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Abstract 

Mutations in the RAS family of oncogenes are highly prevalent in human cancer and, 

amongst its manifold effects, oncogenic RAS impairs the expression of components 

of the antigen presentation pathway.  This allows evasion of cytotoxic T lymphocytes 

(CTL).  CTL and natural killer (NK) cells are reciprocally regulated by MHC class I 

molecules and any gain in CTL recognition obtained by therapeutic inactivation of 

oncogenic RAS may be offset by reduced NK cell activation.  We have investigated 

the consequences of targeted inactivation of oncogenic RAS on the recognition by 

both CTL and NK cells.  Inactivation of oncogenic RAS, either by genetic deletion or 

inactivation with an inducible intracellular domain antibody (iDAb), increased MHC 

class I expression in human colorectal cell lines.  The common RAS mutations, at 

codons 12, 13 and 61, all inhibited antigen presentation. Although MHC class I 

modulates the activity of both CTL and NK cells, the enhanced MHC class I 

expression resulting from inactivation of mutant KRAS did not significantly affect the 

in vitro recognition of these cell lines by either class of cytotoxic lymphocyte.  These 

results show that oncogenic RAS and its downstream signalling pathways modulate 

the antigen presentation pathway and that this inhibition is reversible. However, the 

magnitude of these effects was not sufficient to alter the in vitro recognition of 

tumour cell lines by either CTL or NK cells.  
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Highlights 

• Genetic deletion of mutant KRAS enhances the antigen presentation pathway 

• Intracellular antibody targeting of mutant KRAS increases MHC class I 

expression 

• Mutant KRAS alters expression of the NKG2D ligand ULBP2  

• Mutant KRAS does not alter susceptibility to NK cells 

	  



1. Introduction 

The evasion of immunity is now recognised as a hallmark of cancer alongside well 

established characteristics, such as loss of growth control, resistance to apoptosis and 

the ability to invade and metastasise [1].  Cancer development is initiated by 

mutations in cellular oncogenes and tumour suppressor genes.  The first cellular 

oncogenes to be discovered were those belonging to the RAS family and mutant RAS 

molecules are found in 20-25% of human cancers [2, 3].  RAS proteins are small 

GTP-binding proteins that couple growth factor receptors to intracellular signalling 

pathways [2, 3].   Mutations in codons 12, 13 and 61 are the commonest in human 

cancer and all generate constitutively active RAS molecules [3].  The RAS pathway is 

directly linked to several key features of malignant development, such as cell cycle 

progression and survival.  In addition, RAS signalling regulates several features 

associated with invasiveness and the development of the tumour microenvironment, 

including tumour angiogenesis [2, 3].   

Cytotoxic lymphocytes, namely natural killer (NK) cells and cytotoxic T cells 

(CTL), play a key role in the elimination of tumour cells [4].  The activity of both of 

these cell types is regulated by target cell MHC class I molecules [5, 6]. The T cell 

receptor (TCR) complex on CTL can recognise tumour-associated antigens (TAA) 

presented by MHC class I molecules and this interaction delivers a potent activating 

signal to the cognate CTL.  In contrast, NK cells are negatively regulated by MHC 

class I molecules via the interaction with inhibitory killer cell immunoglobulin-like 

receptors (KIRs).  Thus, whilst reduction of MHC class I expression on tumours 

allows evasion of CTL, it favours NK cell activation, providing the host with a 

powerful immune surveillance system.  In addition, malignant cells frequently express 

cell surface ligands of the NKG2D and DNAM-1 molecules found on both NK cells 



and CTL.  In NK cells, these deliver signals that cause NK cell activation in the 

absence of inhibitory signalling from KIR molecules [6, 7].  Once activated by 

tumour cells, CTL and NK cells exocytose cytotoxic granules containing granzymes 

and perforin molecules, inducing apoptosis in the tumour. In addition, both NK cells 

and CTL produce interferon (IFN)-γ which enhances antigen presentation and favours 

the development of cell mediated immunity [8-11].  

Tumours frequently downregulate the expression of MHC class I molecules 

from the cell surface, allowing them to evade CTL recognition [12].  This can occur 

as a result of mutations in genes encoding critical components of the antigen 

presentation machinery, such as β2-microglobulin (β2M) [13].  The β2M molecule is 

required for the stable expression of the MHC class I/peptide complex at the cell 

surface and hence β2M mutations allow irreversible evasion of CTL [14].  However, 

reduction in tumour cell MHC class I expression can also occur by a second, 

reversible pathway [12, 15].  In this case, reduced expression of antigen presentation 

pathway components restricts the flow of peptide loaded MHC class I molecules to 

the cell surface [15].  Expression of oncogenic RAS has previously been linked with 

the reduced expression of antigen presentation pathway components in mouse cells 

and in human tumour tissue [16-18] (and reviewed in [3]). These components include 

the transporter of antigen processing (TAP) and the TAP-associated molecule, 

tapasin, which are required for efficient delivery of antigenic peptides into the 

endoplasmic reticulum (ER) [14].  This suggests that targeted inactivation of 

oncogenic RAS may restore expression of MHC class I molecules to the cell surface 

and help to boost T cell recognition.  However, there are conflicting reports on the 

association between RAS mutations and antigen presentation in human tumours [18-

20], indicating that functional studies are required.  We have analysed the role of 



mutant RAS oncogenes in regulating the expression of MHC class I molecules and in 

determining the recognition of RAS mutant tumours by cytotoxic lymphocytes.  Our 

results reveal that oncogenic RAS inhibits the antigen processing pathway in human 

tumour cells and that these RAS-mediated effects are reversible. However, enhancing 

the antigen processing pathway by targeting oncogenic RAS in these tumour cells did 

not alter their susceptibility to NK cells or CTL in vitro. 

  



2. Materials ands Methods 

2.1. Culture of tumour cell lines 

The inactivation of mutant KRAS in HCT116 (termed HMu here) and in DLD-1 (DMu) 

generating HKe3 (termed HWT) and DKO4 (DWT) respectively, has been previously 

described [21].  Mutant and wild-type cells were cultured in DMEM supplemented 

with 10% foetal calf serum (FCS).  The HCT116, SW480 and HT-1080 cells stably 

transfected with the anti-RAS iDAb were previously generated [22, 23]; these cells 

were cultured in DMEM+10% FCS supplemented with 1mg/ml G418, 1µg/ml 

puromycin and 0.3mg/ml hygromycin B to maintain transfected constructs.  For 

induction of iDAb expression, medium was supplemented with 50µg/ml doxycycline 

for 48 hours prior to analysis by flow cytometry or immunoblotting.  

 

2.2. Protein and mRNA analysis 

The following antibodies were used for flow cytometry (antigen, clone-fluorochrome, 

supplier); MHC class I, W6/32-PE, Dako; HLA-A2, BB7.2-PE, Serotec; ULBP1, 

170818-PE, R&D systems; ULBP2, 165903-PE, R&D systems; MICA/B, 6D4-PE, 

BD Biosciences; PVR, TX21-FITC, MBL International; Nectin-2, R2.525-PE, BD 

Biosciences; CD8, SK7-PerCP, BD Biosciences; IFN-γ, 4S-B3-FITC, BD 

Biosciences; CD107a, H4A3-FITC (or PE), BD Biosciences. The purity of NK cell 

preparations was determined using the following antibodies; CD56, AF127H3-PE, 

Miltenyi Biotec; CD3, UCHT1-FITC, BD Biosciences; NKp46, 9E2-APC, BD 

Biosciences.  The MART-1 peptide loaded HLA-A2 pentamer (APC labelled) was 

purchased from ProImmune, together with an HLA-A2 control pentamer to allow for 

accurate gating of MART-1 specific T cells.  Flow cytometry was performed using a 

FACS Calibur or LSRII flow cytometer (BD Biosciences) and analyzed using FACS 



Diva or Cellquest Pro (both from BD Biosciences) or FlowJo software (from 

Treestar).  For Western blotting, we used an anti-calnexin polyclonal sera from Cell 

Signaling Technology and monoclonal antibodies against Tapasin and TAP-1 (from 

Paul Lehner, University of Cambridge), actin and the FLAG epitope from Sigma-

Aldrich. Quantitative RT-PCR analysis of gene expression was performed as in [24] 

using Taqman probe/primer sets from Applied Biosystems/Life Technologies.  

 

2.3. Preparation and functional analysis of NK cells and MART-1 specific T cells 

Human NK cells were prepared from blood samples using indirect immunomagnetic 

separation, using a kit from Miltenyi Biotec, as previously described [24].  NK cell 

purity, as judged by either the CD56+CD3neg or NKp46+ cell surface phenotype was 

routinely >90%.  For IL-2 stimulation, NK cells were cultured for 5-7 days in 50 

units/ml IL-2 (R&D systems).  NK cell mediated killing of tumour cells and granule 

exocytosis assays were performed as we have described previously [24-26], including 

after siRNA transfection of target cells [26, 27].  T cells restricted to the HLA-A2 

restricted MART-1 epitope were generated in vitro and assayed as described [28].  

The tumour target cells were pulsed with 10ng/ml of either MART-1 peptide 

(ELAGIGILTV) or the control HER2/neu peptide (ILHNGAYSL) for 30 minutes 

prior to co-culture with the CTL.  Discarded blood donations (from the Leeds NHS 

Blood and Transplant Service) were used as a source of HLA-A2+ lymphocytes. 

 

 

  



3. Results 

3.1. Mutant RAS decreases cell surface expression of MHC class I molecules  

The human colorectal cancer cell line HCT116 contains a wild type KRAS allele and 

a second mutant allele with the oncogenic G13D mutation.  We compared the cell 

surface expression of MHC class I molecules on HCT116 and a derivative (HKe3) in 

which the mutant KRAS allele has been deleted by homologous recombination [21]; 

this cell line retains the wild-type KRAS allele and differs from the parental HCT116 

cells only by the absence of mutant KRAS.  For simplicity, we refer to this pair of cell 

lines as HMu (for HCT116 with mutant KRAS) and HWT (HCT116 with wild-type 

KRAS).  Loss of the oncogenic KRAS allele impairs (but does not halt) growth of 

these cells both in vitro and in vivo [21].  Flow cytometry using a pan-reactive anti-

MHC class I antibody (W6/32) indicated that the HMu cells expressed lower levels of 

cell surface MHC class I than HWT in which the KRAS G13D allele had been deleted 

(Fig. 1A).  Antibodies specific for HLA-A2 molecules revealed that cell surface 

expression of this MHC class I allotype was downregulated in the presence of 

oncogenic KRAS (Fig. 1A).  Stable expression of MHC class I molecules at the cell 

surface requires translocation of antigenic peptide from the cytosol into the ER, 

loading of this peptide into the MHC class I molecule and association of the MHC 

class I heavy-chain polypeptide with β2M [14].  The HMu cells had reduced 

expression of the TAP-1, tapasin and β2M (Fig. 1B), indicating that mutant KRAS 

was inhibiting expression of key antigen processing pathway components, as 

previously suggested in immunohistochemical studies of human tumours [18].  

Furthermore, the steady state levels of β2M mRNA were reduced by a factor of two 

in HMu compared to HWT, in close agreement with the difference in cell surface 

expression of MHC class I molecules in these cell lines (data not shown). Expression 



of the ER chaperone calnexin was unaffected by mutant KRAS (Fig. 1B); this protein 

facilitates the folding of MHC class I, but is dispensable for antigen presentation [14].   

These results indicate that mutant KRAS decreases cell surface expression of MHC 

class I molecules in human tumour cells by reducing expression of multiple 

components in the antigen processing and presentation pathway.  Cell surface 

expression of MHC class I could be enhanced in both HWT and HMu by IFN-γ 

stimulation, although HMu cells had an impaired response compared to HWT (Fig. 1C).   

Thus, mutant KRAS inhibits the antigen presentation pathway but the pathway 

remains intact, suggesting that it could be enhanced by therapeutic targeting of mutant 

RAS. 

 

3.2. A RAS-targeting strategy increases MHC class I expression in tumour cells 

We verified the role of mutant RAS in inhibition of MHC class I expression using a 

separate approach.  The selective targeting of mutant RAS is a major goal of cancer 

therapy.   Strategies have been developed that allow the selection of antibody-like 

fragments (termed intracellular domain antibodies or iDAbs) that possess antigen-

specificity within the intracellular environment [29].  This approach was used to 

develop an iDAb that selectively binds to the active conformation of RAS [23, 30].  

Inducible expression of this iDAb is coupled to a reduction in RAS signalling and 

reduced tumourigenicity in vivo [22, 23].  We analysed the effect of inducing anti-

RAS iDAb expression in three cell lines, the colorectal cell lines HCT116 and SW480 

containing mutant KRAS (G13D and G12V respectively), and HT-1080, a 

fibrosarcoma cell line with a mutant NRAS (Q61K).  Induction of the iDAb resulted 

in increased expression of cell surface MHC class I in all three cell lines (Fig. 2).  The 

iDAb open reading frame is linked to GFP via an internal ribosome entry site [23]; 



more pronounced MHC class I expression was observed in the cells exhibiting higher 

levels of GFP expression (Fig. 2).  Importantly, these results confirmed the data 

obtained using the HMu/HWT isogenic pair (Fig. 1) and showed that inactivation of all 

three common RAS mutants restored cell surface MHC class I expression to these 

tumour cell lines.  Collectively, these results suggest that therapeutic blockade of 

oncogenic RAS might alter the recognition of these targeted cells by cytotoxic 

lymphocytes. 

 

3.3. Mutant RAS and recognition by CTL 

We first investigated whether the oncogenic RAS-mediated inhibition of MHC class I 

expression affected antigen-specific recognition by CTL.   Use of established human 

tumour cell lines has the disadvantage that it is not possible to obtain autologous T 

cells.  However, the HCT116 cell line expresses the HLA-A2 molecule (Figure 1A) 

and it is possible to use in vitro priming to generate CD8+ T cell populations from 

healthy HLA-A2+ donors that are reactive against the HLA-A2 restricted melanoma 

antigen, MART-1 (Fig. 3A).  We pulsed HMu and HWT cells with MART-1 peptide (or 

a control peptide derived from the HER2/Neu molecule) and co-cultured these 

antigen-pulsed tumour cells with T cells enriched for MART-1 specificity.  Antigen-

specific T cell activation was assessed by intracellular IFN-γ production by the 

MART-1 reactive cells (Fig. 3B and C).  Interferon-γ production by the MART-1 

reactive T cells was induced by the MART-1 peptide pulsed cells, but not the control 

peptide, indicating antigen-specificity of the assay.  Comparison of IFN-γ production 

in response to MART-1 pulsed HWT and HMu cells suggested a diminished CTL 

response in the presence of mutant RAS, as expected with reduced MHC class I 

expression on HMu cells. However, this data did not reach statistical significance (Fig. 



3C).   

 

3.4. Mutant RAS does not alter NK cell recognition 

According to the missing-self model, the reduction in cell surface MHC class I 

molecules mediated by mutant KRAS should increase the susceptibility of these cells 

to NK cell attack. We compared the ability of unstimulated and IL-2 activated NK 

cells to kill HWT and HMu cells; IL-2 enhanced the killing of both cell lines but, 

contrary to the predictions of the missing-self hypothesis, there was no difference 

between them in their susceptibility to NK cells over a range of effector:target ratios 

(Fig. 4A).  However, the ability of an NK cell to kill a tumour target is dependent 

upon NK cell recognition of the target and the susceptibility of the tumour to NK cell-

mediated apoptosis induction. Mutant RAS can modulate apoptotic functions [2, 3], 

suggesting that any increased NK cell activation resulting from RAS-mediated 

reduction in MHC class I expression on HMu cells might be balanced by a decreased 

susceptibility of the tumour cells to NK cell-mediated apoptosis.  To test this, we 

analysed NK cell activation by HMu and HWT using the granule exocytosis assay [25, 

31].  This assay dissociates the NK cell response from the susceptibility of the tumour 

target cells to granule-induced apoptosis.  Again, IL-2 stimulated NK cells 

demonstrated increased response to both HMu and HWT, but there was no difference in 

the ability of these two cell lines to induce NK cell activation (Fig. 4B).  

The colorectal cell line DLD1 also has a KRAS G13D mutation and this allele 

has been deleted to generate the DKO4 cell line [21] (we denote these cells as DMu 

and DWT respectively).  Interestingly, DLD1 does not express any cell surface MHC 

class I molecules because it lacks functional β2M [13] (Fig. 4C).  We used DMu and 

DWT to analyse the effect of mutant KRAS on NK cell recognition in the absence of 



MHC class I expression.  As found in the HCT116 background, IL-2 treatment 

enhanced the NK cell degranulation and killing of this isogenic pair of cell lines, but 

there was no difference in their recognition or susceptibility to killing in the presence 

or absence of oncogenic RAS (Fig. 4D and E). 

 

3.5. Expression of NK cell activation ligands in the presence of oncogenic RAS 

NK cell activation is not solely determined by target cell MHC class I expression, but 

by the balance of signals delivered from inhibitory receptors (including the KIRs) and 

activating receptors such as NKG2D and DNAM-1 [6, 7]. The human NKG2D 

molecule binds to a series of cell surface ligands, comprising members of the 

cytomegalovirus UL16 binding protein (ULBP) family and MHC Class I polypeptide 

related sequence (MIC)A and MICB [32].  Two ligands of DNAM-1 have been 

identified, PVR and Nectin-2 [6, 7].  We analysed the expression of ULBP1, ULBP2, 

MICA/B, PVR and Nectin-2 in the HCT116 and DLD-1 derived isogenic pairs.  

Amongst these molecules, only ULBP2 showed consistent alteration in expression in 

the two backgrounds, with cell surface expression being reduced in the presence of 

oncogenic RAS (Fig. 5).  Furthermore, this reduction in ULBP2 expression in the 

presence of oncogenic RAS was mirrored at the mRNA level (data not shown).  These 

results, together with those in Figure 1, indicated that mutant KRAS reduces the cell 

surface expression of molecules that inhibit NK cells (MHC class I) as well as those 

that activate (ULBP2). However, this modulation did not affect the activation of NK 

cells or their ability to kill these tumour targets. 

 

4. Discussion 

These results using the HMu/HWT isogenic cell lines and the anti-RAS iDAb system 



clearly demonstrate a role for oncogenic RAS activity in the inhibition of MHC class 

I expression in human tumour cells. The concept that oncogenes inhibit expression of 

MHC class I molecules and reduce the host immune response to tumours stems 

largely from observations showing that the adenovirus 12 (Ad12) E1A molecule 

downregulates MHC class I and allows Ad12-transformed rodent cells to evade T cell 

mediated immunity [33, 34].  These findings prompted a series of studies 

investigating the ability of different oncogenes to modulate MHC class I expression 

[35-38]. Subsequently, oncogenic RAS was shown to reduce cell surface expression 

of mouse MHC class I molecules [16, 17] and this was associated with reduced CTL 

recognition [17].  The reduced expression of MHC class I molecules in human 

tumours is well documented [12].  Early immunohistochemical studies showed that 

there were three phenotypes of colorectal cancer; absence of MHC class I expression 

was observed in approximately one third of samples, whereas two-thirds of samples 

had reduced MHC class I expression.  Tumours with apparently normal levels of 

MHC class I expression were a very small minority, accounting for less than one in 

twenty cases [39]. RAS mutations have been associated with reduced expression of 

antigen processing pathway components in human tumour samples [18], although 

earlier studies did not reach this conclusion [19, 20], possibly due to technical 

differences between the studies.  Our results reveal a direct role for oncogenic RAS in 

mediating these effects in human tumours. Treatment of tumour cells with IFN-γ 

enhances cell surface expression of MHC class I and restores presentation of 

endogenous antigen to CTL [15].  Using the HWT/HMu isogenic pair, Klampfer et al 

showed that oncogenic KRAS inhibited steady-state levels of the STAT1 and STAT2 

transcription factors, resulting in reduced expression of genes encoding β2M and 

MHC class I, amongst others [40].  We found that HMu cells retain IFN-γ 



responsiveness, as assayed by cell surface expression of MHC class I molecules.  

However, the response to IFN-γ was impaired in HMu compared to the isogenic HWT 

cells.  Our results demonstrate that oncogenic RAS inhibits antigen presentation by 

targeting expression of multiple components of the pathway, with the net result of 

reducing MHC class I molecules at the cell surface.  Our data using HLA-A2+ 

restricted MART-1 reactive T cells and MART-1 peptide pulsed tumour target cells 

was suggestive of reduced CTL responses against HMu, but these results did not reach 

statistical significance. Overall, mutant KRAS inhibited the expression of cell surface 

HLA-A2 by less than two-fold and this difference did not significantly alter T cell 

recognition. However, the use of exogenous antigenic peptide in our assays may 

underestimate the effect of oncogenic RAS inhibition on antigen-specific CTL 

recognition since the inhibition of peptide transport into the ER will be negated.  

Furthermore, antigen presentation by HLA-A2 is not dependent upon TAP activity 

[41, 42], suggesting that CTL responses to TAP-dependent HLA molecules (and their 

associated peptides) may be more severely affected by oncogenic RAS activity than 

observed in our in vitro assays.  

According to the missing self model, reductions in MHC class I expression are 

expected to result in increased susceptibility to NK cells.  However, HWT and HMu 

showed no differences in either their susceptibility to NK cell mediated killing or their 

ability to induce NK cell granule exocytosis.  The possibility that MHC class I 

molecules expressed by the HCT116 background do not engage the KIR molecules of 

the NK cells used in these experiments is unlikely since HCT116 expresses both 

HLA-C1 and HLA-C2 epitopes (HLA-Cw7 and Cw5 respectively) and will thus 

engage KIR2DL1, 2DL2 and 2DL3, which are common amongst KIR haplotypes [43, 

44].  Similar to the situation with CTL, it is likely that the relatively small inhibition 



in cell surface MHC class I expression is insufficient to alter NK cell recognition. The 

existence of a threshold of NK cell activation/inhibition regulated by MHC class I 

levels [26, 45, 46] means that once MHC class I expression is below the threshold 

required for NK cell inhibition, any further reduction in its expression does not alter 

NK cell activation [26]. We envisage that the HWT cells, despite having more MHC 

class I at the cell surface than HMu, still express MHC class I at a sub-inhibitory 

threshold level.  In support of this, further reduction of cell surface MHC class I 

expression by HMu (using a β2M-specific siRNA) did not enhance killing (data not 

shown).   

In colorectal cancer, patients whose tumours expressed high levels of MHC 

class I showed similar survival times to those whose tumours had lost MHC class I  

[47].  However, patients with reduced MHC class I expression had the worst 

prognosis of these three groups; the authors of this study suggest that reduced MHC 

class I levels on these tumours might be insufficient to mediate CTL recognition but 

are nevertheless still capable of inhibiting NK cell activity, rendering the tumour 

resistant to both classes of cytotoxic lymphocytes [47].  By inhibiting expression of 

multiple antigen presentation pathway components, mutant RAS molecules reduce 

total MHC class I expresssion levels at the cell surface.  Expression of the major 

inhibitory ligands of NK cells, HLA-B and –C, is highly dependent upon TAP, 

tapasin and β2M, all of which are downregulated by oncogenic RAS.  Further 

investigation is required to determine the effects of oncogenic RAS on individual 

HLA molecules and how these might alter tumour cell recognition by both NK cells 

and CTL.  Indeed, the differential regulation of HLA molecules is exploited by HIV, 

allowing infected cells to minimise their recognition by both CTL and NK cells [48] 

and, in melanoma, HLA expression patterns are believed to be shaped by immune 



selection [49].   

 The mechanisms that underlie the expression of NKG2D ligands are 

beginning to be uncovered [50].  Oncogenic transformation itself is insufficient to 

induce NKG2D ligand expression [51].  However, a variety of stress signals (such as 

DNA damage and intracellular infection) result in expression of these ligands [32, 51, 

52].  The existence of multiple NKG2D ligands presumably allows coupling of 

different stress signals to the expression of different ligands, providing the host with 

an efficient response system to eliminate damaged cells [32, 52].  Oncogenic RAS 

inhibited the expression of the NKG2D ligand ULBP2 in both the HCT116 and DLD1 

backgrounds, yet in neither case did this alter their susceptibility to NK cells.  This is 

most likely because NK cells express a large repertoire of activating and inhibitory 

receptors whose signals intersect to control activation [6, 7].  Either the change in 

ULBP2 expression was too small to manifest itself as altered susceptibility, or 

reduction of ULBP2 expression by oncogenic RAS was compensated for by reduced 

expression of an inhibitory ligand expressed in both the HCT116 and DLD1 

backgrounds (i.e. a ligand other than MHC class I).  The coupling of the RAS 

pathway to ULBP2 expression has been observed previously [53]; RAS activation 

leads to MAPK and MEK activation and MEK inhibition, like RAS inactivation, 

resulted in increased cell surface expression of MHC class I and ULBP2.  Similarly, 

MEK inhibition resulted in increased recognition by CTL without altering 

susceptibility to NK cells.  Furthermore, expression of STAT1 and ULBP2 was 

enhanced in MEK inhibitor treated HCT116 cells [53].  Interestingly, nuclear STAT1, 

MHC class I expression and the presence of infiltrating T cells are markers of good 

prognosis in colorectal cancer [54].   

However, the inhibition of ULBP2 expression by the RAS/MEK pathway is 



not universal; Liu et al demonstrated that oncogenic HRAS (G12V) transfection 

induced ULBP2 expression [55].  This difference may reflect cell type-specific, or 

potentially RAS gene-specific differences. For example, we studied the effect of 

oncogenic KRAS in the colorectal tumour cell lines HCT116 and DLD1, whereas Liu 

et al transfected oncogenic HRAS gene into MCF7 (breast cancer-derived cells) and 

adenovirus immortalised 911 and 293T cells.  In addition to its KRAS G13D 

mutation, the Catalogue of Somatic Mutations in Cancer (COSMIC; [56, 57]) lists 

HCT116 as harbouring an oncogenic mutation in β-catenin (CTNNB1), whereas 

MCF7 has wild type KRAS and β-catenin alleles. Interestingly, both cell lines 

harbour somatic mutations in the catalytic subunit of phosphatidylinositol 3 kinase 

(PIK3CA) and activation of this pathway has also been linked to NKG2D ligand 

expresssion in infection and cancer [58].  The diversity of the mutational landscape in 

human cancer and the consequent dysregulation of numerous pathways will no doubt 

make overarching rules governing the expression of NKG2D ligands in cancer 

difficult to define. Less is known regarding the regulation of expression of DNAM-1 

ligands [59]. Expression of the mouse Pvr/Cd155 gene (encoding the ligand for 

mouse DNAM-1) is upregulated by oncogenic RAS via a MEK dependent pathway 

[60].  However, we did not find consistent changes in the expression of PVR (or the 

other DNAM-1 ligand, Nectin-2) in the HCT116 and DLD-1 based isogenic pairs.   

The ability to delete oncogenic RAS from HCT116 and DLD1 reveals that this 

oncogene plays a non-essential role in the in vitro growth of tumour cell lines.  More 

compelling is the in vivo use of the anti-Ras iDAb; induction prevents tumour 

initiation or halts the ongoing growth of the tumour, but does not cause regression of 

established tumours [22].  Hence, the concept of oncogene addiction does not apply in 

this instance [61].  This suggests that agents targeting RAS will need to be combined 



with other strategies for effective therapy.  Direct inhibition of RAS activity has not 

met with great success [62], but targeting of downstream signalling molecules (such 

as RAF and MEK) holds promise [63].  In addition, synthetic lethality screens have 

identified potential targets selective to RAS mutant cells [64].  We did not find 

statistically significant differences in the CTL recognition of HMu and HWT cells. 

However, our results show that inhibition of oncogenic KRAS does lead to enhanced 

antigen presentation and this offers encouragement that future therapeutic strategies 

might enhance the anti-tumour activity of CTL in vivo, especially if targeted against 

TAP-dependent HLA/peptide combinations and/or if used in combination with 

inhibitors of other components of the RAS signalling pathway. Importantly, the 

interaction between the anti-RAS iDAb and oncogenic RAS disrupts the binding of 

PI3K to the GTP bound form of RAS and identifies this structural interface as a 

potential site for anti-RAS drug design [23].   
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Figure Legends 

Figure 1. Cell surface MHC class I expression in the presence or absence of 

oncogenic RAS. 

(A) Total cell surface MHC class I (left panel) and HLA-A2 (right panel) expression 

by HMu and HWT cells (as labelled).  The ratio of expression (based on the geometric 

mean of fluorescence) of HWT/HMu is indicated in brackets.  The grey/black areas are 

unstained and isotype control stained cells.  The data shown are representative of 

experiments repeated five times for MHC class I and twice for HLA-A2. 

(B) Expression of antigen processing pathway components in HMu and HWT cells 

determined by immunoblotting, CANX; calnexin, TAPBP; tapasin, TAP1; transporter 

of antigen processing-1 and B2M; Beta-2-microglobulin. Actin (ACT) is shown as a 

loading control in each case.  Quantitative RT-PCR analysis demonstrated a two-fold 

reduction in β2M mRNA levels in HMu compared to HWT (data not shown). 

(C) Relative expression of cell surface MHC class I (determined by flow cytometry) 

in response to IFN-γ stimulation, with expression in unstimulated HMu cells assigned 

an arbitrary value of 1 relative unit (RU).  Expression was inducible in HMu (dark line) 

but did not reach the levels achieved following mutant KRAS inactivation in HWT 

(grey line).  Standard deviation from the mean is indicated (based on triplicates) and 

the data shown is one of two independent experiments. 

 

Figure 2. Cell surface MHC class I expression following anti-RAS iDAb induction. 

Expression of GFP and MHC class I in cell lines stably transfected with the iDAb 

construct in the absence (-T) or presence (+T) of the inducer tetracycline.  (A) Shows 

HCT116 cells harbouring the KRAS G13D (B) HT-1080 fibrosarcoma cells 

harbouring the NRAS Q61K mutation and (C) SW480 cells harbouring the KRAS 



G12V mutation.  In each case, the top panels show expression in the presence (+T, 

grey line) or absence (-T, dark line) of tetracycline induction in the total population of 

cells.   In the bottom panels, expression was determined by gating on the cells 

expressing the highest (GFPhi) and lowest (GFPlo) amounts of GFP (as labelled), 

thereby analysing non-responding and responding cells separately within the 

population. The ratio of expression (based on the geometric mean of fluorescence) of 

GFPhi/GFPlo is indicated in brackets.  For HCT116 cells (A), expression of total cell 

surface HLA class I and HLA-A2 was analysed.  The data shown in Figure 2 are 

representative of three independent experiments. 

 

Figure 3.  CTL recognition of HMu and HWT cells. 

(A) In vitro primed T cells, enriched for reactivity against the MART-1 peptide 

prepared as described in the materials and methods.  The plot shows the primed T 

cells co-stained with an HLA-A2 pentamer loaded with the MART-1 peptide and with 

an anti-CD8 antibody.  The boxed area indicates the CD8+ T cells with the strongest 

binding to the MART-1 peptide loaded HLA-A2 tetramer.  This gate was set in 

conjunction with staining of the MART-1 primed T cells with a control HLA-A2 

pentamer (not shown). 

(B) For CTL responses, HWT or HMu cells (HLA-A2+) were pulsed with either 

MART-1 or HER2/neu peptides as indicated and co-cultured with the T cells enriched 

for reactivity to MART-1.  CTL responses were determined by analysis of 

intracellular IFN-γ production by the MART-1 reactive T cells.  The percentage of 

MART-1 reactive T cells producing IFN-γ are indicated.  We also analysed IFN-γ 

production by the CD8+, HLA-A2/MART-1neg population of cells; no more than 

2.1% of this population produced IFN-γ in response to HWT or HMu (data not shown), 



indicating antigen-specificity in these assays.  

(C) IFN-γ production by MART-1 reactive CTL responding to MART-1 peptide 

loaded HWT or HMu as indicated.  This data was collected from four separate 

experiments. The error bars show standard deviation. An unpaired Student’s T test 

revealed the differences to be non-significant. 

 

Figure 4. NK cell recognition of HMu and HWT cells. 

(A) NK cell mediated killing of HWT and HMu cells at differing E:T ratios (as 

indicated).  The left hand panel shows killing by unstimulated NK cells, the right 

hand panel by IL-2 stimulated NK cells (with standard deviation based on triplicates).  

(B) NK cell granule exocytosis (CD107+ cells), in response to HWT or HMu cells using 

unstimulated or IL-2 treated NK cells . 

(C) Cell surface MHC class I staining (using W6/32) of DMu and DWT cells as 

indicated.  The grey/black area is isotype control/unstained cells.  These cells are in 

the DLD-1 background and are MHC class I negative due to a β2M mutation [13].  

(D) NK cell granule exocytosis (CD107+ cells), in response to DWT or DMu using 

unstimulated or IL-2 treated NK cells at an E:T ratio of 1:1. 

(E) NK cell mediated killing of DMu and DWT at differing E:T ratios (as indicated).  

The left hand panel shows killing by unstimulated NK cells, the right hand panel by 

IL-2 stimulated NK cells. A), B), D) and E), show the standard deviation from the 

mean of three independent experiments, each performed in triplicate. 

 

 

 



Figure 5.  Cell surface expression of NKG2D and DNAM-1 ligands in the presence 

or absence of oncogenic RAS.  The ligands and their respective receptor are indicated.  

The analysis was performed in the HCT116 (HWT and HMu) and DLD1 (DWT and DMu) 

backgrounds and is representative of two separate experiments. The unstained/isotype 

control stained cells are also shown. 
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