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Visualizing Nuclear Scission through a Multifield Extension of

Topological Analysis

David Duke, Member, IEEE, Hamish Carr, Member, IEEE, Aaron Knoll,

Nicolas Schunck, Hai Ah Nam, and Andrzej Staszczak
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Fig. 1. Scission point: A single plutonium nucleus (left) breaks into two fragments (right). Each image shows the iso-interval slabs
within the 3D domain, and the abstract structure of the underlying Joint Contour Net.

Abstract—In nuclear science, density functional theory (DFT) is a powerful tool to model the complex interactions within the atomic
nucleus, and is the primary theoretical approach used by physicists seeking a better understanding of fission. However DFT simula-
tions result in complex multivariate datasets in which it is difficult to locate the crucial ‘scission’ point at which one nucleus fragments
into two, and to identify the precursors to scission. The Joint Contour Net (JCN) has recently been proposed as a new data structure
for the topological analysis of multivariate scalar fields, analogous to the contour tree for univariate fields. This paper reports the
analysis of DFT simulations using the JCN, the first application of the JCN technique to real data. It makes three contributions to
visualization: (i) a set of practical methods for visualizing the JCN, (ii) new insight into the detection of nuclear scission, and (iii) an
analysis of aesthetic criteria to drive further work on representing the JCN.

Index Terms—Topology, scalar fields, multifields.

1 INTRODUCTION

Problems in science, engineering and medicine rarely involve just one
property of a system. Simulations of combustion, turbulence, seis-
mic movements, meteorology, astrophysics, and molecular physics
all compute multiple properties simultaneously, such as temperature,
pressure, velocity, vorticity, shear, combustion rate, and so on. To
date, scientific visualization for such data has focused on techniques
for representing individual properties. Visual exploration of multiple
properties requires careful use of methods such as probing, glyphing,
or multidimensional transfer functions. All of these approaches are ad
hoc, relying on careful study and exploration to piece together a global
understanding of the relationships from local, fragmented, models.

In physics, this problem is well illustrated by many-body systems
such as molecules, atoms or nuclei where the system as a whole is the
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product of complex interactions among many constituents, the prop-
erties of which may not be easily isolated. In this paper, we focus on
nuclear fission, the process by which an atomic nucleus splits into two
(or more) fragments. Although it was discovered more than 70 years
ago, physicists are still working on a comprehensive description of
this complex phenomenon. One goal is to replace current phenomeno-
logical models with a predictive model grounded in the theory of the
strong interaction. This would yield deeper insight into the formation
of elements in the universe, and also help address pressing societal
questions related to energy production or stockpile stewardship [27].

A particularly challenging aspect within the theory of fission is the
ability to identify accurately, in a continuous N−dimensional mani-
fold, the points where the original nucleus ceases to be whole, and
where it is justified to introduce two separate density distributions cor-
responding to the fission fragments. This identification is convention-
ally done manually and relies on the physicists’ intuition rather than
clear mathematical arguments. By nature, however, this problem is an
excellent candidate for multifield analysis.

Recent work [8] sets out a clear mathematical basis for multifield
analysis: the Joint Contour Net (JCN). JCNs generalise the Contour
Tree (and Reeb Graph) from one to an arbitrary number of scalar
properties. Underlying this approach is a key assumption: that, by
visualizing the JCN it will be possible to gain global insight into the
relationship between the fields, and/or to identify important changes
in the topological structure of the full system in terms of features in
the JCN. This has been demonstrated on small synthetic datasets, but
not yet on real data linked to a specific scientific problem.

This paper makes two principal contributions:

1. We apply graph visualization tools to the JCN to analyse simu-
lation data from nuclear physics, leading to new insight into the
nuclear fission process, and a new general method for the future.



2. We demonstrate the utility of the JCN to real data, and explore
the relationship between JCN analysis of multifields and contour
tree analysis of single scalar fields.

The remainder of the paper is structured as follows. Section 2 de-
scribes nuclear density functional theory and its treatment of nuclear
fission, introduces some useful vocabulary, and concludes with the key
domain question addressed in this paper, namely finding the scission
point in simulations of nuclear fission. These datasets are multivariate,
and Sections 3 through 5 set out relevant formalisms and prior work
including the JCN. Our visualization tools are described in Section 6:
these include implementation of the JCN, and methods for drawing
it. The subsequent two sections, 7 and 8, present our analyses of two
substantial datasets. The first study, a simulation of fermium fission,
serves to calibrate our approach. The second dataset, modeling fis-
sion in the plutonium nucleus, is more challenging, and our analysis
contributes new insight into physicists’ understanding of this system.
Section 9 then reviews the contributions, and considers future research
in this area.

2 NUCLEAR FISSION IN DENSITY FUNCTIONAL THEORY

Early models of fission were based on an empirical liquid-drop pic-
ture of the nucleus: fission occurs when one “stretches” the drop up
to the point where it breaks in two [4]. Modern approaches aim at
deriving an understanding of the fission process from the nucleon-
nucleon interactions that make atomic nuclei possible. In this con-
text, the major theoretical approach is nuclear density functional the-
ory (DFT) [2]. Its central assumption is that the complex interactions
of protons and neutrons within the nucleus can be hierarchized. In first
approximation, everything happens as if all nucleons were moving in-
dependently of one another in some average quantum potential, the
nuclear mean-field. Spontaneous symmetry breaking is invoked to de-
form the mean-field, introducing a first class of correlations. Beyond
this first order approximation, corrections are required to account for
quantum fluctuations but the mean-field approximation alone is sur-
prisingly successful: it typically accounts for 99.9% of the atomic
mass of elements [19, 20]. The DFT approach has three major ad-
vantages over other approaches: (i) it provides a simple yet rigorous
framework based only on an interaction between nucleons, (ii) it only
depends on a handful of free parameters, and (iii) it is the only com-
putationally tractable approach of the structure of heavy nuclei.

Because fission involves ‘stretching’ the nucleus, the DFT treat-
ment of the problem begins with identifying the relevant deformation
degrees of freedom q of the mean-field. A realistic description of fis-
sion involves at least N ≥ 4 degrees of freedom such as elongation,
triaxiality, mass asymmetry, degree of necking, etc. [30, 34]. The list
of degrees of freedom defines what is called the “collective space”.
The next task is to take a (not necessarily uniform) sample grid of
this N-dimensional collective space and compute the total energy E at
each point of this grid. As the dimensionality N of the collective space
increases, the number of points may quickly become very large: high-
performance computing is needed. The scalar field E(q1, . . . ,qN) de-
fines the “potential energy surface” (PES). At each point on the PES,
the nucleus is characterized by properties such as the spatial density
of protons and neutrons (scalar field R3 → R), the density of spin of
each type of particle (vector fields R3 → R3), etc. A given set of such
properties is nothing but a particular realization of a multifield.

The PES themselves are the cornerstone of the microscopic theory
of fission. They have some topology with a minimum at small defor-
mations, the “ground-state” of the nucleus, together with secondary
minima, ridges and valleys. Starting from the ground-state and fol-
lowing a path of least energy on the PES, we may observe at some
point a discontinuity with a sharp drop of the energy: this defines the
scission point, the precise moment where the nucleus fragments and
can not be considered as whole any longer. To know precisely where
the split occurs is essential in practical applications: it is what will de-
fine the properties of the fission fragments, such as their charge, mass,
kinetic energy and excitation energy; all quantities that can be mea-
sured experimentally and test the predictive power of the model.

In many DFT simulations, the PES contains discontinuities and the
identification of scission is therefore straightforward. Even then, se-
rious conceptual difficulties arise because the properties of the fission
fragments can change totally across the scission point precisely be-
cause of the discontinuity. To avoid such inconsistencies, it is possible
to remove all discontinuities by enlarging the collective space (adding
new degrees of freedom to describe nuclear properties, see figure 9):
the properties of the fission fragments are then properly defined, but
the identification of the scission point becomes much more compli-
cated. We will show in this work that multifield analysis techniques
are an effective tool to detect topological changes in such complex
situations.

There are many other cases where these techniques could also prove
very valuable for nuclear physicists. For example, the description of
neutron-induced fission, e.g. in nuclear reactors requires adding ther-
mal effects to the theory. As a consequence, nucleons tend to be more
and more delocalized: densities extend further outside the nucleus and
the definition of the scission point becomes more and more ambigu-
ous, if not questionable. Apart from the identification of the scission
point itself, perhaps as important is the detection of the nascent pre-
fragments in the fissioning nucleus [28, 29, 35]. This is the signal
that global degrees of freedom associated with the whole nucleus may
have to be replaced by individual degrees of freedom for each frag-
ment. Yet, there is currently no systematic way to perform this switch
from global to local degrees of freedom, and multifield analysis offers
an appealing option.

Since the task involves detection of a particular combinatorial event
between distinct objects encoded in a multi-field composed of mul-
tiple scalar fields, this problem is well-suited to topological analysis.
Thus, in order to identify the scission points, we must first discuss the
principles of topological analysis and visualization in the scalar case,
then discuss multifield visualization and in particular the extension of
topological analysis to multifield data.

3 SCALAR TOPOLOGICAL ANALYSIS

In recent years, topological analysis has increasingly been applied
to the analysis, visualization and comprehension of scientific data
sets [6]. Two complementary approaches have been developed -
contour-based analysis [10] and gradient-based analysis [14]. Of
these, contour-based analysis detects objects and their relationships,
while gradient-based analysis also detects regions of common be-
haviour. At the same time, contour-based analysis is computationally
cheaper and simpler than gradient-based analysis: we therefore start
with scalar topological analysis using the contour tree.
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Fig. 2. A small multifield example. In the upper row, the first scalar field,
with contours, slabs and contour tree. In the lower, the second scalar
field, with contours, slabs and contour tree.



3.1 Contour Trees

Given a scalar field f : M ⊂Rm →R over a manifold domain M, a level
set f−1(h) is the pre-image of a given isovalue h, and a contour is a
single connected component of a level set. We note that each contour
is (on standard assumptions) of one dimension lower than the original
data set, because we have restricted it with respect to one variable.

Contracting each contour to a single point results in a graph called
the Reeb graph [23]. If M is homeomorphic to a disk, this is the con-
tour tree [5]: an example of a contour tree is shown in Figure 2. In this
figure, a small triangulated scalar field is shown with some contours
(on the left), and a heat map to its right. Note that the contour tree
captures the relationship between the maxima in red, the minima in
blue, and the saddle point in the centre. All extrema are represented
as leaf nodes and saddle points as interior nodes: all other points map
to points on edges of the tree. Moreover, regions bounded by contours
map to subsets of the tree, and branches of the tree therefore represent
regions of the data.

The contour tree can be computed in O(NlogN) time for triangu-
lated scalar fields [9], and has been used for feature detection [10],
volume rendering [33], and contour extraction [10].

To compute contour trees and other topological abstractions, the
first step is to reduce the input data to a combinatorial form, commonly
a graph, for efficient algorithmic processing. This can be done through
simplifying assumptions, which have the side effect of making compu-
tations more complex. In particular, if f is defined by piecewise linear
interpolation on a triangulated (simplicial) mesh [1] with no two vertex
isovalues identical [15], computation can be performed on the graph
defined by the edges of the input mesh. Alternately, graphs can be
defined directly from digital image connectivity rules [21]. More re-
cently, Forman’s Discrete Morse Theory [16] replaced gradient com-
putation with a rigorous combinatorial approximation, allowing effi-
cient approximation of the Morse-Smale Complex.

We will see in section 5 how to reduce multivariate data to a graph
approximation called the contour net, but first review what multivariate
data is and how it is visualized.

4 MULTIFIELD VISUALIZATION

Compared to a scalar field, a multifield can be thought of as a collec-
tion of scalar fields with a shared domain or as a generalisation of a
scalar field to a multi-dimensional range: f : Rn → Rm. And, while Rn

is usually taken to be Euclidean space, both Rm and Rn may in general
be continous parameter spaces. For example, a record of temperature,
pressure, and humidity over the surface of the Earth defines a function
f : R2 → R3, while a record of heat and gaseous concentration in a
volumetric simulation of a plasma defines a function f : R3 → R2. We
will consider each of the samples in the data domain individually to
be scalar functions, i.e. we do not address the case where observations
explicitly include vector or tensor components.

We can construct a small running example by combining the scalar
field from Figure 2 with a second scalar field on the same domain in
Figure 2. If we combine the two to construct a function f : R2 → R2,
we instantly run into the major problem with multifield visualization:
how to construct separate visual encodings for each field. Figure 3
illustrates this problem, with a heat map based on the sum of the two
fields. Broadly speaking, multifield visualization is in its infancy, with
methods that either reduce the multifield to a scalar field or map each
element of the multifield to different visual channels.

5 MULTIFIELD TOPOLOGICAL ANALYSIS

As we have seen, successful tools have been developed for scalar topo-
logical analysis. It has been an open question how to extend these
tools to multifields, either by treating the properties as separate scalar
fields, or by analysing the entire multifield at once. Moreover, re-
cent work [11] has demonstrated that, for many purposes, quantized
contours are a more appropriate form of analysis for the sampled and
meshed data typical of scientific and engineering simulations. We
therefore consider these three sets of research before proceeding.

Multiple Scalar Analysis: One approach has been to analyse each
scalar field separately (e.g. in contour trees), then overlap the cor-
responding features to determine which features are simultaneously
represented in two fields [25]. Extending this to more than two fields,
however, results in defining a graph of relationships between features
in the scalar fields, then searching for cliques representing large over-
lapping regions [24]. However, this approach only identifies features
that are independently visible in each property.

Jacobi Sets: A second approach has been to generalise scalar topol-
ogy to higher dimensions. A first step here was the introduction of
Jacobi sets [12], which analyse the behaviour of critical points of one
property on contours of another, but do not necessarily divide the do-
main of the function into regions of full dimension that identify fea-
tures in the data. More recently, Reeb graphs were extended to Reeb
spaces [13] for multifields, but efficient practical algorithms have been
lacking, in part due to the complexity of the Reeb spaces.
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Fig. 3. Joint Contour Net for the small example. Left, the slabs af-
ter merging and the Joint Contour Net shown dual to the slabs. Right,
range-space placement: isovalues are mapped to (x,y) as in the contour
tree(Figure 2): where more than one node has a given isovalue, these
are stacked perpendicular to the plane of the page (shown in colour).

Joint Contour Nets: Joint Contour Nets (JCN)s [7, 8] approxi-
mate the Reeb space for sampled multivariate data. As with scalar
topology, the first step is to reduce the data to a graph - in this case,
based on quantization of the input data. Based on recent work on
the relationship between histograms, sampling, isosurfaces and quan-
tization [11], the Joint Contour Net is constructed in three stages. In
the first, each cell of the mesh is explicitly subdivided along contours
(isosurfaces) of the individual variables to decompose the domain into
slabs of constant (quantized) values in each cell. In the second, the ad-
jacency graph of the slabs is extracted: i.e. the graph representation of
isovalued regions. Finally, adjacent slabs (in neighbouring cells) with
identical isovalues are collapsed to compute the Joint Contour Net [8].
This representation then encapsulates the topological structure of the
multifield at the chosen level of quantization. Moreover, varying the
coarseness of quantization can be used to simplify the Joint Contour
Net on demand, and the contour tree turns out to be a special case.

We illustrate this in Figure 2 and Figure 3. In the simple case (a
contour tree), we divide the scalar fields in Figure 2 along the contour
boundaries shown to obtain a set of slabs, then extract the adjacency
graph and collapse it as shown in the right half of the figure to obtain
the contour trees of the individual scalar fields. If we wish to compute
the Joint Contour Net for both variables, we simply intersect the slabs
as shown in Figure 3 and obtain the Joint Contour Net shown therein.

Given that the Joint Contour Net computation is explicitly based on
quantizing the isovalues in the range of the function, we can vary the
level of quantization as a crude method of simplifying the data and/or
reducing the computational cost. For example, in Figure 2, the contour
tree in the upper row can be computed correctly with slabs of size 2
rather than 1, while the contour tree in the lower row can be computed
correctly with slabs of size 8. Similarly, in Figure 3, the key features
of the Joint Contour Net show up with slabs of size 2.



6 IMPLEMENTATION

In the previous sections, we identified that nuclear fission naturally
gives rise to multi-variate data sets which lend themselves to topologi-
cal analysis, and that the Joint Contour Net can potentially be applied.
We therefore constructed an experimental visualization system to test
this hypothesis, with two principal components - computation of the
JCN and custom rendering using the Visualization Toolkit (VTK) [26].

6.1 Visualization Framework

Our visualization pipeline was implemented in version 5.8 of the Vi-
sualization Toolkit (VTK) [26], taking advantage of VTK’s integrated
support for both scientific and information visualization techniques,
and adding a small number of custom filters:

• A filter that extracts the JCN with the algorithm described in
[7, 8]. This takes a simplicial mesh as input, and produces two
outputs, (i) a graph dataset encoding the topological structure of
the network, and (ii) a set of 3D polyhedra (or 2D polygons)
stored as an unstructured grid, representing the slabs.

• A filter for converting the unstructured polyhedral cells into
polygonal data that can be rendered.

• A filter for generating viewpoint-aligned (“billboard”) glyphs
that show, pointwise, the value of each component of a multi-
scalar field. This filter is used in displaying the JCN, and is dis-
cussed in detail later in this section.

The JCN filter used in this paper was implemented as a testbed for
multifield topology, and has not been optimized for performance. For
example, it explicitly generates all of the slabs. While this capabil-
ity was useful in the work reported here in relating the topological
abstractions to the underlying physics, it is a significant performance
bottleneck that will be addressed in subsequent work.

6.2 Drawing Joint Contour Nets

Trees and other networks from topological analysis are non-trivial for
graph drawing. The (apparently) simple case of the contour tree is
complicated as (a) the structure is an unrooted tree, and (b) in draw-
ing the tree, there are often conflicting aesthetics – e.g. vertical posi-
tioning in 2D of nodes according to the isovalue of the corresponding
contours, and horizontal positioning to reflect the branch hierarchy.

Topological structure can be shown by (i) positioning nodes in the
underlying manifold, or (ii) positioning the structure in a separate
space (usually R2 or R3), as shown by Pascucci et al. [22], whose lay-
out for contour trees in R3 was inspired by orreries. Layout in R2 is
more difficult: Heine et al. [18] report an algorithm that uses heuristic
search to reduce penalties arising from conflicting layout criteria. Nei-
ther approach applies to the JCN, as both rely on properties of trees.

Absent a layout technique specific to JCNs, we have identified three
generic methods that provide complementary insights into their struc-
ture. Given a multifield function f : Rm → Rn,

Domain-space placement positions each node at the centre of the cor-
responding slab in Rm: an example of this can be seen in Figure 3.
For m ≤ 3, the resulting layout can be visualized directly; for m > 3
some form of dimensional scaling will be required. Although simple
to compute node positions while building the JCN, in our experience it
is difficult to discern features via this layout, and in particular difficult
to identify combinatorial events within a sequence of JCNs.

Range-space placement positions nodes at the point in Rn defined by
the threshold of the corresponding slab. This generalises the contour-
tree drawing convention where CT node isovalue is mapped to one
axis of the drawing space, and can be seen as a form of scatterplot,
where samples in the data domain are connected by edges based on
adjacency in the spatial domain. However, where two slabs have the
same isovalue, the corresponding nodes will be co-located.

Force-directed placement: given the construction of the JCN from ad-
jacent slabs, we expect these networks to have a mesh-like structure.

Prior work [17] has shown that force-directed layouts can be effective
for such graphs, and these algorithms avoid the problem of co-located
vertices. Although there are issues of scalability for larger graphs, for
the datasets used in this study force-directed placement was found to
be practical. Our graphs are laid out using vtkForceDirectedLayout-
Strategy, an implementation within VTK of a spring embedder.

Having placed the nodes, the next challenge is to relate nodes to
the n-tuple of values for the corresponding slab. Our solution was a
multi-variate glyph similar to pie glyphs [32], but adapted for multi-
field scalar data. Geometrically, for an n-field dataset, each glyph is
constructed by subdividing a circle into n segments of equal area, and
building a simple polygonal approximation to these segments. Each
segment then corresponds to a single field value, and is rendered by
colour-mapping that value through a standard VTK lookup table.

The remaining difficulty was to relate nodes in the JCN to slabs
in visualizations of the spatial domain. For analysis of DFT data,
we do not need to make exact matches; our concern rather was
to correlate features in the topological structure with regions of the
data. As an expedient approach, we used the fact that the surfaces
were subject to interpolation shading. For the surface of a slab de-
fined by (v1,v2, . . . ,vn), we randomly assign one of the scalar values
{v1,v2, . . . ,vn} to each vertex, and then pass the resulting single scalar
field through a colour map. We make no claims that this is a percep-
tually good approach for multifield visualization in general, but for
the specific task of identifying the scission point, it provided adequate
support for relating the topological and spatial displays.

7 FERMIUM DATASET

Using datasets representing known fission pathways in fermium-258
[30], the primary aim of the first study was calibration: whether the
visualization tools revealed behaviour known a priori by the physicists
to be present, allowing the visualization members of the team to tune
visual representation, and simplifying the task of understanding how
the structure of the JCN relates to underlying physical phenomena.

Three datasets were provided by the physicists on the team for anal-
ysis. Each dataset corresponded to a trajectory in the N-dimensional
collective space defined in DFT, see section 2. These were:

aEF: asymmetric elongated fission, where the fermium nucleus elon-
gates asymmetrically, then splits into a large and a small fragment;

sCF: symmetric compact fission, where the fermium nucleus splits
fairly abruptly into two approximately equal fragments, and

sEF: symmetric elongated fission, where the fermium nucleus elon-
gates symmetrically.

Each of the trajectories is made of 56 sample points, or sites, corre-
sponding to different values of the collective coordinates (q1, . . . ,qN).
At each site, three scalar fields on a regular 19×19×19 grid were gen-
erated by the DFT solver. Data for each field was provided in “raw”
format: 8-bit unsigned integers. The three fields used in this and the
subsequent plutonium study are:

p: spatial density of protons in the nucleus, ρp(x,y,z);
n: spatial density of neutrons, ρn(x,y,z);
t: spatial density of nucleons (protons and neutrons); ρt(x,y,z) =
ρn(x,y,z)+ρp(x,y,z)

As discussed in section 2, the conventional approach to detecting
the scission point relies on looking for evidence of a sudden drop in
the energy. In figure 4, such a drop is clearly visible for the aEF trajec-
tory; for sCF, there seems to be a change of slope rather than a genuine
discontinuity; finally, for sEF, only a gradual decline in energy is visi-
ble, and, from the figure alone, it is not certain if there is any scission
point at all. This information was not provided by the physicists prior
to application of the JCN.

7.1 Protocol and Interpretation

To identify the scission points in the three datasets, we used scripts to
generate MPEG video and/or JPEG image sets at each site along the
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trajectories given. Based on experimentation, we adjusted the param-
eter settings of the vtkForceDirectedLayoutStrategy filter to use 750
iterations per layout, an initial temperature of 12.0, and a cool-down
rate of 5. Other parameters were left at their default setting.

Clearly an important question is the choice of slab width used to
construct the JCNs. Since the data domain consists of 8-bit samples,
we started with a slab width of 32, then reduced the width to 16, 8 and
4. For combinatorial events in the fermium dataset, we found widths
16 and 8 sufficient to identify the combinatorial events; reducing slab
width to 4 did not add further insight, and incurred significantly greater
running time due to the size of the resulting graphs; as an illustration,
for sample point 47 on the aEF trajectory, width 32 results in |V |= 20,
|E| = 19; width 16 gives 407 and 773, width 8 gives 877 and 1708,
while width 4 has 2553 and 5048 respectively.

Before reporting the results of our analyses, we use the example in
Figure 5 to introduce and explain the output produced by our visual-
ization pipeline. We have arbitrarily selected sample points 20 and 38
along the sCF trajectory, at slab widths 16 and 8. The left hand side
of each figure shows the 3D arrangement of the polyhedra defined by
the slabs of constant value, exposed by a cutting-plane. The right hand
figure shows the corresponding JCN.
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Fig. 6. Interpreting star-like motifs: (left) schematic of slab-edge bound-
aries, (right) 2D slice through dataset, coloured by slab identifier. Here
a & b are the values of the first field defining its slab boundaries, while x

& y are slab boundary values for the second field.

Several features stand out in these images: the ‘shell-like’ arrange-
ment of slabs within the 3D geometric representation, and the recur-
ring chains of star-like ‘motifs’ within the JCNs. Interpreting the shell-
like structures is straightforward: nucleon densities are highest at the
centre of the dataset grid, and fall off towards the edges of the domain,
taking their minimum value at the eight corner points. This interpre-
tation is further supported by contour trees generated from the p and
n fields individually, which displayed eight ‘strands’. With respect to
the star-like motifs, we noted the following:

1. The centre of the star corresponds to two high-degree nodes,
most of whose neighbours are the low-degree nodes making up
the remainder (‘fringe’) of the star.

2. Scaling glyphs according to slab triangle count shows that star
centers correspond to ‘large’ slabs, and fringes to ‘small’ slabs.

While layout filter parameters affect the aesthetic quality of the JCN
drawing, it does not significantly alter the star-like features, i.e. these
are not artefacts of the layout. Rather, given the topological structure
of these subgraphs, the star-like appearance is a consequence of the
spring embedder layout, which tends to cluster low-degree peripheral
vertices around more central nodes. More importantly, given the shell-
like geometric structures resulting from quantisation of the p and n
fields into slabs, we hypothesised that the ‘stars’ were the result of
interference-like effects: where a p-shell and an n-shell boundary are
in close proximity, overlaps between the fields result in small regions
where one or both of the field values cross into the next slab interval;
this structure is shown in Figure 6 (left). This was confirmed by taking
a 2D slice through the data and colouring the field by slab-id. Figure 6
(right) shows small slabs lying at the boundary between larger slabs
(the degree-2 fringe nodes; the degree-1 nodes in the JCN ‘fringe’ are
slabs that are fully contained within another).

With this understanding of the link between the JCN and underly-
ing data, Figure 5 shows an example of an interesting combinatorial
event. The JCN from position 20 is suggestive of one chain of ‘shells’
with embedded fragments; in contrast, the JCN at site 38 has a bi-
furcated structure. The colour mapping shows that the two ‘ends’ of
the bifurcation corresponded to shells within the centre of the dataset,
and further inspection of these suggested the formation of two sepa-
rate inner structures. The first image (site 20) therefore represents a
nucleus before scission, and latter image corresponds to a point be-
yond scission, where the two fragments are clearly separated. Note
that, while in this case the separation might have been identified by
judicious placement of the cutting plane, in the general case scission
may give rise to multiple fragments.

7.2 aEF: asymmetric Elongated Fission

The aEF analysis represents the simplest case in terms of the under-
lying physics. Figure 7 shows four key JCNs from the corresponding
trajectory. They show a clear bifurcation between sites 46 and 47, and
a precursor change between sites 44 and 45; site 44 shows a single
‘tail’ whereas site 45 shows branching into two ‘tails’. In site 47, the
JCN shows the central ‘spine’ of the topology splitting into two dis-
tinct branches, corresponding to two distinct fission fragments. Site 46
corresponds to the last point before the drop in energy in figure 4 and
is, therefore, the scission point. This initial calibration step allowed us
to determine signatures of scission prefragments and scission shown
through the JCN.
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Fig. 5. Example JCNs from the sCF dataset, showing variation both in resolution (slab width) and along a trajectory.

Site 44 Site 45

Site 46 Site 47

Fig. 7. Scission point in the aEF dataset. Starting from site 44, site 45
shows a break in local symmetry, persisting in site 46. Site 47 shows
wholesale change, with the central ‘spine’ of the topology split into two
branches.

7.3 sCF: symmetric Compact Fission

The sCF dataset was an effective test of the JCN: scission occurs, but
identification of the scission point is not straightforward. In the output
images, a significant topological shift is visible between site 25 and
site 26, as shown in Figure 8. Site 25 from the sCF resembles site 46
in the aEF, but there is no corresponding feature like site 26 in the aEF.

The aEF fission pathway was abrupt, showing an immediate branch-
ing into two fragments, whereas the sCF fission pathway is smooth,
with site 26 showing the first indications of branching. This was pro-
posed as the scission point, and subsequently confirmed by the physi-
cists to be the start of the fission pathway. Notably, the markers of
scission are visible through the JCN on the trajectory before it shows
up in the energy plot of Figure 4. As described in section 2, this infor-
mation could provide a systematic marker for when global and local
degrees of freedom should be applied to the model, and will be further
investigated in future work.

7.4 sEF: symmetric Elongated Fission

In the sEF, initial analysis of the JCN at slab width 8 failed to iden-
tify a definite scission point, although changes in the ‘backbone’ of

Site 25 Site 26

Fig. 8. Scission point in the sCF dataset. The tail of the dataset (site
25) has split into two clearly-defined strands in site 26.

the structure suggested that fragments were organizing into discernible
strands that could be precursors to fission. However, visual inspection
at finer granularity (smaller slab width) still failed to identify any clear
fission point, and this was reported to the physicists. This was actu-
ally the correct conclusion to draw from the data: the physicists had
deliberately posed sEF to see if the JCN would return a false positive.
In fact, the sEF trajectory provided does not include a scission point,
and the ‘failure’ to identify such a point via the JCN added further
confidence in the utility of the multifield analysis.

8 PLUTONIUM DATASET

The spontaneous fission of fermium nuclei confirmed the validity of
the JCN to identify scission. We now consider plutonium (Pu) fission:
abundant in the spent nuclear fuel generated by nuclear reactors, its
properties have been the focus of numerous experiments. Physicists’
understanding of its fission process is thus far more detailed than in the
more exotic fermium superheavy element. Figure 9 shows the total en-
ergy along the trajectory that minimizes the energy in a 4-d collective
space (“most probable fission”). The discontinuity signaling the scis-
sion point is clearly visible for an elongation Q20 = 345.

As mentioned in section 2, while discontinuities in the PES are
useful to identify unambiguously the scission point, they prevent the
proper characterization of the fission fragments. A solution consists in
adding one or several degrees of freedom to the DFT description such
that the pre- and post-scission points will be connected through a con-
tinuous path. The right panel of figure 9 illustrates this scenario: for
the value of the elongation characteristic of scission (as seen in the left
panel), we show the variation of the energy as a function of the number
of particles QN in the “neck” of the nucleus, i.e., in between the two
fragments. In simpler terms, we maintain the spatial extension of the
nucleus (its elongation) while squeezing the center so as to reduce the



100 200 300 400
Q20 [b]

-30

-25

-20

-15

-10

 -5

  0

  5

 10

 15

D
e
fo
rm

a
ti
o
n
 E
n
e
rg
y
 [
M
e
V
]

0.01.02.03.04.0
Number of particles in the neck QN

-20

-15

-10

 -5

  0

D
e
fo
rm

a
ti
o
n
 E
n
e
rg
y
 [
M
e
V
]

Fig. 9. Total energy of isotope 240Pu as a function of elongation Q20 (left)
and number of particles in the neck QN (right).

Post-scission (Q  =0.4)

Pre-scission (Q  =0.5)

N

N

Fig. 10. Scission in QN field: note how the JCN clearly shows the split,
where conventional visualizations are ambiguous.

size of the neck. The important consequence of adding this extra con-
straint is that what was a discontinuity in a 4-d space (transition from
Q20 = 345 to Q20 = 346 in the left panel) becomes a continuous path
in the 5-d space, as evidenced in the right panel of the figure. The only
criterion that physicists could use to identify scission unambiguously,
namely the discontinuity in the energy, has disappeared. Yet, analy-
sis of the physics characteristics shows that at QN ≥ 4, the nucleus
is whole, and at QN ≤ 0.1, it has split in two fragments, so scission
should occur somewhere in between these two points.

The goal of the second study was therefore (i) to use multifield anal-
ysis to locate the scission point along both the Q20 and QN axes, and
(ii) to investigate whether JCN analysis can shed light on the rela-
tionship between these fields and the structural changes within the Pu
nucleus, e.g. identifying subtle differences in the behavior of neutron
and proton density fields.

For the plutonium dataset, the trajectory shown in the left panel of
figure 9 is made of 669 sites along the Q20 axis. As for fermium, each
site along the trajectory corresponded to a 3-field (p, n, and t) vol-
umetric dataset, in this case with dimensionality 40× 40× 66. This
data came from a different source to the fermium, and underwent pre-
processing including negative log transformation, as there were con-
cerns that the gradient in regions of the data would be problematic for
JCN analysis. A consequence of the transformation used was that the
sense of field density was changed, with the higher density regions
mapping to lower values in the 8-bit fields. This inversion was elimi-
nated from processing of later samples, but explains why the sense of
the density field is flipped between Figure 1 and other images. Analy-
sis of the dataset was carried out with increasingly fine slab granular-
ity. An initial sweep at slab width 32 failed to identify any combina-
torial event, but sampling the dataset at resolution 16 showed a bifur-
cation appearing between sites 650 and 740; further analysis down to
slab width 8 confirmed that the split appeared between sites 690 and
692 (Q20=345). This transition is shown in Figure 1, and corresponds
exactly to the physics interpretation of the left panel of figure 9.

The right panel of Figure 9 corresponds to a trajectory with 45 sites
along the QN axis. A sweep through the data at resolution 8 indicated
clearly a discrete point where the multifields topology underwent a
significant change. Figure 10 shows the two sites QN=0.4 and QN=0.5
on either side of the transition. This putative scission point differs
somewhat from that expected by the physicists (for example, scission
was assumed to have occured at QN ≤ 1.0 in [34]), but the situation is
in fact more complicated. Figure 11 shows three further points along
the QN trajectory, corresponding to QN = 1.5, 2.5, and 3.5. Each JCN
has a branching structure: as the sequence progresses, the “neck” be-
comes progressively larger. The event in Figure 11 is thus only the
point where the neck completely disappears, leaving the density fields
for two fragments enclosed only by the simulation bounds. This marks
one end of a scission region, which starts when the bifurcation first ap-
pears. Thus, instead of simply identifying one combinatorial event rep-
resenting scission, the JCN analysis unexpectedly revealed that scis-
sion itself is a process occupying a region within the collective space.

Site 15 (Q  = 1.5)
N

Site 25 (Q  = 2.5)
N

Site 35 (Q  = 3.5)
N

Fig. 11. Elongation of the neck region in the JCN: see text for discussion.

The final point addressed is the relative utility of the JCN compared
to contour trees of individual fields. Figure 12 shows contour trees for
p and n fields and slab resolutions 16 and 8 for the sites at QN = 0.4
and 0.5 (either side of the end of the scission region). Although taken
individually the contour trees are simpler, the different properties of
protons and neutrons mean that neither field on its own provides an
unambiguous signal that the scission region has ended.

Fig. 12. Contour trees for the p (left column) and n (right column) fields
around the Pu scission point. Top row: QN = 0.4 for slabs 16 (left) and 8
(right); Bottom row: QN = 0.5 for slabs 16 (left) and 8 (right)

9 CONCLUSIONS

We set out with the intention to demonstrate the utility of JCN analy-
sis in multifield data, and to provide visualization support for nuclear
physicists in determining scission points in high-dimensional parame-
ter spaces. In the outcome, we succeeded in showing that:

1. The JCN is an effective tool for studying nuclear fission param-
eter spaces,



2. The JCN gives a more precise answer than hitherto available to
the fundamental question of when scission occurs, and in fact
shows that scission does not necessarily occur at points of inflec-
tion in the energy plots,

3. Moreover, the JCN provides evidence that scission is best viewed
as a region rather than a discrete point,

4. While the contour tree also answers this question, the JCN does
so more reliably, and at lower levels of quantisation,

5. Star-like structures can be expected to occur in the JCN, but pri-
marily represent aliasing at the boundary of quantization inter-
vals, and can therefore be disregarded,

In future, we intend to explore both the underlying JCN represen-
tation and its applications to nuclear physics and other domains. As
with previous topological representations, we would like to relax the
current requirement of simplicial meshes, to consider improved algo-
rithms for computing the JCN, to simplify it, and to recognize features
in it automatically. We also intend to explore the meaning of motifs
in the JCN: we suspect, for example, that the star-like artefacts noted
in this paper are related in some way to the phenomenon of aliasing.
Further research is also likely to improve visualizations of the JCN,
and to build new visualization tools based on features detected in it.

With respect to the nuclear physics, a number of directions are
also feasible. In particular, since the simulations come from wave-
functions, particles may be localized in both fragments due to many-
body quantum entanglement [35]. We believe that it may be possible
to apply multifield techniques directly to the wave functions rather
than to the total density of nucleons, and thus provide a criterion as to
their degree of localization (left, right, everywhere).
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