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There is little consensus as to why there is so much variation in the rates at which 9 

different species’ geographic ranges expand in response to climate warming1,2
.  Here, we 10 

show for British butterfly species that the relative importance of species’ abundance 11 

trends and habitat availability vary over time. Species with high habitat availability 12 

expanded more rapidly from the 1970s to mid-1990s, when abundances were generally 13 

stable, whereas habitat availability effects were confined to the subset of species with 14 

stable abundances from the mid-1990s to 2009, when abundance trends were generally 15 

declining. This suggests that stable (or positive) abundance trends are a prerequisite for 16 

range expansion. Given that species’ abundance trends vary over time3
 for non-climatic 17 

as well as climatic reasons, assessment of abundance trends will help improve 18 

predictions of species’ responses to climate change, and help understand the likely 19 

success of different conservation strategies for facilitating their expansions.  20 

Identifying species’ traits associated with rapid range expansions in response to climate 21 

change provides insight into the conservation strategies most likely to be successful
4
. 22 
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However, such understanding may be difficult to attain, given that the ability of species’ 1 

traits, such as reproductive rate, to explain responses to climate change is frequently low
2
. 2 

Previous studies suggest that the expansion of species’ distributions across landscapes will 3 

depend on species’ dispersal abilities1,5,6
, the availability of habitat

7
, and population 4 

abundance trends, which determine the supply of migrants to colonise new locations
8
. 5 

Species’ population and distribution trends will also be affected by interactions between traits 6 

and the environment, thus predictions of range expansions may be limited if habitat 7 

availability and population trends are not considered simultaneously. Furthermore, abundance 8 

trends vary over time
3
, associated with variability in climate warming

9
 and habitat quality and 9 

quantity
10

, so it might be expected that the relative importance of predictors of distribution 10 

changes also vary over time. 11 

Here, we consider the roles of abundance trends, habitat availability and dispersal capacity in 12 

the range changes of 25 British butterfly species during two periods. Distribution changes 13 

were measured between blocks of time (1970-82 to 1995-99 and then 1995-99 to 2005-09) to 14 

ensure sufficient data to record distribution changes in a robust manner (1970-82, 1995-99 15 

and 2005-09 represent periods with intensive recording; > 1,220,000 distribution records and 16 

> 262,000 abundance transect records). Butterflies are an ideal group for this analysis. Not 17 

only are there more long-term species-specific datasets than any other poikilothermic animal 18 

group worldwide, but most between-species variation in expansion rates exists within 19 

taxonomic groups rather than between groups
9
 and so our conclusions are likely to be 20 

relevant to other taxa. Average annual temperature increased at a rate of 0.03 °C yr
-1

 in the 21 

first study period (1970-82 to 1995-99), and 0.01 °C yr
-1

 in the second (1995-99 to 2005-09). 22 

We expected the lower rate of temperature increase in the second period to have relatively 23 

little effect on rates of distribution change due to climate distribution lags
11,12

, and indeed 24 
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species showed idiosyncratic responses to climate warming; some expanded their ranges in 1 

both periods, some in only one period, and some retracted in both periods
13

 (Table S1). 2 

We studied 25 southerly-distributed butterfly species which have the potential to extend their 3 

distributions under climate change (migrants, northern and ubiquitous species were excluded, 4 

further exclusions were due to insufficient data). We quantified changes in distribution area 5 

using the Butterflies for the New Millennium (BNM) dataset
14

 as the percentage change in 6 

the number of 10 km grid squares occupied per year, to account for the different lengths of 7 

study periods and different initial species’ range sizes. Changes in abundance were calculated 8 

using the UK Butterfly Monitoring Scheme (UKBMS) transect dataset
15

 by regressing 9 

abundance indices from continuously occupied transect sites (sites at which a species was 10 

present every year during the study period) against year
16

, to give percentage change in 11 

abundance per year for each species. We used a rank mobility score
17

 to represent species 12 

dispersal ability (derived from expert opinion). Habitat availability was calculated by 13 

combining remote-sensed land cover
18,19

 estimates with expert assessments of species’ habitat 14 

associations
14 

(see SI). We only considered the availability of habitat in the 10 km grid 15 

squares which the species colonised during each period, thus focussing measures on those 16 

areas where species’ distributions were changing. It was not possible to quantify landscape 17 

change over time because annual habitat data are not available and the categorisation of land 18 

cover data in the two study periods has changed
18

. We employed an information-theoretic 19 

approach to identify the best models for explaining distribution changes. For each study 20 

period separately, we constructed general linear models to assess distribution changes against 21 

all three variables (abundance trends, habitat availability, dispersal ability) including their 22 

interactions, and AICc values and Akaike weights were used to determine the best fitting 23 

models. When ΔAICc < 2, models are considered to be of equal strength
20

 so model 24 
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averaging was used. (Incorporation of phylogenetic correlations did not improve the fit of 1 

models so we do not present phylogenetic analyses; see SI).   2 

In the earlier period, nine species expanded their distribution area (mean change = 0.8% yr
-1 

3 

±0.1 s.e.m.) and 16 species retracted (mean change = -2% yr
-1

 ±0.2 s.e.m.). The abundance 4 

trends of species were generally stable in permanently occupied sites (mean abundance 5 

change = -0.5% yr
-1

 ±1.75 s.e.m.). The best fitting models included habitat availability and 6 

dispersal ability, but not abundance (Table 1a). Habitat availability was the most important 7 

explanatory variable (R
2 

= 0.35, Table S4a); range expansions were greatest for species with 8 

high habitat availability (Fig. 1a). Dispersal ability was much less important, and in models 9 

where it was included it showed a negative relationship. This unexpected relationship 10 

suggests that once habitat availability was accounted for, less dispersive species did not fare 11 

any worse than more dispersive species.   12 

In the later study period, 11 species extended their ranges (mean change = 1.4% yr
-1 

±0.3 13 

s.e.m.) and 14 species retracted (mean change = -0.8% yr
-1

 ±0.1 s.e.m.), during a period when 14 

overall abundance trends were negative (mean change = -6.99% yr
-1

 ±3.04 s.e.m.). In contrast 15 

to the first period, the best fitting model included only abundance (Table 1a; Fig 1b). 16 

Distribution change showed a positive association with abundance change (R
2
 = 0.15, Table 17 

S4b); species which retracted their ranges showed larger declines in abundance (mean 18 

abundance change = -11.47% yr
-1

 ±4.23 s.e.m), whereas species with expanding ranges 19 

showed considerably smaller declines or had stable abundances (mean change = -2.39% yr
-1

 20 

±2.92 s.e.m). Thus there was little consistency in the responses of species over the two study 21 

periods
13

, and the importance of habitat availability as a determinant of range expansion also 22 

varied over time, associated with abundance trends. We found little evidence that dispersal 23 

was important, which supports other studies indicating that species’ traits are poor predictors 24 
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of distribution changes
2, and our results suggest that the importance of species’ traits may be 1 

context-specific. 2 

Previous research has found a strong relationship between abundance changes and 3 

distribution changes
5,16

 and we show that abundance trends are important for determining 4 

whether or not species expand their range. The absence of abundance as an important 5 

predictor of distribution changes in the best fitting models in the first study period may be 6 

because we analysed abundance trends only at continuously occupied sites. When data for 7 

transect sites colonised during the first period were also included in estimates of species’ 8 

abundance trends, abundance was positively related to change in distribution area, suggesting 9 

that increased overall abundance was a consequence rather than a cause of expansion (Table 10 

1b). This implies that species with generally stable abundances in long-established 11 

populations exhibit density-dependent, positive population growth at newly-colonised sites
21

. 12 

In contrast, species with steeply-declining abundances in long-established sites would be 13 

unlikely to produce many migrants and may show negative population growth at newly-14 

colonised sites, and hence fail to establish and expand their ranges
22

.  15 

We further tested these determinants of distribution changes by examining factors associated 16 

with colonisation in the subset of species that expanded their ranges in the second study 17 

period (N = 11 species; see Fig. 2 and SI). We found that habitat availability was the most 18 

important explanatory variable of median colonisation distance (R
2 

= 0.55, Table S6), and 19 

that dispersal ability and abundance trends were not important (Table 1c; Fig 3). Thus for the 20 

subset of species in the second period with stable abundances and expanding ranges, species 21 

with greater habitat availability colonised over longer distances, in agreement with our 22 

findings in the first period and supporting the notion that species’ traits (e.g., dispersal 23 

ability), other than those that affect habitat availability, may be poor predictors of distribution 24 
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change
2
. For declining species the null model was best, as was expected because colonisation 1 

is not usually an important feature of declining distributions.  2 

Our results suggest that positive or stable abundance trends are a prerequisite for species 3 

range expansion
23

, enabling species to establish populations in new sites. Once these 4 

conditions are met, habitat availability, which arises from the interaction between a species’ 5 

niche-related traits and the environment, becomes a limiting factor. During the first study 6 

period, when abundance trends generally were not limiting, habitat availability was the most 7 

important determinant of range expansion (10 km grid resolution data). During the second 8 

period, when declining abundance trends limited expansion, habitat availability had no 9 

predictive power, but was the most important explanatory variable for the subset of species 10 

with expanding distributions and stable abundance trends (for colonisation distances 11 

estimated at 1 km grid resolution).  12 

We conclude that drivers of range expansion in response to climate warming vary over time 13 

and that species’ abundance patterns are crucial to interpreting these responses. It is unclear 14 

why the abundances of many butterfly species have declined in Britain, but the abundances of 15 

many other taxa are also declining
24

. Current evidence suggests that many species fail to 16 

expand because of lack of suitable habitat
7
, and so habitat connectivity should be improved

25
. 17 

Our results strongly support this conclusion for the subset of species with stable abundances 18 

whose ranges are already expanding, and management such as habitat restoration may 19 

increase their rates of expansion
26

. However this type of habitat management is likely to 20 

prove ineffective for species with declining abundances. We conclude that conservation 21 

management to stabilise and increase abundance trends within the core of species’ ranges is 22 

required (e.g. improving habitat quality), and that habitat creation to increase the number of 23 
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species extending their range margins polewards will only be effective once species’ 1 

abundance trends are stable or increasing.   2 

3 
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Methods Summary 1 

Change in species’ distribution area was the percentage change in the number of 10 km x 10 2 

km grid squares occupied. Sub-sampling was carried out on the dataset to account for the 3 

temporal increase in recording effort using established methods to give similar number of 4 

records and spatial coverage over time
27

 (see SI).  5 

 A rank mobility score
17

 based on expert opinion was used to represent species’ dispersal 6 

ability. Habitat availability was quantified separately for the two study periods as the 7 

proportion of each species’ breeding habitat in the landscape using LCM2000
19

 and 8 

LCM2007
18

 25m resolution raster datasets respectively. Landcover categories relevant to 9 

species breeding habitat were identified using expert opinion
14

, and weighted based on the 10 

frequency with which species distribution records were associated with that landcover type 11 

(see SI). Change in abundance from the UKBMS transect dataset was calculated for 12 

continuously-occupied transect sites, but subsequent analyses also included recently-13 

colonised sites (see main text). To estimate change in abundance for each species, log10 14 

abundance index was regressed against year
16

, with transect site as a random variable.  15 

For each species during the second study period, we quantified colonisation distances from 16 

the BNM dataset (1 km grid resolution). The distances and frequencies of newly colonised 17 

sites (new 1 km grid square records in 2005-09) from the nearest occupied sites (existing 1 18 

km records in 1995-99; Fig. 2 and Fig. S1) were computed. We included only colonisations at 19 

species’ distribution edges (10 km squares which were unoccupied in 1995-99 but colonised 20 

by 2005-09; N = 12234 colonisations). Inverse power functions were fitted to the 21 

colonisation-distance distributions for each species, and the median distances from the fitted 22 

curves were used in analyses (Table S5). 23 



9 

 

Annual temperature data from the Central England Temperature series were downloaded 1 

from the UK Met Office (http://www.metoffice.gov.uk) to compute temperature change.  2 

3 
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Figure legends 1 

Figure 1. Change in species distribution area in relation to habitat availability, dispersal 2 

ability and change in abundance (at continuously-occupied transect sites). Distribution 3 

change is plotted against standardized variables: log10 habitat availability index, rank order 4 

dispersal ability and change in abundance (% yr
-1

) for a the first study period (1970-82 to 5 

1995-99) and b the second study period (1995-99 to 2005-09). Solid line is the fitted 6 

relationship for the most important explanatory variable (Table 1). The size of points reflects 7 

weighting in analyses involving abundance change (weight = 1/S.E. abundance), which 8 

improved the model fit for the second period, but not the first. 9 

Figure 2. The distribution and colonisation distances of Polygonnia c-album. a The change 10 

in distribution of the butterfly from 1995-99 to 2005-09 (10 km resolution). Blue squares = 11 

occupied in 1995-99, green squares = colonised in 2005-09. b A selection of the distribution 12 

data at 1km resolution, showing presence in 1995-99 (blue squares) and new records in 2005-13 

09 (green squares). The distances from new locations at the species distribution edge (defined 14 

as 10km squares which were unoccupied in 1995-99 but colonised in 2005-09) to the nearest 15 

existing records (red arrow) were found, and used to compute c colonisation distance 16 

distributions.  17 

Figure 3. Colonisation distance for distribution-expanding species in relation to habitat 18 

availability, dispersal ability and change in abundance. Median colonisation distance (km) is 19 

plotted against standardized a log10 habitat availability index, b rank order dispersal ability 20 

and c change in abundance (% yr
-1

, at continuously-occupied transect sites) for the second 21 

study period (1995-99 to 2005-09). Solid line is the fitted relationship for the most important 22 

explanatory variable (Table 1). 23 

24 
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Tables 1 

Table 1. Average model parameter estimates, standard errors and relative importance of 2 

variables.  3 

 4 

a response variable is change in distribution area (using species’ abundances from only 5 

continuously-occupied transect sites) 6 

b response variable is change in distribution area (using species’ abundances from all sites 7 

including those that were colonised during the study period) 8 

Model variables Estimate 
Unconditional 

S.E. 

Relative 

importance* 

 

a  Change in distribution (abundance from continuously-occupied sites)  

1970-82 to 1995-99     

Habitat availability 1.835 0.584 1  

Dispersal ability -0.659 0.715 0.28  

1995-99 to 2005-09     

Change in abundance  1.427 0.631 1  

b  Change in distribution (abundance from all sites)  

1970-82 to 1995-99     

Change in abundance 1.996 0.531 1  

Habitat availability 2.059 0.626 1  

Abundance x habitat 1.670 0.803 0.61  

Dispersal ability -0.873 0.531 0.68  

Abundance  x  dispersal 1.858 1.017 0.21  

1995-99 to 2005-09     

Change in abundance 1.258 0.442 1  

c  Median colonisation distance 
   

1995-99 to 2005-09     

Habitat availability 3.802 1.045 1  
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c response variable is median colonisation distances 1 

* Relative importance of variables of 1 indicates that the variable was present in all top 2 

models, or was the only variable when model averaging was not necessary because the 3 

difference in AICc between the first and second highest ranking models was > 2 (Tables S4 4 

and S6). 5 


