This is a repository copy of *Environmental controls on the production of calcium carbonate by earthworms.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/77578/

Version: Published Version

Article:
Versteegh, Emma, Black, Stuart and Hodson, Mark Edward
orcid.org/0000-0002-8166-1526 (2014) Environmental controls on the production of calcium carbonate by earthworms. Soil Biology and Biochemistry. pp. 159-161. ISSN 0038-0717

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Environmental controls on the production of calcium carbonate by earthworms

Emma A.A. Versteegh a,⁎, Stuart Black b, Mark E. Hodson c

a University of Reading, Department of Geography and Environmental Science, School of Archaeology, Geography and Environmental Science, Whiteknights, P.O. Box 227, Reading RG6 2AB, UK
b University of Reading, Department of Archaeology, School of Archaeology, Geography and Environmental Science, Whiteknights, P.O. Box 227, Reading RG6 2AB, UK
c University of York, Environment Department, Heslington, York YO10 5DD, UK

ARTICLE INFO

Article history:
Received 22 July 2013
Received in revised form
12 December 2013
Accepted 15 December 2013
Available online 3 January 2014

Keywords:
Calcite
CO2
Experiment
Lumbricus terrestris
pH regulation
Temperature

ABSTRACT

Lumbricus terrestris earthworms produce calcium carbonate (CaCO3) granules with unknown physiological function. To investigate carbon sequestration potential, the influence of temperature and CO2 concentration ([CO2]) on CaCO3 production was investigated using three soils, five temperatures (3–20 °C) and four atmospheric [CO2] (439–3793 ppm). Granule production rates differed between soils, but could not be related to any soil characteristics measured. Production rates increased with temperature, probably because of higher metabolic rate, and with soil CO2 concentration. Implications for carbon sequestration are discussed. CaCO3 production in earthworms is probably related to pH regulation of blood and tissue fluid in the high CO2 environment of the soil.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Many earthworm species produce calcium carbonate (CaCO3) granules in specialised glands (Darwin, 1881; Canti and Piearce, 2003). These granules are mainly calcite, with small amounts of amorphous calcium carbonate, vaterite and aragonite (Gago-Silva et al., 2008; Lee et al., 2008; Fraser et al., 2011; Brinza et al., 2013). Granule production is likely related to regulation of pH and CO2 concentrations ([CO2]) in body fluids, or regulation of Ca2+ and other potentially toxic cations (e.g. Dotterweich and Franke, 1936; Robertson, 1936; Crang et al., 1968; Piearce, 1972; Bal, 1977). Lumbricus terrestris is a major CaCO3-producing species in temperate soils. Production rates range from 0.8 to 2.9 mg/earthworm/day (Canti, 2007; Lambkin et al., 2011a; Versteegh et al., 2013). With 1.9–61.8 individuals/m2 (Berry and Karlen, 1993; Bernier and Ponge, 1998; Nuutinen et al., 2001; Briones et al., 2008) this equates to precipitating 2–261 kg C/ha/yr, a potentially significant contribution to carbon sequestration.

The aim of this study was to further elucidate the carbon sequestration potential of earthworms, by investigating the influences of temperature, and atmospheric and soil [CO2] on CaCO3 production rates in L. terrestris. Hypotheses were: 1) granule production increases with temperature due to increased metabolism, and, 2) granule production increases with soil [CO2] due to increased demand for removal of CO2 from blood and tissue fluids.

CaCO3 production rates in L. terrestris were studied in laboratory experiments with a minimum of 6 replicates (individual earthworms) per treatment (Table 1). The experiments were designed to investigate the origins of the C in the calcium carbonate (results to be reported elsewhere) and so we selected soils based on the crops (C3 or C4) of the previous seasons. Three agricultural soils (all Typical Argillic Brown Earths; Avery, 1980) were sampled in Berkshire, UK: Hamble (SU 61968 70235, C3), Red Hill (SU 56060 80033, C4 > 10 years), and Winning Hand (SU 61213 69140, alternating C3/C4). Soils were air-dried and sieved to 250 μm (Lambkin et al., 2011b), ensuring soils were granule-free and facilitating granule recovery at the end of the experiments. For each replicate, 300 g of soil were mixed with demineralised water to 65% water holding capacity (BS ISO, 1998),
then put in a zip-lock bag with 5 g air-dried horse manure rehydrated with 10 ml demineralised water and one adult earthworm. In Experiment 1 two soils were studied (Hamble and Red Hill) and each bag was placed in a constant temperature room at 10, 16, or 20 °C in darkness. During a later experiment, the Winning Hand soil was used at 16 °C as well as two additional temperatures, 3 and 18 °C, using the same methods. In Experiment 2, earthworms were kept in open bags of soil with a mesh cover at 16 °C in glove boxes with a continuous 15 cm3/min through flow of air with different [CO2]. [CO2] were chosen to rehydrate the early Holocene, projected mid 21st century and end 21st century, respectively (IPCC, 2007). A fourth set of replicates was kept in ambient laboratory conditions. The mass of individual soil and earthworm-bearing containers was measured twice a week, and demineralised water added up to the original weight to compensate for evaporation. As it proved impossible to maintain the initially chosen [CO2] in the glove boxes, experimenters placed NaOH pellets or 46/48% NaOH solution in two of them to lower [CO2], creating three different treatments, hereafter called “low”, “medium” and “high” (the fourth being ambient conditions in the laboratory). Atmospheric [CO2] and temperature were measured every 10 min with an Extech SD800 datalogger. Soil air was sampled by placing a section of silicone tubing with a bung in each end in the bags of soil at the beginning of the experiment. Air was extracted from the tube using a syringe immediately at the end of the experiment (adapted from Clark et al., 2001). For both experiments earthworms were acclimatised for three weeks, and then transferred to identical treatment bags containing the same type and mass of soil and manure at the same temperature and atmospheric [CO2]. After 28 days earthworms were removed and the soil wet-sieved to 500 μm to retrieve granules, which were air-dried and weighted. In Experiment 2, soil gas was sampled and analysed for [CO2] using a Thermo Fisher GC Box connected to a Delta Plus mass spectrometer. Over both experiments, granule production ranged from 0.49 to 3.64 mg/individual/day, which equates to the sequestration of 1–329 kg C/y/ha.

Granule production rate differs significantly between the Red Hill soil and the other two (ANOVA: F = 19.404; p < 0.001; n = 137). This does not appear to be related to any of the soil characteristics measured (Table 1).

At higher temperatures earthworms produced more CaCO3 (Fig. 1). The increase of CaCO3 production rate with temperature can be explained by an increase in metabolism as expected for ectothermic animals. In experiment 2, soil [CO2] was measured on 3 replicates per treatment. The remaining [CO2] analyses failed. Over these 12 replicates higher atmospheric [CO2] resulted in higher soil [CO2] (r = 0.63 [CO2]soil / [CO2]atmospheric + 773; R2 = 0.93; p < 0.001; n = 12); soil pH showed no relationship to either atmospheric or soil [CO2]. A comparison of average CaCO3 production rates reveals no significant differences between the different CO2 levels in Experiment 2. A regression analysis however, shows a weak relationship

Table 1

Experimental design and granule production rates.

<table>
<thead>
<tr>
<th>Soil</th>
<th>WHC (%)</th>
<th>pH</th>
<th>Ca (wt%)</th>
<th>Organic matter (%)</th>
<th>T (°C)</th>
<th>Atmospheric [CO2] ppm</th>
<th>[CO2] in soil air ppm</th>
<th>N<sup>a</sup></th>
<th>Average CaCO<sub>3</sub> production rate (mg/g earthworm/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamble</td>
<td>33%</td>
<td>7.5 ± 0.3</td>
<td>1.3 ± 0.02</td>
<td>3.8 ± 0.1</td>
<td>10</td>
<td>ND</td>
<td>ND</td>
<td>18</td>
<td>0.27 ± 0.07a</td>
</tr>
<tr>
<td>Red Hill</td>
<td>56%</td>
<td>7.1 ± 0.1</td>
<td>0.6 ± 0.02</td>
<td>7.4 ± 0.1</td>
<td>10</td>
<td>17</td>
<td>0.49 ± 0.10c</td>
<td>29</td>
<td>0.40 ± 0.08b</td>
</tr>
<tr>
<td>Winning hand</td>
<td>43%</td>
<td>7.4 ± 0.2</td>
<td>0.9 ± 0.02</td>
<td>5.6 ± 0.0</td>
<td>3</td>
<td>18</td>
<td>0.37 ± 0.06d</td>
<td>17</td>
<td>0.47 ± 0.10e</td>
</tr>
<tr>
<td>Experiment 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winning hand</td>
<td>43%</td>
<td>7.4 ± 0.2</td>
<td>0.9 ± 0.02</td>
<td>5.6 ± 0.0</td>
<td>16</td>
<td>Low</td>
<td>439 ± 79</td>
<td>6</td>
<td>0.49 ± 0.07H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medium</td>
<td>1590 ± 81</td>
<td>5<sup>b</sup></td>
<td>0.40 ± 0.08H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High</td>
<td>3793 ± 161</td>
<td>5<sup>c</sup></td>
<td>0.57 ± 0.10H</td>
</tr>
</tbody>
</table>

ND – not determined; different letters (lower case for experiment 1, upper case for experiment 2) indicate significant differences between treatments at p < 0.05.

^a Water holding capacity.
^b Measured following Great Britain Agricultural Development and Advisory Service (1986).
^c Analysed with a handheld XRF.
^d Measured as loss on ignition.
^e Atmospheric [CO2] in the glove boxes stabilised after 2–5 days, the “ambient” treatment showed a diurnal cycle.
^f [CO2] in soil air at the end of the experiment, average ± 1σ of 3 replicates is shown (remaining analyses failed).
^g Number of replicates per treatment.
^h One earthworm died in each of these treatments leaving only 5 replicates per treatments; all errors are given as ±1σ.

Fig. 1. The relationship between temperature and CaCO3 production by *L. terrestris* for three different soils.
with higher soil [CO$_2$] resulting in higher CaCO$_3$ production rates (Fig. 2; $p = 0.032; R^2 = 0.21$).

There is on-going debate as to whether earthworms increase soil greenhouse-gas emissions or carbon sequestration and the timescale and nature of experiments required to determine this (Lubbers et al., 2013; Zhang et al., 2013). Our study shows that it is likely that at higher temperatures and atmospheric [CO$_2$], earthworm CaCO$_3$ production will increase. As granules can survive in soils for >300,000 years (own data), the potential sequestration of C in the form of CaCO$_3$ is on a longer-timescale than e.g. roots and soil organic matter. More studies are needed to elucidate the C sequestration potential of earthworms under field conditions.

Our results of increased granule production under elevated CO$_2$ support the interpretation that granule production buffers earthworm tissue HCO$_3^-$, which would otherwise increase due to higher [CO$_2$]. This is consistent with the findings of Kühle (1980) who observed increased incorporation of 14C-labelled CO$_2$ in calciferous gland tissue at 5.0% CO$_2$ compared to 0.2% CO$_2$, although granule production was not recorded. Voigt (1933) carried out experiments at far higher [CO$_2$] > 14% and recorded reduced granule production. At this extreme level of CO$_2$, HCO$_3^-$ may have been retained in tissues/fluids to buffer potential pH changes. The work of Kaestner (1967) and the negative relationship between pH and granule production observed by Lambkin et al. (2011b) support this interpretation. The restricted pH range of the soils used in this study may have prevented this relationship from being apparent here. Thus it appears that granule production can increase or decrease depending on whether HCO$_3^-$ is potentially in excess or is required for pH buffering of tissues. However, more research is needed to establish how CaCO$_3$ production rates vary under a wider range of soil [CO$_2$], including measurements of earthworm tissue fluid [CO$_2$] concentrations and pH under different soil [CO$_2$] regimes.

Acknowledgements

This research was funded by a NERC Standard Research Grant (MEH and SB; NE/H021914/1). We thank Jens Dyckmans (University of Göttingen) for the [CO$_2$] analyses. The manuscript was greatly improved by the comments of two anonymous reviewers.

References

Darwin, C. 1881. The Formation of Vegetable Mould, through the Action of Worms, with Observations on Their Habits. The Echo Library, Tendigdon, p. 103.

