maximally diverse combinatorial library.  Such a task is, in 
principle, extremely simple: choose one of the diversity indices mentioned above, such 
as the sum of the pairwise similarities for the molecules in a dataset; systematically 
generate each possible subset from the pool of available molecules; and then choose that 
subset with the largest value for the diversity index.  The problem with this dissimilarity-
based approach is that there are no less than 
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possible subsets of size n molecules that can be chosen from a dataset of size N 
molecules; this number is totally infeasible for all but the smallest values of n and N. 
 
The GA in SELECT carries out a search of the space of possible subsets, finally 
returning that subset with the largest value of the chosen diversity index that it has been 
able to identify.  SELECT can carry out both reactant-based and product-based selection, 
but is normally used to search product space; while this is far more demanding of 
computational resources, it has been found to result in libraries that are more diverse 
than those resulting from reactant-based approaches [16].  In addition to maximising the 
structural diversity, SELECT also ensures the druglike nature of the selected molecules 
by comparing their physicochemical properties with those of reference sets of drug 



molecules.  For example, when designing ACE inhibitors, the reference set might be all 
the molecules from the World Drug Index (WDI) database that are coded as belonging to 
this therapeutic class.  Then the profile of property values in a possible library suggested 
by the GA is compared with the corresponding profile in the reference set of WDI 
molecules.  The overall predicted utility of a library, its ‘fitness’ in GA terminology, is 
then a combination of the calculated diversity index of the set of molecules comprising 
that library and of the difference between the properties of those molecules and the 
properties of the chosen reference set.  The effectiveness of the program is illustrated in 
Figure 6, where it will be seen that simple reactant-based selection often results in 
libraries with poor physicochemical property profiles.  The product-based selection, 
conversely, has enabled the construction of libraries with profiles that are much more 
“WDI-like” and that are thus more likely to contain bioactive compounds 
 
In early work [5], the fitness in the SELECT GA was a weighted sum of the diversity 
and the property difference; while simple in concept, this was rather akin to adding 
apples and pears, and required very extensive experimentation to find the best relative 
weights.  We have now adopted an improved methodology that allows the combination 
of very different types of molecular characteristic; for example, one could design a 
library that was as structurally diverse as possible, involved the cheapest possible 
reactants, and gave a set of products that were as similar as possible to previously 
discovered molecules with the bioactivity of interest.  Other desirable characteristics 
such as synthetic feasibility, solubility and blood-brain barrier permeability can equally 
well be accommodated in this general framework, given sufficiently rapid and effective 
methods for the calculation of these characteristics for the molecules in the possible 
libraries suggested by the GA. 
 
Conclusions 
 
Computer methods for representing molecules and for calculating inter-molecular 
similarities have been used for many years in chemical database systems.  Developments 
of these methods are now playing an important role in the design of combinatorial 
libraries.  Thus far, the principal focus has been the processing of 2D structure 
representations, but this is starting to change with increasing use being made of 3D-
derived descriptors, such as 3-point and 4-point pharmacophores [17].  Perhaps the most 
exciting development here is the introduction of methods for the site-directed design of 
focused libraries, where account is taken of the geometry of the binding site of the 
biological target [18].  The inclusion of site-specific and physicochemical information in 
a diversity analysis provides a powerful way of increasing the effectiveness of 
methodologies for the rational design of combinatorial libraries. 
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Figure 1.  Examples of 2D substructural fragments that can be used to characterise a molecule for the 
calculation of inter-molecular structural similarity.  In these fragments, ‘cs’ denotes chain-single bond, ‘rs’ 
denotes a ring-single bond, ‘AA’ denotes any atom.  In the Ring Fusion fragment, the numbers denote the 
connectivity, i.e., the number of attached non-hydrogens, for each atom XX in the ring.  In the Atom Pair 
fragment, ‘N 0;3’ denotes a three-connected nitrogen with no lone pairs, and the ‘2’ denotes the fact that 
the nitrogen and carbon being characterised are two bonds apart.  The reader should note that these are just 
some of the more common types of fragment used in similarity and diversity analyses, as there are very 
many different types of fragment definition that could be used. 
 

 
 
Figure 2. Similarity coefficients used in the calculation of inter-molecular structural similarity: (a) 
Tanimoto coefficient; (b) Euclidean distance.  The Tanimoto coefficient is normally used when molecules 
are represented by fragment bit-strings.  In the calculation, a and b are the numbers of bits that are set in the 
bit-strings representing the two molecules, I and J,  that are being compared, and c is the number of these 
bits that are set in both bit-strings.  The Euclidean distance is normally used when molecules are 
represented by sets of (normally calculated) physicochemical properties.  In the calculation, xik (1£k£n, 
where n is the number of different properties being considered) denotes the value of the k-th such property 
in the molecule I, and similarly for xjk in J.  
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Figure 3.  Partition-based selection.  Assume that each of the molecules in a database is characterised by its 
molecular weight (MW) and logP values.  Then the molecules can be plotted in a 2D grid, the axes of 
which represent these two properties.  Each cell in the grid defines a specific range of MW and logP values, 
and all molecules in that cell will have values within these ranges, and can hence be regarded as being 
chemically equivalent.  A diverse subset is then obtained by choosing one molecule from each cell in turn, 
e.g., that nearest the centre of the cell. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Dissimilarity-based selection.  The pseudocode below describes how to select a set of n 
compounds (called Subset) from a larger number of compounds (called Dataset).  The reader should note 
that there are very many ways in which a set of compounds can be selected so that they are as dissimilar as 
possible: thus, one must specify how one chooses the starting compound is chosen in Step 1, how one 
calculates dissimilarity in Step 2, and how one defines “most dissimilar” in Step 3.   
 
 

1. Initialise Subset by transferring a compound from Dataset. 
2. Calculate the dissimilarity between each remaining compound in Dataset and the compounds in 

Subset. 
3. Transfer to Subset that compound from Dataset that is most dissimilar to Subset. 
4. Return to Step 2 if there are less than n compounds in Subset. 
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Figure 5.  Compound selection methods.  The figure assumes a two-component reaction with pools of N1 examples of reactant R1 and N2 examples of reactant 
R2 (e.g., these pools might correspond to carboxylic acids and to primary amines, respectively).  Reactant-based approaches to library design involve selecting 
diverse n1-member and n2-members subsets (r1 and r2) from R1 and R2, respectively, prior to their combination to yield an n1n2-member library.  Alternatively, 
the enumeration step in the lower half of the figure involves the in silico generation of all possible N1N2 products: the selection stage, either by cherrypicking or 
by invoking the combinatorial constraint, is then applied to this fully enumerated set, which is often referred to as a virtual library.  
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Figure 6.  Use of SELECT to design a thiazoline-2-imine library.  The combinatorial synthesis is shown in 
part (a), where the R1, R2 and R3 reactants are isothiocyanates, amines and haloketones, respectively.  
Sets of 10 isothiocyanates, 40 amines and 25 haloketones were selected at random to give a fully 
enumerated virtual library of 10000 thiazoline-2-imines, with the molecules represented by Daylight 
fingerprints and the diversity index being the sum of the pairwise dissimilarities.  SELECT was first run to 
generate diverse sets of reactants (6 isothiocyanates, 10 amines and 15 haloketones) and hence to generate 
a combinatorial library in reactant space containing 900 thiazoline-2-imines, for which the profile of 
rotateable bonds was then calculated.  SELECT was next run to choose an analogous 900-molecule library 
in product space, with the library optimised on both diversity and the rotatable bond profile.  These 
SELECT-based profiles were compared with the numbers of rotatable bonds in the molecules in the World 
Drugs Index (WDI) database.  The results of these runs are illustrated in part (b).  
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