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Abstract17

The UK water industry faces a number of water quality issues which mean that18

capital must be spent on treating raw water in order to meet regulatory standards.19

Moreover, other policies exist that require improved water quality (e.g. the Water20

Framework Directive) and contemporary regulation is encouraging water companies21

to deal with the problem at source, rather than relying exclusively on ‘end-of-pipe’22

treatment solutions. Given that much of this pollution results from agricultural23

practices, agricultural stewardship measures could offer a means of source control.24

Although numerous schemes are available that encourage farmers to adopt25

environmentally friendly farming practices, uncertainty exists as to the specific26

impacts of these measures on water quality. The current study has, therefore,27

reviewed the scientific literature to establish those agricultural stewardship measures28

that have been proven to impact water quality for three pollutant groups of key29

concern to the UK water industry, namely dissolved organic carbon, nutrients and30

pesticides. It has been found that, whilst for many measures there is little or no31

evidence for impacts on water quality, a range of stewardship practices are available32

that have been proven to improve water quality. Their effectiveness is subject to a33

number of factors though (e.g. soil type and pollutant chemistry) and so they should34

be implemented on a case-by-case basis. Further research is needed to ascertain35

more fully how contemporary agricultural stewardship measures really do impact36

water quality.37

38

Keywords: Agriculture; stewardship; water quality; dissolved organic carbon;39

nutrients; pesticides.40
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1. Introduction45

Water may become polluted with a range of contaminants due to the use of land for46

agriculture (e.g. Hooda et al., 2000; Lovell and Sullivan, 2006). Of these pollutants,47

dissolved organic carbon (DOC) (Freeman et al., 2001; Holden, 2005; Wallage et al.,48

2006), nutrients (nitrogen (N) and phosphorus (P)) (Heathwaite et al., 1996; Haygarth49

and Jarvis, 2002; Dorioz et al., 2006) and pesticides (Environment Agency, 1999;50

Blanchoud et al., 2007; Garrod et al., 2007) represent the most significant issues for51

some land-owning UK water utilities due to the need to remove them from raw waters52

to meet regulatory standards. Whilst nutrients (Brett and Benjamin, 2008) and53

pesticides (Brack et al., 2007) also represent a direct ecological risk, DOC is54

problematic due to the formation of carcinogenic trihalomethane compounds during55

the chlorination process (Nieuwenhuijsen et al., 2008). Although a range of potential56

pollutant sources exist in addition to agriculture, including rural sewage treatment57

works, septic tanks (Ahmed et al., 2005; Gaddis et al., 2007) and amenity usage of58

pesticides (Knapp, 2005; Lapworth and Gooddy, 2006), agriculture is regarded as the59

key reason for their presence in UK waters (Defra, 2004).60

61

The costs of treating these pollutants to meet drinking water standards is highly62

significant to water companies and ultimately paid for by the consumer. Pretty et al.63

(2000) estimated the costs of treating pesticides, nitrate, phosphorus (and sediment),64

and organic carbon (and sediment) in water for drinking in the UK to be £120 M, £1665

M, £55 M and £106 M respectively. Monitoring and advice on pesticides and66

nutrients is estimated to cost a further £11 M per annum. In addition to drinking water67

standards, environmental standards are also imposed by the Water Framework68

Directive (WFD) (EC, 2000), which specifies that all waterbodies must be of good69

chemical and ecological status (or potential) by 2015 and that the costs of any clean-70

up should be charged to the polluter. Whilst the ecological impacts of chemicals in71

water (Ashauer et al., 2007; Brack et al., 2007; Gilliom, 2007) are known to result in72
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additional economic losses, these cannot be calculated at present due to a lack of73

information (Pretty et al., 2000).74

75

Agricultural pollutants can be treated to meet drinking water standards using76

engineered solutions, although as the costs can be significant, in both economic and77

environmental terms, control of these pollutants at source is desirable and a range of78

management techniques are available that aim to achieve this. These include79

measures that seek to reduce inputs of pollutants to catchment systems (e.g.80

reduced usage of chemicals), those that reduce the transport of pollutants from81

agricultural land (e.g. improved soil management) and others that aim to capture and82

degrade pollutants that have been transported towards waterbodies (e.g. buffer83

zones and wetlands). For a number of years, agri-environment schemes have been84

available to land managers in order that these measures can, theoretically, be85

implemented without compromising the financial viability of farm businesses.86

Recently (since 2005), agricultural stewardship has been pursued with renewed87

vigour due to the importance of controlling agricultural pollution and a number of88

highly significant policy developments have taken place, particularly Common89

Agricultural Policy (CAP) reform (Defra, 2005a) and the development of new90

agricultural stewardship schemes; Entry Level Stewardship (ELS) (Defra, 2005b) and91

Higher Level Stewardship (HLS) (Defra 2005c). These new policies that aim to92

control agricultural pollution offer opportunities for water companies to encourage93

implementation of measures on the ground that could reduce water pollution and,94

thus, result in capital and operational expenditure savings. At present, however,95

understanding of the impacts of these land management measures on water quality96

is uncertain. Whilst some recent work has been undertaken (Parry et al., 2006; Cuttle97

et al., 2007) this has not covered DOC and has only discussed pesticide pollution to98

a limited extent. Moreover, empirical evidence has not been thoroughly reviewed and99

modelling has been relied upon to determine some likely impacts on water quality. If100
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water companies are to build these land management measures into their business101

plans then a sound knowledge of their impacts is urgently needed. The current102

review summarises peer-reviewed literature in order to develop a state-of-the-art103

understanding of the effects of contemporary agricultural stewardship measures on104

water pollution by DOC, nutrients and pesticides. This information could be used in105

the business planning of water companies and by other interested parties, such as106

Government and its agencies, as well as to guide future research in this area.107

108

2. Dissolved organic carbon/water colour109

Only catchments dominated by organic soils will generate DOC levels significant to110

the water industry (Holden et al., 2007a) and so it is only stewardship measures for111

moorlands that offer water companies an option for reducing DOC. Limited moorland112

options actually exist in current stewardship schemes and even less data are113

available to indicate their efficacy for improving water quality.114

115

Some work has shown grip blocking to significantly (by up to 70 %) reduce DOC116

concentrations in some cases (Wallage et al., 2006; Armstrong et al., 2008) (Table117

1). This could therefore offer water companies that take raw water from the uplands a118

means of controlling this significant problem. Many moorland areas in the UK have119

been drained (gripped), particularly during the 1960’s and 70’s, to increase120

agricultural productivity (Robinson and Armstrong, 1988). Damming these drains121

raises the water table, slows peat degradation and reduces the transport of DOC122

(and therefore water colour) off-site (Holden et al., 2007a; Worrall et al., 2007).123

Effects on the composition of the DOC are uncertain with Wallage et al. (2006)124

reporting more colour per unit carbon, indicating an increase in humic substances,125

but Armstrong et al. (2008) showing more easily treated colour. Grip blocking may126

not always result in decreased DOC/colour contamination however. In some cases127

DOC may increase after blocking (Worrall et al., 2007) and in others the peat may128
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not necessarily recover its original physical and chemical properties (Freeman et al.,129

2001; Holden et al., 2006; Wallage et al, 2006; Holden et al., 2007b).130

131

Further research is needed if water companies are to be able to pursue other132

catchment management measures available in stewardship schemes with the133

expectation of reducing DOC contamination of streams. Holden et al. (2007a)134

comment that virtually nothing is known about the impacts of moorland burning on135

water quality and soil hydrology, although a number of papers have eluded to the fact136

that increased burning will lead to higher levels of water colour (Mitchell and137

McDonald, 1995; Garnett et al., 2000). A study at Moorhouse in the northern138

Pennines showed that severe burning reduced the water holding capacity of the soil139

and created a more flashy hydrograph (Robinson, 1985), factors that could increase140

the generation and delivery of DOC to surface waters. Burning also leads to141

increases in the amount of heather that is present and this has subsequently been142

shown to increase the density of soil pipes, which move runoff from soils to streams,143

lower the water table and increase the generation and flux of colour to surface waters144

(Holden, 2005). Data describing the impacts of livestock grazing on water colour are145

almost entirely lacking from the literature, although one study found there to be no146

significant difference between soil water colour in grazed and ungrazed plots (Worrall147

et al., 2007).148

149

3. Nutrients150

In comparison to DOC/water colour, water companies may select from a much wider151

range of agricultural stewardship options which may reduce pollution of waterbodies152

by nutrients. A number of these would require that utilities work with farmers to153

reduce inputs of fertilisers into catchment systems. Limiting nitrogen additions to crop154

requirements (Lord and Mitchell, 1998; Coelho et al., 2006, 2007) or quantities155

specified in Nitrate Vulnerable Zone (NVZ) regulations (Vertés et al., 1997; Lord et156
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al., 1999; Hanegraaf and den Boer, 2003) have been found to reduce water pollution157

substantially (Table 1). Nitrate losses have been reduced to 10 kg ha-1 (Goulding et158

al., 2000) and leaching to groundwater (1 m depth) by 57 % using this mechanism159

(Lord and Mitchell, 1998). Whilst impacts on nitrogen compounds have been160

desirable, phosphorus concentrations in runoff will be affected to a much lesser161

extent due to their build-up in soils however (Stålnacke et al., 2003, 2004). It has,162

therefore, been suggested that 10 years would be needed to see a reduction in163

dissolved phosphorus whilst a number of decades would be required in order to164

observe a decline in particulate-associated phosphorus concentrations reaching165

waters (Withers et al., 2001; Haygarth et al., 2002). In some case, reductions in166

nutrient losses to water have been negligible, however, due to soil type, crop and167

prevailing hydrological conditions (Dukes and Evans, 2006; Harmel et al., 2006; de168

Ruijter et al., 2007), leading some workers (Macgregor and Warren, 2006; Schröder169

et al., 2007) to be sceptical of the benefits of these measures as many farmers claim170

already to be applying nitrogen below specified limits and yet water pollution is still171

occurring.172

173

Other measures aim to reduce nutrient concentrations in water not by reducing inputs174

to catchments but by changing the way in which they are applied. The injection of175

slurry, rather than broadcast spreading, has resulted in reductions of 93, 82 and 94176

% of dissolved reactive P (DRP), total P (TP) and algal-available P (AAP) in runoff177

(Daverede et al., 2004). Moreover, nutrient losses from poultry litter were reduced by178

80-95 % (Pote et al., 2003) whilst incorporation of inorganic fertilizers has been found179

to reduce nutrient losses to the water environment to background levels (Pote et al.,180

2006). Where tile drains are present losses may be greater though (Coelho et al.,181

2007), highlighting that implementation of stewardship measures needs to be carried182

out on a site-specific basis. Other fertiliser-specific measures are available for183

implementation (i.e. not allowing runoff from in-field manure heaps, not applying184
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organic fertilisers when the soil is saturated and not applying manure within 10 m of a185

surface water and within 50 m of a borehole) although these demonstrate the dearth186

of scientific evidence for the impacts of many measures on water quality.187

188

Some specific soil management measures have also been proven to be effective at189

reducing nutrient pollution. Planting a green cover crop is one of the single most190

effective ways of decreasing the risk of nitrate leaching (Shepherd et al., 1996) and,191

in general, cover crops lead to a 50 % reduction compared to a winter-sown cereal192

(Goss et al., 1988; Shepherd et al., 1993; Lord et al., 1999). Good establishment193

before the start of drainage is key to getting the most from a cover crop and uptake of194

N can actually range between 10-150 kg ha-1 (Fielder and Peel, 1992; Shepherd,195

1999).196

197

Ensuring a rough soil surface by ploughing or discing is another soil management198

measure which can have a useful, but variable, impact on nutrient transport (Angle et199

al., 1993; Rasmussen, 1999; Benham et al., 2007). The transport of soluble P in200

surface runoff may be reduced by a factor of 2-3 compared to an untilled surface201

(Zeimen et al., 2006) although some workers have found that nitrate leaching is202

unaffected (Stoddard et al., 2005) due to site-specific factors (Rasmussen, 1999).203

Farmers may also be able to help water companies by working fields along the204

contour and Withers et al. (2006) found no significant differences in runoff quantity,205

sediment and total P concentrations where tramlines ran across-slope compared to206

areas without tramlines. Schonning et al. (1995) also compared the effects of the207

direction of drilling (winter wheat) on runoff, soil loss and total P for two sandy Danish208

soils. Reductions of 9 %, 13 %, and 12 % (Site 1) and 19 %, 58 %, and 57 % (Site 2)209

were reported for runoff volume, suspended solids and total P losses respectively.210

Even if the direction of traffic is unaltered, conservation tillage techniques can have211

significant impacts on nutrient losses to water. Mean losses in surface runoff were212
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reduced by 63, 67, 46 and 49 % for total nitrogen, total Kjeldahl nitrogen, ammonia213

and nitrate respectively whilst reductions for total phosphorus and orthophosphate214

were 73 and 17 % (Benham et al., 2007). Winter N losses from drained plots at215

Brimstone Farm averaged 24 % less from land that had been direct drilled instead of216

ploughed (Goss et al., 1988). A comparison of concentrations of sediment and P in217

runoff from the Greensand and Chalk soils showed them to be consistently lower218

when the soil was minimally tilled rather than ploughed (Withers et al., 2007), with the219

benefits of reduced cultivation being attributed to better surface cover and a firmer220

surface for tractor wheelings. Impacts of reduced tillage on soil macroporosity (which221

has significant implications for nutrient transport) have been noted, with Schjonning222

and Rasmussen (2000) demonstrating a smaller volume of macropores in the top 20223

cm of soil compared to a ploughed treatment. Johnson and Smith (1996) also found224

that shallow cultivation, rather than ploughing, decreased N leaching by 44 kg N ha-1225

over a five-year period but that the difference between cultivation types diminished226

over time. Conversely, some research has shown that minimum tillage can actually227

increase nutrient pollution. Carter (1998) reviewed a large number of studies carried228

out on a range of soil types and found that, whilst the technique was effective in229

reducing particulate associated P in 31 % of studies, no effect occurred in 8 % and230

increased P loss actually resulted in 23 % of cases. The same study also showed231

that conservation tillage increased leaching volumes and nitrate loss to groundwater.232

Whilst some work has shown that direct drilling decreases soil macroporosity, other233

studies (Shipitalo et al., 2000; Petersen et al., 2001) reported that the most effective234

way of reducing macroporosity was intensive cultivation (i.e. ploughing) and that235

conservation tillage increases transport through macropores, partially attributable to236

the increased activity of earthworms (Edwards and Lofty, 1982). The build up of237

nutrients as a consequence of surface applications and limited mixing associated238

with reduced cultivation has been reported (Rasmussen, 1999), particularly in239

grassland soils (Haygarth and Jarvis, 1999)240
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241

A number of livestock management techniques have been proven to reduce nutrient242

pollution. A significant relationship has been reported between grazing intensity and243

N losses to water (Huging et al., 1995) and, under extensively managed pasture, N244

leaching losses were reduced by 69 %. Limiting overgrazing through careful245

management can, therefore, have significant benefits for the water environment.246

More heavily grazed fields usually receive higher levels of fertiliser, however, and it247

can be hard to separate these two factors (Cuttle et al., 2004). It is also possible that248

nutrient losses could still be significant from pasture where overgrazing is not249

occurring but where stocking densities remain high. Similarly, limiting soil poaching250

by grazing of saturated soils and not locating supplementary feeding sites on poorly251

drained areas can significantly improve runoff quality. Using exclusion cages, Kurz et252

al. (2006) demonstrated the effect of cattle on soil physical properties and nutrient253

losses in overland flow. Grazed areas were characterised by 57–83 % lower254

macroporosity, 8–17 % higher bulk density and 27–50 % higher resistance to255

penetration than areas from which the cattle were excluded. Increased256

concentrations of total N, organic P and potassium (K) were measured in surface257

runoff from the grazed areas. Other workers have reported high P losses in land258

drainage that could only be attributed to heavy winter sheep grazing, with259

concentrations in drain waters reaching up to 20 mg P l-1 and nearly a third of the260

total annual P loss occurring during one month immediately after the sheep had been261

grazing the study site (Jordan and Smith, 1985). In another study, the effect of262

different grazing pressures on P export in surface runoff generated after artificial263

rainfall events resulted in 2, 7.6 and 291 mg total P m-2 loss for ungrazed, lightly264

grazed (4 stock ha-1) and heavily grazed land (>15 stock ha-1), respectively265

(Heathwaite and Johnes, 1996).266

267
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In some instances water companies may be able to encourage farmers to take268

certain actions through the provision of capital grants. Unpublished research by Kay269

et al. in the Ingbirchworth catchment in South Yorkshire (one of Defra’s Associate270

Catchment Senstive Farming pilot projects) has indicated that farmers would be271

much more likely to install fencing to exclude livestock from watercourses if272

supported financially. Parkyn et al. (2003) reported that streams in New Zealand273

within fenced-off areas showed rapid improvements in visual water clarity and274

channel stability, although nutrient and faecal contamination responses were actually275

variable and significant changes in macroinvertebrate populations were not apparent.276

Soluble reactive phosphorus decreased by up to 33 % in some streams but was277

found to increase by up to 20 % in others. Similarly, total N decreased by up to 40 %278

in some fenced-off streams but increased by up to 31 % in others. More positively,279

when a fenced-off area of 335 m length and 10-16 m width was created to stop dairy280

cattle entering a North Carolina stream, total organic nitrogen, Kjeldahl nitrogen and281

total phosphorus were reduced by 33, 78 and 76 % respectively (Line, 2003).282

Further encouragement can be provided, particularly on tenanted land, to provide283

water troughs so that cattle do not have to drink from streams (Sheffield et al., 1997).284

In this study total phosphorus concentrations were reduced by 54 %, whilst total285

nitrogen concentrations fell by 81 %.286

287

The installation of ‘edge of field’ measures (i.e. buffer zones and wetlands) could288

potentially offer significant water quality gains to water companies. A number of289

management issues need to be considered for buffer zones as Table 2 shows that290

their effectiveness for reducing concentrations of nutrients in surface waters is very291

variable and actual operational efficiency will be highly season and location specific.292

Important factors include soil properties, climate, vegetation cover, physical293

dimensions, sediment characteristics and the presence of underdrainage (Barling294

and Moore, 1994; Tate and Nader, 2000). Unfortunately, the maximum delivery295
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period of nutrients (i.e. winter) (Uusi-Kämppä et al., 2000) overlaps with the least296

efficient period for many buffer zones due to a combination of high local water tables,297

reduced infiltration capacities and poor plant growth/cover. The highest rates of298

suspended solids deposition (and therefore particulate associated phosphorus) occur299

in the upper part of the buffer strip, and retention rates decline with increasing width300

when expressed as an amount per unit area (i.e. g m-2 y-1). Poor filtering efficiency of301

the finest material may be an issue however (Le Bissonnais et al., 2004; Owens et302

al., 2007), especially because this represents the most reactive and preferentially303

enriched soil fraction (Syversen and Borch, 2005).304

305

Recommended widths range from 3-200 m (Castelle et al., 1994) although 5-15 m is306

most common and Haycock and Burt (1993) reported that the majority of nitrogen307

capture occurred in the first 5-8 m. Long-term management is a key issue - Dorioz et308

al. (2006) state that the retention of phosphorus is unlikely to be sustained and that309

dissolved phosphorus release from the buffer zone will increase. Lovell and Sullivan310

(2006) note a host of more wide-ranging limitations of buffer zones for treating311

nutrients in runoff, including a lack of catchment-scale research, a need for more312

clearly defined and targeted goals, a lack of cooperation between scientific313

disciplines and agencies, an absence of accountability from landowners for314

investment in buffers, as well as limited attention to the aesthetic quality of buffers. It315

is perhaps somewhat surprising that such a recent review is still raising what are316

rather basic issues.317

318

Wetlands have often been shown to be very effective at removing nutrients from319

runoff (Table 2), although operational efficiencies again vary seasonally and with320

time. For example, seasonal removal percentages of nitrate by a wetland were 100,321

35, 55 and 96 % of the autumn, winter, spring and summer loads respectively, with a322

total removal of 55 % (Larson et al., 2000). Generally, the efficiency of wetland323
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systems is reduced during high flow periods when retention times are shorter324

Koskiaho et al. (2003). Whilst there are other examples which appear to operate well325

(Jansson et al., 1998; Koskiaho et al., 2003), there are also others which do not326

(Wedding, 2000; Braskerud, 2002). The ratio wetland:catchment area is often used327

as an indicator of retention capacity and whilst wetland size is recommended to be 1-328

5 % of the contributing catchment (Kadlec et al., 2000), many ponds and constructed329

wetlands are often <0.3 % (Braskerud, 2002). These authors argue that, unlike buffer330

strips, wetlands are more effective at retaining the finer clay-sized material with the331

mean annual retention of suspended solids being 57-71 %. Despite the fact that332

much information is available on the impacts of some stewardship measures for333

nutrients, none is available for many.334

335

4. Pesticides336

A wide range of measures exists within contemporary agricultural stewardship337

schemes that seek to reduce pesticide pollution by limiting their input into catchment338

systems. Some of these have been proven to have very significant impacts (50-100339

% reduction in concentrations in runoff and surface waters) (Table 1), including not340

spraying when surface runoff is likely to be generated or enter land drains (Barnes341

and Kalita, 2001; CPA and AIC, 2004). Measures to reduce spray drift can also be342

highly effective at reducing pesticide pollution of water bodies and it has been shown343

that drift can be reduced by between 20 and 50 % using core-tipped rather than flat344

nozzles (de Snoo and de Wit, 1998) whilst band spraying may reduce drift by 90 %345

(van der Zande et al., 2001). Windbreaks (e.g. miscanthus) can also reduce drift346

significantly; a wind-break that was 0.5 m above the crop (sugar beet) reduced drift347

by 80 % and when this height was raised to 1 m then drift was further reduced to 90348

%. Moreover, biobeds offer a very effective means of combating pesticide pollution349

by degrading residues in waste and washings by over 98 % in some instances (Fogg350

et al., 2004; Spliid et al., 2006). In contrast, taking measures to reduce reliance on351



14

pesticides would seem to have a negligible effect on water pollution. Of the limited352

evidence that is available (Pacini et al., 2003; Hole et al., 2005) losses from farms353

with reduced inputs appear to be similar to those from conventional farms. Sheep dip354

pollution may be combated by disposing of spent sheep dip to land or farming355

organically. The effectiveness of the first measure will depend on the physico-356

chemical properties of the compounds used and the characteristics of the land357

disposed to (Grant et al., 2002; Cooke et al., 2004; Levot, 2007). Appropriate siting of358

dip disposal areas is, therefore, critical and detections of sheep dips in watercourses359

have previously been attributed to poor citing (Virtue and Clayton, 1997). No studies360

have quantified the impacts of organic sheep farming on pesticide pollution of the361

water environment to date. A further input reduction measure available to water362

companies is reversion of arable land to grassland which has been shown to reduce363

pesticide application to land generally (Herzog et al., 2006).364

365

A range of measures are available that may reduce pesticide transport to366

watercourses through improved soil management and it is well documented that367

higher levels of organic matter encourage sorption of certain pesticides and reduce368

their mobility (Ding et al., 2002; Hernandez-Soriano et al., 2007). Other factors are369

also important though, including the properties of a substance, the clay content of the370

soil, the pH of the soil solution, and the coverage of ion exchange sites (Delle Site,371

2001; Beulke and Brown, 2006). Facilitated transport due to an increase in the DOC372

and colloidal content of soil water may actually lead to the increased mobility of373

pesticides however (Worrall et al., 1995; Li et al., 2005). Organic amendments may374

also alter the pH of the soil solution and, therefore, the degradation rate of pesticide375

residues, the degradation rate of carbofuran being reduced for example (Worrall et376

al., 2001). Whilst previous studies have shown that conservation tillage reduces377

runoff generation and soil erosion, the fate of pesticides is less certain (Uri, 1998;378

Rose and Carter, 2003; Ghidey et al., 2005). Although overall delivery to waterbodies379
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will be reduced by at least an order of magnitude due to runoff production and380

sediment transport being lower than in conventional production systems, pesticide381

concentrations will be higher in both the aqueous and particulate phases under382

minimum-tillage due to the smaller quantities of runoff in which residues will be383

present. This may not be a significant issue at the catchment scale, however, as384

pesticides will be diluted in streams and if mass losses from land are actually lower385

under minimum-tillage then stream concentrations may be lower (Kenimer et al.,386

1987; Tebrügge and Düring, 1999; Shipitalo and Owens, 2006). The build up of soil387

macropores in no-till systems may be problematic though and increase pesticide388

losses (Smith and Chambers, 1993; Tebrügge and Düring, 1999; Holland, 2004).389

Ensuring the presence of a rough soil surface will limit the mobility of pesticides in the390

environment as a finer soil tilth increases a soil’s water holding capacity and, thus,391

reduces runoff production and pesticide movement (Brown et al., 1999; Hyer et al.,392

2001). Tillage of the soil surface by discing or ploughing will also disrupt macropores393

in the soil and so reduce pesticide transport by encouraging the transfer of solutes394

from macropores to micropores (Jarvis et al., 1994) and reducing the connectivity of395

desiccation cracks with land drains (Kay et al., 2004). Current agricultural396

stewardship schemes are likely to do little to reduce pesticide transport to397

waterbodies via this mechanism, however, as tillage is only encouraged following398

harvest. Whilst this practice may be useful for reducing soil erosion and transport of399

nutrients in the post-harvest period when soils are relatively bare, pesticide400

application will take place at different times prior to this cultivation. It is well known401

that the most significant pesticide transport usually occurs in the first period of runoff402

generation after application, before much time has elapsed for degradation to take403

place and sites available for chemical sorption in the soil may be saturated (Ng and404

Clegg, 1997; Kamra et al., 1999; Zehe and Flühler, 2001). In order to have a405

significant impact on pesticide transport, tillage would have to be carried out406

repeatedly whilst the crop was growing and pesticides were being applied.407
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408

As for nutrients, buffer zones and wetlands can have a significant impact on the409

environmental fate of pesticides although it is generally accepted that only a limited410

amount of empirical research has been carried out (Harris and Forster, 1997;411

Andreoli and Tellarini, 2000; Kleijn et al., 2001). In the context of many of the412

measures advised under agricultural stewardship schemes, however, a considerable413

body of research is actually available and a number of studies have highlighted the414

importance of buffer strips as a management technique for limiting surface water415

pollution by pesticides (Klöppel et al., 1997; Patty et al., 1997; Dabrowski et al.,416

2002). Specific changes in pesticide mass losses and concentrations due to the417

creation of buffer zones are shown in Tables 3 and 4 respectively. Strongly sorbed418

compounds have been found to require a buffer zone of only several metres to be419

trapped, with greater width having little additional effect. For hydrophilic compounds a420

more linear relationship has been reported, where greater width increases the421

chances of the pesticide being retained and degraded (Krutz et al., 2005). Those422

studies reported in Tables 3 and 4 have generally employed buffer zones of 5-20 m.423

Other work has addressed the issue of buffer zone size by comparing this to424

catchment area and Arora et al. (2003) found that small buffer zones (30:1 ratio425

between drainage area and buffer strip) were just as effective as larger ones (15:1426

ratio). Of key importance to the water industry is the fact that research that has been427

carried out to-date is of limited use in determining the effectiveness of buffer zones428

from improving water quality at the catchment scale (and therefore treatment works).429

Although some studies have investigated the fate of pesticides in wetland systems430

this subject area is not understood as well as for nutrients and sediment (Schulz and431

Peall, 2001). Some studies have shown that wetlands reduce mass losses of432

pesticides by 25-100 % (Table 5). The size of a wetland relative to the catchment433

from which it is receiving runoff is a key issue when considering the use of wetlands434

for treatment of pesticide residues in runoff. Constructed wetlands on farms covering435
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1 % of the catchment area have reduced pesticide concentrations reaching water436

bodies to non-toxic levels through sorption and degradation in the wetland437

(Braskerud and Haarstad, 2003). Some studies have indicated that pesticides are438

totally degraded in wetland systems rather than simply stored as analyses of439

sediments have proved to be negative (Chapman, 2003). Despite much positive440

data, other studies have found that wetlands do not offer an effective way of stripping441

pesticides from runoff. High concentrations of atrazine, metolachlor and442

chlorpyriphos (2.5, 0.25, and 1 mg l-1 respectively) were not degraded at all in one443

particular study (Mazanti et al., 2003), although at lower concentrations (2, 0.2, and444

0.1 mg l-1) some loss was observed, with detection of degradation products showing445

that breakdown of the compounds was occurring rather than sorption alone. The446

structure of a pesticide is important in determining whether it will be effectively447

removed from water in a wetland system; structures based on nitrogen compounds448

being degraded most effectively (Fogg et al., undated).449

450

5. Conclusion451

The current project has sought to elucidate those agricultural stewardship measures452

that can be implemented in river catchments with reasonable certainty, based on453

scientific findings, that improvements in water quality will result, focussing on454

pollutants of key concern to the UK water industry, namely, dissolved organic carbon,455

nutrients and pesticides. Whilst those measures detailed in Table 1 have been456

proven to improve water quality the success of all of these will be site specific due to457

factors such as soil type, hydrology and pollutant chemistry and so measures should458

be implemented on a case-by-case basis. Moreover, there is a dearth of information459

quantifying the impacts of many stewardship measures on water quality, which is460

perhaps not surprising given that many were developed for terrestrial ecology gain461

rather than from a water quality perspective. It is highly pertinent to note that no462

studies have been undertaken to date that have quantified the impact of agricultural463
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stewardship measures at the catchment scale, those that have been carried out have464

focussed on the plot and individual field scale, and further research in this area is,465

therefore, urgently needed. It is likely to be important to implement a range of466

measures throughout an entire catchment (dependant upon farming practices in the467

catchment) in order that benefits are not negated by areas where new management468

techniques have not been pursued (Kay et al., 2005). A further pertinent point to be469

considered when implementing stewardship measures in a catchment is that470

farmers/land managers have to be given responsibility for implementing certain471

measures (e.g. controls on N application rates and timing) and it is, therefore,472

essential that they are adequately trained and can be relied upon to carry out the473

task effectively. Moreover, research that quantifies the impacts of agricultural474

stewardship on farm incomes is largely lacking and is urgently needed if farmers/land475

managers are to be convinced that environmental stewardship represents business476

sense. Overall, despite significant attention from many stakeholders, there is a477

striking lack of scientific evidence to underpin the use of agri-environment measures478

for water quality management. This may limit their usage by businesses, such as the479

water industry, which are required to make steadfast decisions based on sound480

economics.481
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Table 1. Stewardship measures available in contemporary agri-environment1083

schemes that have been proven to reduce water pollution by dissolved organic1084

carbon, nutrients and pesticides.1085

Pollutant Measures scientifically proven to improve water quality

Dissolved organic

carbon/water

colour

Block grips and gullies

Nutrients Limit nutrient application to crop requirements

Limit total N from manures to 170 kg ha-1 yr-1 (arable) and 250

kg ha-1 yr-1 (grassland)

Arable reversion to grassland

Inject slurry or incorporate soon after application

Do not apply dirty water to high-risk areas

Ensure soil is bare for a minimum of time

Traffic fields across slope

Use direct drilling

Avoid poaching

Limit overgrazing

Limit livestock access to watercourses

Buffer zones

Wetlands

Pesticides Do not apply when land is frozen, saturated or rain is forecast

in next 3 days

Do not apply when pesticides may enter land drains

Reduce spray drift

Use a biobed

Dispose of spent sheep dip to land
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Arable reversion to grassland

Increase and maintain soil organic matter

Ensure soil is bare for a minimum length of time

Use direct drilling

Buffer zones

Wetlands
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Table 2. Nutrient removal efficiencies for buffer zones and wetlands.1086

Pollutant Effect of buffer zone Reference Effect of wetland Reference

Total nitrogen 23 % reduction McKergrow et al., 2003 5-50 % reduction Alström et al., 2000

75-94 % reduction Heathwaite et al., 1998 19-100 % reduction Jansson et al., 1998

10 % decrease – 217 % increase Borin et al., 2005 3-15 % reduction Braskerud, 2002

47-100 % reduction Dorioz et al., 2006 7 % increase – 40 %

decrease

Koskiaho et al., 2003

Nitrate 50-100 % reduction Haycock and Burt, 1993 8 % increase – 38 %

decrease

Koskiaho et al., 2003

No impact (due to macropore

flow)

Leeds-Harrison et al.,

1999

28 % reduction Kovacic et al., 2006

9 % decrease – 232 % increase Borin et al., 2005 35–100 % reduction Larson et al., 2000

95 % reduction Hefting and De Klein, 1998

Total phosphorus 6 % reduction McKergrow et al., 2003 6 % increase – 72 %

decrease

Koskiaho et al., 2003

10-98 % reduction Heathwaite et al., 1998 53 % reduction Kovacic et al., 2006
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0-97 % reduction Uusi-Kämppa et al., 2000

31 % reduction Abu-Zreig et al., 2003

60-80 % reduction Vallières, 2005

8-97 % reduction Dorioz et al., 2006

27 % decrease – 41 % increase Borin et al., 2005

Soluble phosphorus 16 % reduction Vaananen et al., 2006 <10 % reduction Braskerud, 2002

61 % increase McKergrow et al., 2003 12-31% reduction Wedding, 2000

Soluble phosphorus

cont.

Effect of buffer zone Reference Effect of wetland Reference

17 % decrease – 475 % increase Borin et al., 2005 33 % increase – 33 %

decrease

Koskiaho et al., 2003

0-30 % decrease Dorioz et al., 2006
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Table 3. The effect of buffer zones on mass losses of pesticides to waterbodies.1087

Pesticide Effect of buffer zone Reference

Atrazine 30 % reduction Barnes and Kalita, 2001

83-99 % reduction Patty et al., 1997

57-93 % reduction Popov et al., 2006

Fenpropimorph 71 % reduction Syversen and Bechmann,

2004

34 % reduction Syversen, 2005

Glyphosate 39 % reduction Syversen and Bechmann,

2004

48 % reduction Syversen, 2005

Isoproturon 87 % reduction Benoit et al., 2000

Lindane 76-100 % reduction Patty et al., 1997

Metolachlor 40-85 % reduction Popov et al., 2006

Propiconazole 63 % reduction Syversen and Bechmann,

2004

85 % reduction Syversen, 2005

1088

1089
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Table 4. Changes in pesticide concentrations in runoff due to the creation of buffer1090

zones.1091

Pesticide Effect of buffer zone Reference

Atrazine 53 % reduction Arora et al., 2003

25-49 % reduction Popov et al., 2006

Chlorpyriphos 83 % reduction Arora et al., 2003

Metolachlor 54 % reduction Arora et al., 2003

30-61 % reduction Popov et al., 2006

1092

1093
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Table 5. Changes in mass losses of pesticides to surface waters due to the1094

construction of wetlands.1095

Pesticide Effect of wetland Reference

Atrazine 25-95 % reduction Stearman et al., 2003

Azinphosmethyl 77-93 % reduction Shulz and Peall, 2001

Carbaryl 43 % reduction Chapman, 2003

Chlorpyriphos 100 % reduction Shulz and Peall, 2001

100 % reduction Chapman, 2003

47-65 % reduction Moore et al., 2002

Diazinon 85 % reduction Chapman, 2003

Dimethoate 100 % reduction Chapman, 2003

Endosulphan 100 % reduction Shulz and Peall, 2001

Metolachlor 82 % reduction Stearman et al., 2003

Simazine 77 % reduction Stearman et al., 2003
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Captions1096
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