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This paper describes a simple, physically based mixing length model that explains the functional form of Manning’s

equation for mean velocity in open channels. Manning’s equation has been used to describe mean velocity for over

100 years and is essentially an empirical result rather than being based on an understanding of physical processes.

The model described in this paper uses Prandtl’s mixing length hypothesis, with mixing length modelled at each

point within the cross-section being proportional to the distance to the nearest solid boundary. The model solves

equations for the along-stream velocity field using a simple numerical method on regular and irregular finite-

difference meshes. The results of the model are compared with Manning’s equation and the Colebrook–White

formula, giving good agreement across a range of channel sizes, roughnesses and geometries. The results and

comparison are used to draw useful insights into open channel flows.

Notation
a, b, c, d weights of neighbouring points used in averaging in

Jacobi’s method

dxþ, dx�, forward and backward difference grid spacings,

etc. values for y are defined similarly

g acceleration due to gravity

h depth of flow

h0 distance above bed at which velocity goes to zero

ks bed material grain size

l mixing length

n Manning’s coefficient of resistance

n9 generalised Manning’s coefficient of resistance

R hydraulic radius

Re Reynolds number

r distance from centre of circular channel

S along-stream channel slope

u along-stream velocity component

u* shear velocity

u0 and u1 velocities calculated at point nearest the bed and

the point one above

v cross-section average velocity

�x, � y turbulent eddy viscosity for velocity gradients in x

and y directions

x, y, z distance along stream, horizontally across stream

and vertically, respectively

Æ ratio of velocities at point nearest the bed and the

one above

ª power of R in generalised Manning’s equation

˜z vertical grid spacing for wall function model

k von Karman’s constant

r density of water

� shear stress

�b bed shear stress

1. Introduction
Manning’s equation, and related equations such as the Chezy and

Strickler equations, have been used by engineers for over

100 years to estimate the capacity of open channels to convey

water. Manning’s equation describes the relationship between the

cross-section average water velocity v, the bed slope S, the

hydraulic radius R and a resistance coefficient n for uniform,

steady flows

v ¼ 1

n
R2=3S1=2

1:

The form of this equation raises two questions.

Firstly, why is the velocity dependent on the hydraulic radius?

Intuitively, this is sensible: the hydraulic radius describes the

ratio of the amount of water in the channel (and hence its

weight) to the length of wall in contact with the water. The
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hydraulic radius is a characteristic of the geometry and thus a

simple way of incorporating the cross-section geometry in the

model (Chanson, 1999; Morvan et al., 2008). However, it is not

clear why this simple combination of area and perimeter should

control the velocity, rather than some other, more complex

relationship.

Secondly, why the 2/3 power? The 2/3 power was derived by

Manning from an analysis of results from a number of other

researchers in the eighteenth and nineteenth centuries, and the

dimensional inconsistency of the equation troubled Manning

enough for him to reformulate the equation in a more complex

but dimensionally consistent way (Manning, 1891). Engineers,

however, persisted with the simpler form. There is no intuitive

explanation of why a 2/3 power should appear in an equation

describing channel flow.

The Manning equation as applied to uniform flow conditions

implies that the water surface slope, and therefore the bed shear

stress, is proportional to v2: This is similar to many other

situations in hydrodynamics where the flow resistance is propor-

tional to v2, and therefore the dependence between S and v is as

expected. In contrast, the dependence on R by a 2/3 power rather

than any other power is essentially an empirical result. Indeed,

Chezy’s equation also uses the hydraulic radius, but with a

different power. What hydraulic processes generate this depen-

dence?

Previous work on modelling steady, uniform flow in open channel

cross-sections has tended to focus on representing complex cross-

sections and the effects of turbulence and horizontal velocity

variations on conveyance. Shiono and Knight (1991) use a

simplification of the shallow-water equations to model convey-

ance in a cross-section divided into a series of panels. This

approach has been used practically in the conveyance estimation

system (McGahey et al., 2008). A finite-element method has been

used to model conveyance (Abril and Knight, 2004; Knight and

Abril, 1996) in complex cross-sections, and a one-dimensional

(1D) across the channel model has been used to understand the

effects of vegetation (Darby and Thorne, 1996). The research

reported in these references does not, however, attempt to explain

why a relationship like those of Manning or Chezy works in

describing conveyance, but instead tries to extend its validity to

more complex situations.

This paper describes a simple mixing length model that can

reproduce the known conveyance behaviour of open channels,

based on physical arguments rather than empirical results. This

behaviour is reproduced by the Manning and Chezy equations,

meaning that the results of the mixing length model are

compatible with well-understood engineering approaches to con-

veyance estimation, but also offering an insight into why these

behaviours occur. As well as providing some insight into how the

functional dependencies in the equation arise, the model may be

of practical use in modelling conveyance in open channels, with

applications in river engineering, water resources and flood

modelling.

2. Two-dimensional mixing length model
The mixing length model of Prandtl (Prandtl, 1945; Schlichting

et al., 2004) was developed as a simple way of providing

analytically tractable closures for turbulent flows. By analogy

with the relationship between molecular viscosity in gases and

the molecular mean free path, Prandtl hypothesised that the shear

stress generated by turbulent mixing could be written in terms of

a mixing length l

� ¼ rl2 du

dy

� �2

2:

The shear stress � is related to the mixing length l, the velocity

profile (written here for a velocity u varying only in the

y direction) and density r. The mixing length describes the

distance a parcel of fluid tends to travel in a cross-stream

direction before becoming homogenised with the surrounding

fluid. A longer mixing length means that fluid will travel further,

and hence transport momentum from further away, increasing

mixing and producing a larger shear stress. Another way of

thinking of the mixing length is in terms of the size of the eddies

that transport momentum and other properties (temperature,

solute concentration) within a fluid. The application of a mixing

length model in channel flows is attractive because it is capable

of reproducing the observed logarithmic velocity profile near

rough walls and because it is intuitively simple. By modelling the

mixing length as a proportion of the distance to the wall, the

observed hydraulic behaviour can be reproduced. The constant of

proportionality is von Karman’s constant k, which has been

empirically determined as 0.41 for many flows and is consistent

with current understanding of the fundamental properties of

turbulence (Lo et al., 2005). Thus, mixing is limited near the

wall, where large eddies will be disrupted by interaction with the

solid boundary, and mixing increases away from the wall where

larger eddies can form.

Extension of the 1D mixing length model to more complex

channel shapes is straightforward (but the solution of the resulting

equations is sometimes difficult). Assuming uniform, steady flow,

the stress in a fluid is generated by vertical and horizontal shear.

Considering velocity variations in the cross-stream (y) and

vertical directions (z), and assuming steady, uniform flow in the

x direction, the Reynolds averaged Navier–Stokes momentum

equation becomes

rgS þ @�xy

@ y
þ @�xz

@z
¼ 0

3:

The weight of the fluid is thus balanced by vertical and horizontal
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shear stress gradients. Based on Prandtl’s theory, these stresses

can be written as

�xy ¼ rl2 =uj j þ @u

@ y

�xz ¼ rl2 =uj j þ @u

@z4:

in which u is the Reynolds average velocity component in the x

(along stream) direction and assuming that molecular viscosity

can be neglected for a fully turbulent flow. Differentiating the

shear stresses gives

@�xy

@ y
¼ rl2 =uj j þ @

2u

@ y2
þ rl2 @ =uj j

@ y

@u

@ y

þ 2rl
@ l

@ y
=uj j @u

@ y5:

A similar equation can be written for the derivative of �xz with

respect to z. The derivative of the magnitude of the velocity

gradient in the second term is (assuming velocity is constant in

the x direction)

@ =uj j
@ y

¼ 1

=uj j
@u

@ y

@2u

@ y2
þ @u

@z

@2u

@ y@z

 !
6:

The terms from Equations 4, 5 and 6 can be grouped into terms

involving second derivatives with respect to x and y, and source

terms

rl2j=uj þ rl2

j=uj
@u

@ y

� �2
" #

@2u

@ y2

þ rl2j=uj þ rl2

j=uj
@u

@z

� �2
" #

@2u

@z2

þ rgS þ 2
rl2

j=uj
@2u

@ y@z

@u

@z

@u

@ y

þ 2rlj=uj @ l

@ y

@u

@ y
þ @ l

@z

@u

@z

� �
¼ 0

7:

This gives the 2D Poisson equation, with inhomogeneous coeffi-

cients, and source terms arising from the component of the

weight of water in the along-stream direction and derivative

terms. The different coefficients of the second derivatives in y

and z mean that the eddy viscosity is anisotropic. These equations

are solved by the methods described in the following sections to

produce the results presented in this paper.

The boundary conditions for this problem are applied at the bed

and free surface. At the bed, the boundary condition is that the

velocity is zero at a distance h0 from the wall or bed. This

distance is not zero and can be thought of as a factor to set the

mixing length near the bed. This controls the velocity distribution

in the rest of the channel by determining the mixing length and

hence the velocity gradient at the point near the bed where the

velocity goes to zero. The distance h0 is thus a way of

parameterising a boundary condition for the mixing length model

near the bed. The boundary condition at the horizontal free

surface is that the vertical shear stress �xz should be zero. It is

recognised that the treatment of the free surface boundary

condition here is simplistic and that the assumption of isotropic

turbulence is not entirely valid. Rodi (1993) develops a surface

boundary condition that more realistically represents observed

eddy behaviour near the free surface. However, in terms of a

comparison with Manning and Chezy, this is not felt to be

significant as the main influence on conveyance is the behaviour

near the bed and walls rather than near the surface where velocity

gradients are smaller.

The final link with Manning’s equation concerns the relationship

between Manning’s coefficient n, h0 and the roughness height

describing the geometric properties of the walls and bed. For bed

and walls composed of uniform grain size ks, the zero-velocity

depth h0 will be equal to 0.033ks, according to experiments

undertaken by Nikuradse (1933). This provides a link between

the geometric properties of the bed and the velocity profile, as

controlled by h0: The equation h0 ¼ 0.033ks describes the

relationship between the grain size and the initial mixing length

as discussed above.

This relationship assumes that the flow is hydraulically rough;

that is, there is turbulent flow in the boundary layer near the bed.

A link between the roughness height ks and Manning’s resistance

is provided by the Colebrook–White equation (Colebrook, 1939),

a relationship between velocity, hydraulic radius, roughness

height and slope for laminar, transitional and turbulent flows

v ¼ �(8gRS)1=22log10

2:51

Re

v2

8gRS

 !1=2

þ ks

12:3R

2
4

3
5

8:

This relationship is based on the Prandtl mixing length hypothesis

and dimensional analysis and uses experimental results to fit the

relationship to observations. A range of values for the parameters

in this equation has been found by fitting to experimental data for

closed pipes and open channels of different geometries (Yen,

1991); a commonly used median value is used here. For turbulent

flows with high Reynolds number Re, the first term of the

logarithm can be ignored, giving a simple relationship that does
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not require an iterative solution for v: As is known, the

Colebrook–White equation and Manning’s equation are not

equivalent, but give similar results when compared for limited

ranges of the hydraulic radius. If the Colebrook–White equation

is taken as applicable, it implies that Manning’s n is a weak

function of depth.

For the results presented in this paper, the mixing length at each

point in the cross-section is modelled as simply the distance to

the nearest point on the bed or wall, multiplied by von Karman’s

constant. The distance is calculated explicitly by the model

between each computational point and the walls and bed. This

splits the channel into zones of influence from bed and walls (De

Cacqueray et al., 2009; Morvan et al., 2008), and the mixing

length varies within the cross-section according to the distance to

the nearest solid boundary. The hydraulics are determined there-

fore by the distance to the point that would be expected to be

most significant in generating local shear.

This relationship between mixing length and geometry has two

advantages. Firstly, it will reproduce the observed (approxi-

mately) logarithmic velocity profiles in regions of approximately

constant shear stress near the bed and walls. Secondly, it allows

us to relate horizontal and vertical momentum mixing processes.

For example, we would not expect eddies to transport momentum

a large distance horizontally in shallow flows, where these eddies

would be disrupted by the vertical velocity shear. In deeper flows,

larger eddies would be expected and hence greater horizontal

mixing should occur. The length scales over which momentum

can be transported across vertical and horizontal velocity gradi-

ents are thus linked. This may be important for open channel

flows in natural rivers, where shear layers have been observed to

form between the channel and floodplain. Assuming that the

horizontal mixing length is approximately equal to the depth may

be a simple way of estimating the effects of these shear layers.

The authors have developed various solution methods for differ-

ent geometries, as described below. The solutions have been

implemented using the Python high-level language on a standard

PC. While Python is not ideal in terms of speed for numerical

solutions, it does allow rapid development of code to test the

various solution methods. Faster solutions could doubtless be

implemented in C/C++ or other lower level languages.

2.1 One-dimensional Runge–Kutta solution for planar

beds and circular conduits

The solution of Equations 3 and 4 for planar beds can be much

simplified because the shear stress in the water column is known

exactly and is equal to the component of the weight of water

above that point

�xz ¼ rl2 @u

@z

����
���� @u

@z
¼ rgS(h� z)

9:

where h is the water depth. The mixing length model is now a

first-order initial value problem, with the initial value derived

from the bed boundary condition that the velocity is zero at a

known distance above the bed. No surface boundary condition is

required, as this is implicit in the specification of the shear stress,

which goes to zero at the free surface.

Equation 9 can be easily solved using the standard fourth-order

Runge–Kutta solution (Press et al., 2007), with the first calcula-

tion point set at the roughness height h0: A step size of 1 mm

was used here, as the solution method is fast enough to allow the

use of a very fine grid. A small grid spacing is required to capture

the steep velocity gradients near the bed and this is crucial in

determining the velocity profile in the rest of the water column.

The 1D solution can be easily adapted to model flow in circular

conduits with full flow

�xr ¼ rl2 @u

@ r

����
���� @u

@ r
¼ rgSr

210:

The shear stress here can be written in this way by considering the

weight of water in a circular region of radius r, which is balanced

by the shear stress acting over a length 2�r. The functional form

of the solution is therefore the same as for the planar bed (since

r ¼ h � z), but with the slope halved. The circular shape of the

channel must also be considered when the solution is integrated to

give the section average flow.

2.2 Two-dimensional solution for rectangular channels

The form of Equation 7 suggests that the Jacobi method may be

used, as it is well known to produce stable (albeit slow)

convergence for the Laplace and Poisson equations. Jacobi’s

method (Press et al., 2007) provides a slowly converging, but

robust and simple to implement, iterative method. It is usually

applied to regular square grids, using finite-difference approxima-

tions to the second-order gradient terms. The value at a grid point

is replaced by the mean of values at neighbouring points, plus

source terms if required. Other numerical methods (e.g. Gauss–

Seidel) may also be applicable – and faster – but the focus of

this paper is the nature of the solutions rather than how they are

derived and the speed of the algorithm is not too important for

the simple geometries tested here.

The main difficulty in applying the Jacobi method to this problem

is in specifying the grid size, since the numerical method used to

solve the equations must be able to represent the variations in

velocity near the bed and walls, which occur over short length

scales (hence the use of the 1 mm grid size for the Runge–Kutta

solution). A small grid size, would, however, be prohibitively

slow to converge if applied to the whole cross-section.

For the results presented in this paper, a non-uniform grid spacing

was therefore used, with points closer together near the bed,
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where velocity gradients are steepest, and points more widely

spaced further away from the walls and bed. While use of an

irregular grid reduces accuracy (e.g. a centred difference approx-

imation to a gradient is second-order accurate on a regular grid,

but only first-order accurate on an irregular grid), the need to

represent steep velocity gradients near the bed makes a regular

grid impractical.

The vertical grid point positions are given by a geometric

progression

z0 ¼ h0, ziþ1 ¼ zi10[log10(h=h0)]=N11:

Horizontal positions are defined similarly, with the same ratio

between point positions, and with the spacing increasing to a

maximum in the centre of the channel then decreasing again

towards the right-hand wall. The grid points for a rectangular

cross-section are shown in Figure 1. The 10(...) term can be

viewed as a grid spacing increment factor, as it determines

how much the grid spacing increases between neighbouring

cells.

Implementation of the Jacobi method requires finite-difference

approximations adapted to work with an irregular grid. The

iteration formula is derived by considering the finite-difference

approximation to the =2 operator, and the new value becomes a

weighted mean of neighbouring points plus source terms

utþ1
i, j ¼

aut
iþ1, j þ but

i�1, j þ cut
i, jþ1 þ dut

i, j�1

aþ bþ cþ d
þ si, j12:

The superscript t represents the iteration number. a, b, c, and d

depend on the local grid spacings and the anisotropic eddy

viscosity and s is the source term (weight of water plus other

terms from Equation 7)

a ¼ � y

dyþ(dyþ þ dy�)

b ¼ � y

dy�(dyþ þ dy�)

c ¼ �z

dzþ(dzþ þ dz�)

d ¼ �z

dz�(dzþ þ dz�)13:

where dyþ, dy�, etc. are the grid spacings in the forward and

reverse directions and �x, y are the eddy viscosity components

used to calculate shear stress from the second derivatives of

velocity. Use of the correct finite-difference approximations is

important: the solutions are significantly different if the effects of

the irregular grid are ignored and the usual regular grid finite-

difference operators are used.

Equation 12 is used to iterate towards a solution, updating the

velocity at each point with a weighted average of the values at its

neighbours. Source terms (Equation 7) are calculated every ten

iterations; this was found to improve stability and speed up

convergence. The solution is assumed to have converged when

the root mean square change in velocity between iterations is less

than 1 3 10�6 m/s. Further iterations beyond this were found to

not affect the solution by more than ,10�3 m/s.

2.3 Two-dimensional wall function solution for

channels of arbitrary cross-section

While the irregular grid approach described in Section 2.2 works

well (see Section 3.2), it is very difficult to apply to non-

rectangular cross-sections. The irregular grid approach relies on

model grid points close to the wall to represent the steep velocity

gradients there but, for non-rectangular channels, arranging the

grid in such a way as to capture this near-wall behaviour becomes

difficult or even impossible. Instead, another approach has been

adopted, which allows the use of a regular grid, while still

allowing the model to represent the effects of steep velocity

gradients near the bed and walls.

The wall function approach has been used in many previous

computational fluid dynamics (CFD) models (Wilcox, 1998), and

works by specifying a wall shear stress with the condition that the

shear stress is approximately constant near the wall. Equation 9

shows that this assumption is valid for small grid spacings, since

the shear stress near the wall is approximately equal to the weight

of the water column. The condition of approximately constant

shear stress can be expected to hold for other geometries in the

region near the bed and walls. Solution of Equation 9 gives the

well-known logarithmic velocity distribution near a wall with

uniform shear stress, with a profile given by

0

0·5

1·0

1·5

2·0

0 2 4 6 8 10

z:
 m

y: m

1·25

1·50

0·
75

0·25

0·50
1·00

Figure 1. Velocity contours predicted by the mixing length model,

using irregular grid spacing, for a rectangular channel with

ks ¼ 0.2 m. Grid points are shown by crosses
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u ¼ u�
k

log
z

h0

� �
14:

where u* is the shear velocity, equal to (�b=r)1=2: For this model,

a slightly different approach to the standard wall function is used:

Equation 14 is used to calculate the ratio of the velocities in the

cells next to the wall and the cell above

u0 ¼ Æu1

Æ ¼ log(2˜z=h0)

log(˜z=h0)15:

Equation 15 is then combined with Equation 12 to allow the

velocities u0 and u1 to be calculated when combined with the

Jacobi solution for the rest of the grid. This means that the shear

stress near the wall is not calculated explicitly.

3. Results

3.1 Flow over a planar bed

The Runge–Kutta model was tested for a range of depths

between 0.25 and 5 m and for four values of roughness in the

range 0.002 to 2 m. While the concept of a roughness height

larger than the depth of the channel itself may appear nonsensical

it should be borne in mind that this is not a direct physical

parameter (Morvan et al., 2008) and, as the zero-velocity depth is

equal to 0.033ks, a solution can still be derived. All tests used the

same slope of 0.001, as varying this was found to produce the

expected square root dependence and hence no further testing of

the model’s response to changes in slope was necessary.

The predicted depth-averaged velocities are shown in Figure 2.

The averages were calculated using area weighting to allow for

the irregular grids rather than simply an arithmetic mean of the

values at each model point. A power law was fitted to the results

for each roughness of the form

v ¼ 1

n9
RªS1=2

16:

which can be viewed as a generalised Manning’s equation, with

the hydraulic radius exponent no longer fixed at 2/3. Table 1

shows the generalised Manning’s resistances and exponents for

the mixing length models, along with those produced by fitting

Equation 16 to the results of the Colebrook–White equation. The

fit for ks ¼ 2 m is less good than for the other values of ks, but is

still within ,10%.

The first thing to note is that the exponent of the Colebrook–

White equation varies with roughness, but that for Manning’s n

values typical to natural channels (n , 0.03), the exponent of

0.734 is close to the value of 2/3 used in Manning’s equation.

Secondly, values of ª and n9 agree well between the mixing

length model and the Colebrook–White equation. This shows

that the mixing length model is able to reproduce the

0

1
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3

4

5

6

0 1 2 3 4 5 6

Ve
lo

ci
ty

: m
/s

Hydraulic radius: m

k s

0·002 m

�

k s
0·02 m

�

k s
0·2 m

�

ks
2 m�

Figure 2. Velocity–hydraulic radius relationship as predicted by

the Runge–Kutta solution for flow over a planar bed, for

roughness heights in the range 0.002–2 m. The best fit power

law relationship for each roughness is shown as a solid line

Geometry Aspect

ratio

Model ª n9

ks ¼ 0:002 ks ¼ 0.02 ks ¼ 0.2 ks ¼ 2.0 ks ¼ 0.002 ks ¼ 0.02 ks ¼ 0.2 ks ¼ 2.0

All Colebrook–White 0.612 0.651 0.734 1.08 0.0150 0.0204 0.0323 0.0848

Planar bed Runge–Kutta 0.599 0.647 0.724 0.949 0.0141 0.0218 0.0353 0.0895

Circular Runge–Kutta 0.604 0.657 0.745 1.03 0.0137 0.0209 0.0333 0.0807

Rectangular 2 2D rectangular 0.634 0.669 0.756 1.04 0.0137 0.0188 0.0307 0.0766

Rectangular 5 2D rectangular 0.637 0.670 0.761 1.06 0.0139 0.0191 0.0314 0.0806

Trapezoidal 5 2D wall function 0.615 0.657 0.750 1.05 0.0137 0.0188 0.0301 0.0747

Table 1. Parameters for the best-fit power law relationship of the form v ¼ (1=n9)RªS1=2 for the different models and geometries tested
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behaviour of the empirically based Colebrook–White equation

in predicting average velocities. This does not, however, mean

that the velocity profile predicted by the mixing length model

is correct.

The predictions of the mixing length model and the Colebrook–

White equation also agreed well for circular cross-section

channels.

3.2 Flow in a rectangular channel

Figure 1 shows a cross-section with contours of equal streamwise

velocity as predicted by the 2D model operating on an irregular

grid. All simulations used a grid spacing increment factor (see

Section 2.2) of 1.2. As expected, the solution shows an approxi-

mately logarithmic profile near the walls and bed (steep velocity

gradients), with lower gradients further away from the wall where

the flow is well mixed because of longer mixing lengths (smaller

velocity gradients).

The fitted power law parameters of Equation 16 are shown in

Table 1 for rectangular channels with aspect ratios (width to

depth) of 2 and 5. Again, they show good agreement with the

Colebrook–White equation. This model is slow, taking 7 min to

converge for the irregular grid model applied to a channel 2 m

deep, 10 m wide and with a roughness height of 0.2 m. Run times

are longer for larger channels and with smaller roughness heights,

since the roughness height specifies the initial spacing of points

near the bed, producing more grid points in total. There are two

reasons for the slow convergence. Firstly, the Jacobi algorithm is

notoriously slow to converge and, secondly, Python is not the

fastest of languages for numerical programming. A much faster

solution would be expected if a solver able to produce a full

matrix solution at each iteration were used (analogous to an

implicit time-stepping scheme rather than the explicit scheme

used here) and the model were reprogrammed in a quicker

language such as C or Fortran.

3.3 Flow in a trapezoidal channel

The results of Table 1 show further agreement with the Coleb-

rook–White equation for a trapezoidal channel of aspect ratio 5,

with walls of 1:1 slope, when the wall function approach is used

to model the velocity profile near the bed. All simulations used a

grid spacing such that there are ten grid points in a vertical

profile and the horizontal spacing is the same. As a further check

of the validity of the wall function approach, it was applied to

rectangular channels and compared with the results of the

irregular grid model, which could be expected to better represent

the velocity profile near the bed and walls. Results from the wall

function model give the same level of agreement with the

Colebrook–White formula as the other solutions.

3.4 Flow in a compound channel

The wall function model was applied to a compound channel of

cross-section shown in Figure 3, using a grid spacing of 0.2 m.

Manning’s equation is not directly applicable here, since the

velocity in the channel is not approximately uniform, but this test

does demonstrate that the model is applicable to more complex

geometries. Significant horizontal shear is predicted on the flood-

plain near the banks, with velocity gradients in a horizontal

direction approximately 20% of the vertical gradients near the

bed in the channel. This is in keeping with our understanding of

compound channels (Knight and Shiono, 1996) where shear

layers have been observed to develop in the bank regions.

4. Discussion and conclusions
The results from the model testing are summarised in Figures 4

and 5. Figure 4 shows the velocity–hydraulic radius relationships

predicted by the model for all geometries and by the Colebrook–

White equation. Figure 5 plots the velocities from all models and

geometries against those predicted by the Colebrook–White

equation, along with the ideal 1:1 relationship. The mixing length

model appears to be capable of reproducing the behaviour of the

Colebrook–White and Manning equations for a wide range of
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Figure 3. Velocity contours predicted by the mixing length model

for a compound channel, using regular grid spacing and the wall

function approach. Grid points are shown by crosses
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hydraulic radii and roughness values. 80% of the points lie within

�10% of the 1:1 line, implying that the relative standard error is

,10% (for an error of �10%, ,70% would be expected within

these bounds). There is a bias of ,5%, with the mixing length

model generally predicting higher velocities than the Colebrook–

White equation.

For typical natural channel roughnesses, the fitted exponents ª in

the range 0.65–0.76 agree reasonably with the 2/3 exponent of

Manning’s equation. It should also be noted that the value

remains similar across the range of geometries, which indicates

that the parameter of hydraulic radius appears to capture the

effect of geometry well.

The results show that the mixing length model performs well in

reproducing some of the well-known hydraulic behaviours of
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open channel flows, and can explain how essentially empirical

results such as those of Manning and Colebrook–White arise

from open channel hydraulic processes. As well as being able to

reproduce the known dependence of mean velocity on channel

geometry, the mixing length model produces further information

such as velocity profiles and bed shear. After these have been

validated, they may be of use in practical applications such as

sediment transport modelling and estimating scour. Furthermore,

Manning-type models are limited to application to simple

geometries or by extension to more complex geometries repre-

sented as a series of regions, to each of which Manning’s

equation is applied with no interaction between the regions. The

mixing length model offers not only an opportunity to model

these complex geometries in a way that is consistent with our

understanding of the hydraulics of simple situations, but also

models interactions between different regions of the cross-

section.

We should not go too far in assuming that the mixing length

model can explain the hydraulic behaviour of open channels

completely. The model shows some promise in predicting cross-

section average velocities, but its ability to predict velocity

distributions has not been tested. In particular, the model does

not represent secondary flows, which have long been known to

significantly affect velocity profiles in straight channels. For

example, secondary flows are known to advect faster-moving

fluid into corner regions (Gessner, 1973) and therefore velocities

predicted by the mixing length model described here must be

suspect near corners. The model has also only been applied to

steady, uniform flows (as also assumed for Manning’s equation,

etc.) and only to simple cross-sections. There is the potential to

apply the mixing length model to more complex geometries

through implementation in other 2D and 3D CFD models (and

indeed some models already have this capability), meaning it

may be possible to model longer reaches than with more complex

turbulence schemes. This offers the opportunity of understanding

the physical basis of the way Manning’s coefficient is used in

engineering practice, where a lumped value of n is used to

represent the effects of channel roughness, geometry and other

processes such as secondary circulation, interactions with vegeta-

tion, hydraulic effects of non-uniform and unsteady flows etc.

Further work is needed to test if the model is successful in

recreating velocity distributions seen in laboratory or natural

channels and to investigate whether it is applicable to non-

uniform flow conditions and more complex geometries. To make

this practicable, further work on improving the model speed is

also required. There may also be opportunities to use the mixing

length approach described here to generate conveyance look-up

tables for use in 1D models, in a way similar to the conveyance

estimation system (McGahey et al., 2008).

As well as providing a fundamental insight into one of the most

frequently used formulae in hydraulic engineering, there is

potential for many practical applications of this method of

modelling turbulence in open channels. For situations where

accurate estimation of channel capacity, such as flood risk

assessment, developing or reviewing rating curves for gauging

stations, channel design etc., the model may offer advantages

over conventional approaches for complex geometries where

interaction between zones of different velocity is important. The

simplicity of the mixing length model means that it may be

applicable to models at a scale larger than current CFD schemes,

for example at reach length and for out-of-bank flows. The model

could also be used to model head loss through structures, bridges

etc., but further development is needed to integrate it into a

model of non-uniform flow conditions. The potential of the model

(as yet untested) to predict velocity profiles within the channel

and bed shear could be used to estimate scour and sediment

transport. In this research, the mixing length model has been

applied to momentum transfer only, but it can also be used to

represent the transport of other fluid properties such as tempera-

ture and solute concentration. Models such as the one described

here could therefore be of use in estimating the diffusion of

pollution and temperature from outfalls, etc.
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WHAT DO YOU THINK?

To discuss this paper, please email up to 500 words to the

editor at journals@ice.org.uk. Your contribution will be

forwarded to the author(s) for a reply and, if considered

appropriate by the editorial panel, will be published as a

discussion in a future issue of the journal.

Proceedings journals rely entirely on contributions sent in

by civil engineering professionals, academics and students.

Papers should be 2000–5000 words long (briefing papers

should be 1000–2000 words long), with adequate illustra-

tions and references. You can submit your paper online via

www.icevirtuallibrary.com/content/journals, where you

will also find detailed author guidelines.
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