UNIVERSITYW

This is a repository copy of A novel binary spell checker.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/775/

Book Section:

Hodge, V.J. orcid.org/0000-0002-2469-0224 and Austin, J. orcid.org/0000-0001-5762-8614
(2001) A novel binary spell checker. In: Dorffner, G., Bischof, H. and Hornik, K., (eds.)
Artificial neural networks : ICANN 2001 : International Conference, Vienna, Austria, August
21-25, 2001 : proceedings. Lecture Notes in Computer Science . Springer , Berlin,
Germany , pp. 1199-1204.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

White Rose

university consortium
A ‘A Universities of Leeds, Sheffield & York

White Rose Consortium ePrints Repository
http://eprints.whiterose.ac.uk/

This is an author produced version of a chapter published in Artificial neural
networks : ICANN 2001 : International Conference, Vienna, Austria, August 21-25,
2001 : proceedings.

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/archive/00000775/

Citation for the published chapter

Hodge, V.J. and Austin, J. (2001) A novel binary spell checker. In: Dorffner, G. and
Bischof, H. and Hornik, K., (eds). Artificial neural networks : ICANN 2001 : International
Conference, Vienna, Austria, August 21-25, 2001 : proceedings. Lecture Notes in
Computer Science (2130). Springer-Verlag, Berlin, Germany, pp. 1199-1204.

Citation for this chapter
To refer to the repository paper, the following format may be used:

Hodge, V.J. and Austin, J. (2001) A novel binary spell checker. Author manuscript
available at: http://eprints.whiterose.ac.uk/archive/00000775/. [Accessed: date].

Published in final edited form as:

Hodge, V.J. and Austin, J. (2001) A novel binary spell checker. In: Dorffner, G. and
Bischof, H. and Hornik, K., (eds). Artificial neural networks : ICANN 2001 : International
Conference, Vienna, Austria, August 21-25, 2001 : proceedings. Lecture Notes in
Computer Science (2130). Springer-Verlag, Berlin, Germany, pp. 1199-1204.

White Rose Consortium ePrints Repository
eprints@whiterose.ac.uk

A Novel Binary Spell Checker

Victoria J. Hodge! and Jim Austin!

University of York, UK

{vicky,austin}@cs.york.ac.uk

Abstract. In this paper we propose a simple, flexible and efficient hy-
brid spell checking methodology based upon phonetic matching, super-
vised learning and associative matching in the AURA neural system.
We evaluate our approach against several benchmark spell-checking al-
gorithms for recall accuracy. Our proposed hybrid methodology has the
joint highest top 10 recall rate of the techniques evaluated. The method
has a high recall rate and low computational cost.

1 Introduction

Errors, particularly spelling and typing errors are abundant in human gener-
ated electronic text. For example, Internet search engines are criticised for their
inability to spell check the user’s query. This would prevent wasted computa-
tional processing, prevent wasted user time and make any system more robust
as spelling and typing errors can prevent the system identifying the required
information.

We describe an interactive spell checker that identifies spelling errors and rec-
ommends alternative spellings. The spell checker uses a hybrid approach to over-
come phonetic spelling errors and the four main forms of typing errors: insertion,
deletion, substitution and transposition. We use a Soundex-type coding approach
(see Kukich [4]) coupled with transformation rules to overcome phonetic spelling
errors. We use an n-gram approach [5] to overcome the first two forms of typing
error and integrate a Hamming Distance approach to overcome substitution and
transposition errors. Our spell checker aims to high recall accuracy possibly at
the expense of precision. However, the scoring allows us to rank the retrieved
matches so we can limit the number of possibilities suggested to the user to the
top 10 matches, giving both high recall and precision.

Some alternative spelling approaches include: Levenshtein Edit Distance (see
[4]) which scores similarity by the number of transformations required to turn
the misspelt word into each lexicon word but runs slowly; Agrep [7] [6] is based
on Edit Distance but uses an approach optimised for speed, however Agrep has
the lowest recall in our evaluation; Aspell [1] which integrates transformation
rules and phonetic code generation; and, the two benchmark approaches MS
Word 97 and MS Word 2000. We evaluate our approach against these alterna-
tives for quality of retrieval both recall - the percentage of correct words retrieved

O(Y""’On

76543210

G w o =

Fig. 1. The input vector ¢ addresses the rows of the CMM and the output vector o
addresses the columns.

Training Word Training Word

Superimposition of Superimposition of
Vectors Vectors

o s
2 =
IS}]

o . . (¢} k| . .
£ Correlation Matrix > Z Correlation Matrix
g Memory g £ Memory
2 5 5

= =
= a
I I
Superimposition of Superimposition of
Outputs Outputs
Array of words Array of words
Recall \ 4 Recall \ 4
List of List of
Matched Matched
Words Words

~<z =
~ < - .
Hamming Distance S - Phonetic Codes
List of

or N-gram Matched
Words

Fig. 2. Diagram of the hybrid spell checker in the AURA modular system.

from 600 misspelt words and precision - the number of false matches returned.
The reader is referred to Kukich [4] for a thorough treatise of spell checking
techniques.

1.1 Ouwur Integrated Hybrid Modular Approach

AURA [2] is a collection of binary associative neural networks that may be
implemented in a modular fashion. AURA utilises Correlation Matrix Memories
(CMMs) to map inputs to outputs through a supervised learning rule, similar
to a hash function see Fig. 1. In our system shown in Fig. 2, we use two CMMs
[2]: one CMM stores the words for n-gram and Hamming Distance matching and
the second CMM stores phonetic codes for homophone matching. The CMMs
are used independently but the results are combined during the scoring phase of
the spell checker to produce an overall score for each word.

Hamming Distance and N-Gram For Hamming Distance and n-gram, the
word spellings form the inputs. We divide a binary vector of into a series of 30-
bit chunks to allow 30 characters to be represented. Each word is divided into
its constituent characters. The appropriate bit is set in the chunk to represent
each character, in order of occurrence. The chunks are concatenated to produce
a binary vector to represent the spelling of the word and form the input to the
CMM. Any unused chunks are set to all zero bits. Each word in the lexicon
has a unique binary vector to represent it with a single bit set corresponding to
the word’s position in the lexicon. The binary vector forms the output from the
CMM for that word so we can identify when the word has been retrieved as a
match.

Recalling from the Network - Hamming Distance Only the spelling input
vector is applied to the network. The columns are summed, see (1).

output; = Z input; A wj; (1)

all @

We apply the Willshaw threshold which sets a bit in the output vector for each
column summing to the threshold value or greater. We threshold at the highest
summed column value to retrieve the best matches, i.e., words that match as
many characters in the input as possible. The single binary vector output after
thresholding is a superimposition of the best matching words’ vectors.

Recalling from the Network - Shifting N-Grams We use exactly the same
CMM for the n-gram method as we use for the Hamming Distance retrievals.
However, we use 1-grams for spellings with less than 4 characters, 2-grams for 4
to 6 characters and 3-grams for spellings with more than 6 characters. Misspelt
words with less than four characters are unlikely to have any 2-grams or 3-
grams found in the correct spelling. Spellings with 4 to 6 characters may have no
common 3-grams but should have common 2-grams and words with more than 6
characters should match 3-grams. For a 3-gram, we take the first three characters
of the spelling, input these left aligned to the spelling CMM and threshold the
output activation at the value three. We then slide the 3-gram one place to the
right, input to the CMM and threshold at three. We continue sliding the 3-gram
to the right until the first letter of the 3-gram is in the position of the last
character of the spelling. We logically OR the output vector from each 3-gram
position to produce an output vector denoting any word that has matched any
of the 3-gram positions. We then move onto the second 3-gram, left align, input
to the CMM, threshold and slide to the right producing a second 3-gram vector.
When we have matched all n 3-grams from the spelling, we will have n output
vectors representing the words that have matched each 3-gram respectively. We
sum these output vectors to produce an integer vector representing a count of the
number of 3-grams matched for each word. We then threshold at the maximum
value to produce a thresholded binary vector with bits set corresponding to the
best matching words.

Phonetic Spell Checking Our methodology combines Soundex-type codes
with the phonetic transformation rules listed in Table 1 to produce a four-
character code for each word. Any applicable transformation rules are first ap-

"hough — h5 |"ps = s |1. c(elilylh) = s2.¢c >k
“cough - k3 |'pt >t |gn$ —» n

“chough — s& |"pn — n |gns$ — ns

“laugh — {3 |"mn — n|l. (iju)gh(-a) - _2.gh > g
mb$ - m

“rough - r3 |"wr =1 |ph —f

“tough - ¢t8 |['kn - n|q—k

“enough — e83|"gn — n |sc(elily) — s

“trough — tA3|"x — z |+ti(alo) — s

+x — ks

Table 1. Table of the phonetic transformation rules in our system. Italicised letters
are Soundex codes - all other letters are standard alphabetical letters. * indicates ‘the
beginning of a word’, $ indicates ‘the end of the word’ and + indicates ‘1 or more
letters’. Rule 1 is applied before rule 2.

plied to the word. The phonetic code for the word is then generated according
to the algorithm in Fig. 3 using the codes given in Table 2. For the phonetic

01-2034004567809-ABCODO-0B0O000
abcdefghijklmnopqrstuvwxyz-’&/
Table 2. Table giving our codes for each letter.

vectors, we divide the vector into an initial alphabetical character representation
(23 characters as c, q and x are mapped to other letters by transformation rules)
and three 13-bit chunks. Each of the three 13-bit chunks represents a phonetic
code from table 2 where the position of the bit set is the hexadecimal value of
the code. Each word’s output vector is identical to the Hamming Distance and
n-gram CMM output vector for uniformity

Recalling from the Network - Phonetic Recall from the phonetic CMM
is essentially similar to the Hamming Distance recall. We input the 4-character
phonetic code for the search word into the CMM and recall a vector representing
the superimposed outputs of the matching words. The Willshaw threshold is set
to the maximum output activation to retrieve all words that phonetically best
match the input word.

First letter of code is set to first letter of word
For all remaining word letters {
if letter maps to O then skip
if letter maps to same code as previous letter then skip
Set next code character to value of letter mapping in table 2
}
If the code has less than 4 characters then pad with Os
Truncate the code at 4 characters

Fig. 3. Figure listing our code generation algorithm in pseudocode. Skip jumps to the
next loop iteration.

Integrating the Modules We produce three separate scores for the Hamming
Distance, shifting n-gram and phonetic modules. We separate the Hamming Dis-
tance and n-gram scores so the system can utilise the best match and overcome
the four forms of typing-error. We add the Soundex score to each producing two
word scores. The overall word score is the maximum of these two values. We
normalise all scores to ensure that none of the three modules biases the overall
score. The score for the word is then given by (2).

Score = maz((ScoreHamming + ScorePhonetic),
(ScoreN-gram + ScorePhonetic)) (2)

2 Evaluation - Quality of Retrieval

We extracted 583 spelling errors from the Aspell [1] and Damerau [3] word lists
and combined 17 spelling errors we extracted from the MS word 2000 auto-
correct list to give 600 spelling errors. We counted the number of times each
algorithm suggested the exact correct spelling among the top 10 matches and
also the number of times the exact correct spelling was placed first. We include
the score for MS Word 97, MS Word 2000 and Aspell spell-checkers for a bench-
mark comparison. We used the standard supplied dictionaries for both MS Word
and Aspell. For all other evaluated methodologies we used the standard UNIX
dictionary augmented with the correct spelling for each of our misspellings giving
29,178 words in total. We note that the dictionary and spelling errors contain
many morphemes (singular/plural nouns, verb tenses etc) and we only counted
the exact match. The spelling errors range from 1 to 5 error combinations.

3 Analysis

If we consider the final column of table 3, we can see that our hybrid imple-
mentation has the joint highest recall with Aspell. Our stated aim in the Intro-
duction was high recall accuracy. Both Aspell and MS Word 2000 have more
first place matches than our method. However, MS Word is optimised for first

Method |Found (Top 10)|Found (Position 1)|Present|Not Found|% Recall (Top 10)
Hybrid 558 368 6 36 93.9
Aspell 558 429 6 36 93.9
Word 2k 510 432 17 73 87.5
Word 97 504 415 15 81 86.1
Edit 510 367 6 84 85.6
Agrep 481 303 6 113 80.1
Table 3. The table indicates the recall accuracy of the methodologies evaluated. The

present column indicates the number of misspellings present in the dictionary of each
method, e.g, ‘imbed’ included in the dictionary along with ‘embed’.

place retrieval and Aspell relies on a much larger rule base than we use. We have
minimised our rule base for speed and yet achieved equivalent overall recall. The
user will see the correct spelling in the top 10 matches an equal number of times
for both Aspell and our method. We note that both Aspell and MS Word were
using their standard dictionaries but we assume a valid comparison.

4 Conclusion

Spell checkers are somewhat dependent on the words in the lexicon. Some words
have very few words spelt similarly, so even multiple mistakes will retrieve the
correct word. Other words will have many similarly spelled words so one error
may make correction difficult or impossible. Of the techniques evaluated, our
hybrid approach had the joint highest recall rate at 93.9%. Humans averaged
74% for isolated word-spelling correction [4]. Kukich [4] posits that ideal isolated
word-error correctors should exceed 90% when multiple matches are returned.

References

1. Aspell. Web page http://aspell.sourceforge.net/.

2. J. Austin. Distributed associative memories for high speed symbolic reasoning.
In R. Sun and F. Alexandre, editors, IJCAI ’95 Working Notes of Workshop on
Connectionist-Symbolic Integration: From Unified to Hybrid Approaches, pages 87—
93, Montreal, Quebec, Aug. 1995.

3. F. Damerau. A technique for Computer Detection and Correction of Spelling Errors.
Communications of the ACM, 7(3):171-176, 1964.

4. K. Kukich. Techniques for Automatically Correcting Words in Text. ACM Com-
puting Surveys, 24(4):377-439, 1992.

5. J. R. Ullman. A Binary n-Gram Technique for Automatic Correction of Sub-
stitution, Deletion, Insertion and Reversal Errors in Words. Computer Journal,
20(2):141-147, may 1977.

6. S. Wu and U. Manber. AGREP - A Fast Approximate Pattern Matching Tool. In
Useniz Winter 1992 Technical Conference, pages 1563-162, San Francisco, CA, Jan.
1992.

7. S. Wu and U. Manber. Fast Text Searching With Errors. Communications of the
ACM, 35, Oct. 1992.

