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SUMMARY

The application of a new one–way narrow–angle elastic wave equation to isotropic het-
erogeneous media is described. This narrow–angle finite–difference propagator should
provide an efficient and accurate method of simulating primary body–wave(s) pass-
ing through smoothly–varying heterogeneous media. Although computationally slower
than ray theory, the narrow–angle propagator can model frequency–dependent forward
diffraction and scattering as well as the averaging effects due to smooth variations in
medium parameters that vary on the sub–Fresnel zone level. Example waveforms are
presented for the propagation of body–waves in deterministic as well as stochastic het-
erogeneous three–dimensional Earth models. Extrapolation within deterministic media
will highlight various familiar wave–diffraction and pulse–distortion effects associated
with large–scale inhomogeneities, such as geometrical spreading, wavefront folding and
creeping–wave diffraction by a compact object. Simulation within stochastic media will
examine the effects of varying the correlation lengths of random heterogeneities on wave
propagation. In particular, wave phenomena such as frequency–dependent forward scat-
tering, the appearance of random caustics and the generation of seismic coda will be
shown.

Key words: body waves, heterogeneity, one–way wave equation, finite–differences,
seismic waveforms.

1 INTRODUCTION

Heterogeneity in the Earth exists on a variety of scales, ranging from several tens of kilometers to meters in tectonic settings

(e.g., Sato & Fehler, 1998) and down to millimeters in hand–sample specimens (e.g., Hollinger et al., 1994; Nishizawa et

al., 1997). Depending on the frequency content of the probing seismic energy as well as the geometry and scale–length

of inhomogeneities, a heterogeneous medium may appear either very simple (e.g., producing obvious or predictable wave

phenomena) or extremely complex (e.g., generating incoherent wavefront and waveform distortion, as well as strong attenuation

or scattering of seismic energy). Heterogeneities can lead to focussing and de–focussing of transmitted energy and will not

only result in traveltime and amplitude anomalies, but will also result in frequency–dependent waveform or pulse distortions

(e.g., Trorey, 1970; Hilterman, 1970; Korneev & Johnson, 1993). When heterogeneities have size on the order of or smaller

than the seismic wavelength, diffraction or scattering may result in the appearance of random caustics (e.g., White et al.,

1988) and the generation of seismic coda (e.g., Aki, 1969).

Given that large portions of the lithosphere show spatial heterogeneity on several length–scales (e.g., Goff & Hollinger,

1999) in comparison to the seismic signals, the net effect of diffraction and scattering may be difficult to assess. Kravtsov

et al. (2003) suggest that a realistic description of wave propagation in heterogeneous media would involve deterministic

Earth models supplemented with statistical information regarding the finer–scale randomized inhomogeneities. Therefore,

with ongoing improvements in data quality and quantity, it is becoming increasingly important to consider a more complete

range of diffraction and scattering regimes when simulating wave propagation in heterogeneous media.
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Ray based approaches applied to the modelling of seismic waves are limited to smoothly–varying media, where het-

erogeneities have length–scales that are larger than the Fresnel zone and the velocity contrasts are small. For increasingly

heterogeneous media (i.e., as the scale–length of the inhomogeneities relative to the seismic wavelengths become smaller), ray

theory tends to be problematic in part due to the chaotic behaviour of rays (Keers et al., 1997). Furthermore, the frequency–

dependent smoothing that takes place during wave propagation is generally beyond the capabilities of standard ray–based

techniques and so the resolution of ‘finer’ scale features on the order of or less than the Fresnel zone (i.e., within the vicinity

of the ray) is poor (Snieder, 1999). As well, the degree of multi–pathing even in the pre–chaotic region can be so severe that

handling caustics can be difficult (e.g., Witte et al., 1996).

When the medium inhomogeneities introduce significant off–path or off–ray effects, the Born and Rytov approximations

have been shown to be effective in various forward modelling applications (e.g., Chapman & Coates, 1994; Müller & Shapiro,

2001; Müller et al., 2002). In scenarios where the data are insufficient for effective application of the Born or Rytov diffraction

approach (e.g., teleseismic studies), the ray/Born approach (e.g., Keers et al., 2000) can be applied, where Fréchet kernels are

used to describe the off–path or off–ray travel–time sensitivities (e.g., Dahlen et al., 2000). Furthermore, recent improvements in

data quality and quantity have allowed application of true waveform rather than frequency–dependent travel–time diffraction

methods to teleseismic body–wave studies of the upper–mantle structure (e.g., Bostock & Rondenay, 1999).

Full–waveform modelling methods, such as the finite–difference (e.g., Alterman & Karal, 1968; Kelly et al., 1976), finite–

element (e.g., Smith, 1975; Komatitsch & Tromp, 1999) and pseudo–spectral (e.g., Kosloff et al., 1984; Fornberg, 1987)

methods, overcome the limitations imposed by the high–frequency ray approximations as well as the weak scattering as-

sumption required by the linearization of the wave solution. Furthermore, full–waveform methods can model the averaging

effects due to variations in material properties on the ‘sub–Fresnel’ zone level. Although full–wave methods provide accurate

waveforms for complex geologic models, they still remain computationally prohibitive for large three–dimensional problems,

especially when the medium is anisotropic. The one–way or parabolic equation (e.g., Claerbout, 1970; Tappert & Hardin, 1974;

Fishmann & McCoy, 1984) and phase–screen (e.g., Wu, 1994; Wild & Hudson, 1998; le Rousseau & de Hoop, 2001) methods

attempt to retain some of the more important signals of interest in the calculated solution while reducing the computational

expense.

In this paper, the narrow–angle one–way elastic wave equation of Thomson (1999) is applied to a range of heterogeneous

isotropic media (for applications to homogeneous anisotropic media see Angus et al., 2004). It should be stressed that the

examples presented are by no means revolutionary and are not intended to highlight any new heterogeneous wave phenomena.

Rather, they are appropriate benchmarks for the new one–way method. In particular, the frequency–dependent effects of

geometrical spreading as well as the forward diffraction and scattering due to various inhomogeneities are studied.

2 THE ONE–WAY WAVE EQUATIONS

The derivations of one–way or parabolic wave equations can be split into two categories; methods that factorize the wave

solution (e.g., Claerbout, 1970) and methods that factorize the wave equation (e.g., Fishmann & McCoy, 1985). In both cases,

factorization involves choosing a preferred axis or direction of propagation followed by splitting the solution or differential

operator into two factors. The reference phase approach (i.e., the factorization of the wave solution) involves a ‘localization’ of

an exact non–local operator and hence is explicitly restricted to narrow angles as well as weak and slowly–varying inhomoge-

neous media. In contrast, the operator–splitting approach seeks an approximate expression for a ‘pseudo–differential operator’

(i.e., the square–root of the differential operator) in terms of an asymptotic or ‘high–frequency’ solution and allows relaxing

the restriction of weak lateral inhomogeneity and narrow–angle propagation. Hence, this asymptotic approximation retains

some of the global properties of the operator–root and some full–waveform effects are included, at least for the frequency

ranges of interest here.

The operator splitting approach is exact for forward propagation when there is no range dependence (i.e., the forward

and reverse propagating waves are de–coupled). However, when gradients in the forward–direction become significant, it

is possible to account for the coupling between the forward and reverse waves. For instance, de Hoop & de Hoop (1994)

introduced a 6× 6 ‘displacement–stress’ matrix formulation which has been known to be a convenient approach when dealing

with laterally–homogeneous medium boundary–value (or reflection/transmission) problems (e.g., Woodhouse, 1974; Kennett,

1983). In de Hoop & de Hoop (1994), the forward– and reverse–wave coupling is approximated using an iterative process

based on a generalization of the Born method (e.g., Chapman, 1981).

Thomson (1999) introduced a hierarchy of one–way wave equations based on a 3×3 matrix factorization of the elastic wave

equation for three–dimensional, generally–anisotropic, heterogeneous media. The 3×3 matrix formulation allows parallels to be

drawn with familiar (or conventional) ray–based approaches. This formulation can be reduced to a path–integral representation

or to the standard ray limit via the stationary–phase approximation (see Thomson, 1999).

This one–way seismic wavefield extrapolator is more generally applicable than ray methods, primarily because it can

handle robustly transitions from weak–to–strong or arbitrary anisotropy. Although these wave equations are based on a 3× 3
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displacement formulation, it is possible to include the coupling between forward and reverse propagating waves (Thomson,

submitted).

The explicit integral formulation of the single frequency ω one–way wave equation is (Thomson, 1999)

∂1u = iω
(

ω

2π

)2
∫ ∫

�(xα, pα) exp [iω(xα − yα)pα]u(yα)dyαdpα , (2.1)

where u is the three–component displacement vector and it is understood that Cartesian coordinates xi and the summation

convention are being used. An alternative and more direct derivation is given by Angus et al. (2004). The propagation direction

is taken to be more or less along the x1 axis and the lateral coordinates x2,3 and slownesses p2,3 are denoted with Greek

subscripts (e.g., xα and pα). The ω–independent and (xα,pα)–dependent wide–angle propagator is defined by

�(xα, pα) = GP1G
−1 (2.2)

where P1 and G are 3 × 3 plane–wave eigenvalue and eigenvector matrices. The elements of the diagonal matrix P1 are the

x1–components of slowness of the forward–propagating waves and the columns of G are given by the corresponding three

allowed polarizations or eigendisplacements (Musgrave, 1970; Fryer & Frazer, 1984; Červený, 2001).

This equation can correctly describe the leading–order ray theory, Maslov and Kirchhoff–like representations including

rays which range widely over xα and pα. More importantly, it describes the coupling between wave modes in media exhibiting

not only strong anisotropy but also weak anisotropy. Furthermore, it is capable of modelling coupling in regions near slowness–

surface singularities. This is mainly due to the form of the propagator, which is slowly varying even when there are rapid

variations of the individual eigenvector columns of G (see Angus et al., 2004). However, the solution to this equation requires

careful sampling of the integrals for accurate numerical evaluation and hence may not be computationally practical for routine

use on small desktop computers.

Equation (2.1) is valid for wide angles as the derivation makes no explicit assumptions about pα being small. For many

practical scenarios only a limited range of pα is needed and so further approximations to equation (2.1) are possible. For

narrow angles, an approximation to the propagator matrix � can be obtained from a Taylor series expansion about pα of the

form

� ≈ P0 + Pαpα + Pαβpαpβ . (2.3)

This narrow–angle approximation should be appropriate when the incident wavefront is near planar or gently curved. The

‘subpropagator’ matrices P0, Pα and Pαβ are obtained from the following recursive equations (Thomson, 1999)

P0 =
√

ρC−1
11 , (2.4)

P0Pα + PαP0 = −C−1
11 (C1α + Cα1)P0, (2.5)

P0Pαβ + PαβP0 = −C−1
11 Cαβ − C−1

11 (C1α + Cα1)Pβ −PαPβ . (2.6)

The matrix C11 is real and symmetric, and for isotropic media reduces to a diagonal matrix whose elements relate closely

to the inverse wavespeeds (Woodhouse, 1974). The eigensolution of C11 must be known to construct the symmetric matrix

P0. The ‘higher–order’ propagators (2.5) and (2.6) ostensibly require the solution to nine simultaneous equations of a 9 × 9

matrix constructed from P0. However, an alternative approach is based on the symmetry properties of P0. For instance, the

difference between equation (2.5) and its transpose leads to three independent equations for the antisymmetric part of Pα.

Adding equation (2.5) and its transpose leads to six equations for the symmetric part of Pα.

An intuitive understanding of the subpropagator matrices P0, Pα and Pαβ can be found be inspecting their form in the

isotropic limit. The matrix P0 is diagonal and serves to advance the individual plane–wave modes in the x1 direction. The

matrices Pα have only off–diagonal elements and are associated with P– to S–wave coupling. The matrices Pαβ are diagonal

when α = β and non–diagonal otherwise, and appear to describe the effect of wavefront curvature.

Substitution of the narrow–angle propagator (2.3) into the integral equation (2.1) and noting that ∂α ⇔ iωpα yields the

frequency–domain narrow–angle one–way wave equation

∂1u = iωP0u + Pα∂αu +
1

iω
Pαβ∂α∂βu . (2.7)

This frequency domain wave extrapolator has been implemented using simple second–order accurate difference operators for

all spatial derivatives. A description of the finite–difference algorithm and subsequent numerical analysis is given in Angus &

Thomson (submitted).
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3 NUMERICAL EXAMPLES

3.1 Deterministic examples

3.1.1 Low–velocity spherical inclusion

In this first example, the low–velocity sphere is defined by the smooth analytic velocity function

vν(r) = (vν
s − vν

0 )sech

(
πr3

s

720s3
c

)
+ vν

0 , (3.1)

where the radius rs is measured from the center of the sphere, sc is a scaling factor that determines the effective width of the

sphere, vν
0 is the reference or background velocity, vν

s is the velocity at the center of the sphere and ν specifies the wavetype P

or S (Raymer, 2000, equation 4.35). The low–velocity sphere is embedded within a homogeneous cube having a side dimension

of 1000 m and background P– and S–wave velocities of approximately 4800 and 2730 m/s. The diameter of the sphere is

approximately 200 m (i.e., sc = 9) and the minimum P– and S–wave velocities at the center are roughly 4575 and 2600 m/s

(i.e., a 5% velocity perturbation). The sphere is located in the middle of the cube (i.e., xα = 500 m) and at a depth of x1 = 300

m. The incident wave for the examples is of the P type.

The lateral Cartesian grid is defined by 49× 49 node points with spacing ∆xα = 5 m and the forward extrapolation step

is ∆x1 = 0.05 m. The source pulse is a Ricker wavelet sampled Nt = 128 times with time increment ∆t = 0.25 ms. For a

background isotropic P–wave velocity of 4800 m/s, the incident waveform has a spatial pulse–width of approximately 22 m.

Thus, the spherical inhomogeneity has a length–scale about one order of magnitude larger than the spatial pulse width.

Figure 1 displays a representative two–dimensional slice of the normal–incidence rays (i.e., in the x1–direction) in this

velocity model. The rays travelling through the sphere are immediately focussed and this results in the ‘conical–shaped’

caustic appearing at a depth of approximately 700 m; in three–dimensions, this conical–shaped caustic is a pencil–point cusp.

In Figure 2, x1–component waveforms are displayed for x2–profiles at x1–planes of 800, 900 and 1000 m depth. In these plots,

time increases from right to left, allowing the later arriving diffraction signals to be visible. The enhanced amplitudes, where

the rays cross, are visible among the central receivers and the diffraction or triplication due to the caustic can be seen to

spread out laterally from the grid center. The diffraction signal can be seen to trail behind the relatively undisturbed early

arrival for the profile at x3 = 400 m and depth x1 = 1000 m. The amplitudes of each panel plot in this particular example

have been normalized to the maximum amplitude of the x2–profile at x3 = 500 m for each x1–plane and this was done to

highlight the three–dimensional variation in amplitudes in the lateral directions.

3.1.2 High–velocity spherical inclusion

The next simulation examines the effect of a high–velocity sphere on an incident plane P–wave. The heterogeneous model is

defined by a volume with a lateral xα dimension of 4000 m, an x1 depth extent of 2000 m and homogeneous background P–

and S–wave velocities of 4575 m/s and 2600 m/s. The high–velocity sphere is defined by equation (3.1) and has a diameter

of approximately 500 m (i.e., sc = 36). The center of the sphere is located in the middle of the volume (i.e., xα = 2000 m)

and at a depth of x1 = 1000 m. The maximum P– and S–wave velocities at the center of the sphere are approximately 5030

m/s and 2860 m/s (i.e., a 10% velocity perturbation). The source pulse is a Ricker wavelet sampled Nt = 128 times with time

increment ∆t = 0.5 ms. For a background isotropic P–wave velocity of 4575 m/s, the waveform has a spatial pulse–width of

approximately 35 m. Thus, the spherical inhomogeneity has a length–scale several orders of magnitude larger than the spatial

pulse–width. The incident wave for the examples is of P type.

Figure 3 displays a two–dimensional section of rays traced in the true velocity model for an incident plane P–wave. In this

figure, there are two regions where the rays cross and they form ‘funnel–shaped’ caustics; in three–dimensions, the caustics

would appear as a ring or circular cusp. Also apparent is the geometrical spreading of the rays within the central region.

The Cartesian lateral grid is defined by 41 × 41 node points with spacing ∆xα = 30 m and the forward extrapolation

step is ∆x1 = 0.125 m. The lateral grid is centered over the high–velocity sphere and the initial x1–plane is located at a

depth of 400 m. In Figure 4, x1–component waveforms are plotted for profiles along the x2–direction at the initial x1 = 400

m plane and two planes at x1 = 1500 m and 2000 m. The reduced amplitude of the central traces are apparent and result

from geometrical spreading or de–focussing of the wavefield. Also visible are two shoulders of enhanced amplitudes followed

by diffraction signals, which result from focussing within the region mapped out by the ring–cusp triplications due to crossing

rays displayed in Figure 3.

In Figure 5, x1–component waveforms for all three x2–sections at a depth of 2000 m are plotted. The geometrical spreading

is most severe for the portion of the wavefield travelling through the center of the sphere and least for the portion travelling

on the shoulder. This figure also highlights an interesting arrival that appears on the central traces; a secondary arrival on the

x2–section at the x3 = 1970 m line having a noticeably lower frequency content (i.e., the region within the dashed ellipse).

This signal is believed to result from the portion of the wavefield that ‘creeps’ or skirts around the edge of the high–velocity
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sphere. On the x2–section at x3 = 1820 m, the low–frequency and low–amplitude creeping diffraction is barely visible and is

overshadowed by the ring diffractions coming from the out–of–plane direction (i.e., the region within the dotted ellipse). This

creeping phenomenon will be referred to as ‘creeping–wave’ diffraction and will be discussed below.

3.1.3 Creeping–wave diffraction

The next three simulations study the creeping–wave diffraction signal. The geometry of the model and extrapolation param-

eters are identical to the low–velocity sphere example and the reference or background P– and S–wave velocities are 4575

m/s and 2600 m/s. For the three simulations, the maximum P– and S–wave velocities at the center of the high–velocity

sphere are perturbed by +5%, +6% and +10% of the background velocities. Figure 6 is a sketch of three expected arrivals

for a plane–wave incident on a high–velocity sphere; the undisturbed portion of the wavefield, the de–focussed transmitted

wavefield and the portion of the wavefield that creeps along the sides of the high–velocity sphere. Increasing the velocity of the

sphere will lead to an increase in geometrical spreading (i.e., a decrease in primary waveform amplitudes) as well as a decrease

in the propagation time of the de–focussed or transmitted signal. Since the creeping diffraction travels predominantly within

the reference medium, it is expected that increasing the velocity of the sphere will yield a larger time separation between the

de–focussed and diffracted signals.

In Figure 7, the x1–component waveforms for all three velocity perturbations are compared for x2–profiles at a depth of

x1 = 1000 m. For the high–velocity sphere with 5% velocity perturbation, the creeping diffraction signal is just slightly behind

the earlier reduced–amplitude arrival. For a 6% velocity perturbation, the reduced–amplitude signal arrives just slightly earlier

than that of the 5% perturbation and the time delay between the reduced–amplitude and creeping diffraction signal increases.

For a 10% velocity pertubation, the time delay between the two signals increases still further and the amplitude of the earlier

arrival is significantly reduced due to the greater geometrical spreading. In fact, it appears that the creeping–wave diffraction

has ‘healed’ the initial planar wavefront.

3.2 Caustic examples

In this example, the formation of caustics is investigated using the one–dimensional velocity function given by

vν = vν
0

[
1 +

√
2ε sin

(
x4

α

k

)]
, (3.2)

where vν is the xα–dependent P–wave velocity, vν
0 = 4575.5 m/s is the reference or background velocity, ε = 0.035 is the rms

value of velocity fluctuation and k = 1.44×109 m4. This one–dimensional velocity field is a modification of the one–dimensional

medium with slowness perturbation described by Spetzler & Snieder (2001). The oscillating velocity field described by equation

(3.2) for xα = x2 is displayed in Figure 8 (a). The wavefield is evaluated in Cartesian coordinates on a lateral grid defined by

99× 99 node points with lateral spacing ∆xα = 5 m and the forward propagation step is ∆x1 = 0.025 m. The source pulse is

a Ricker wavelet sampled Nt = 128 times with time increment ∆t = 0.25 ms. For a plane P–wave and a reference velocity of

4575 m/s, a total propagation distance of 200 m corresponds to approximately 20 spatial pulse–widths.

For plane–wave initial conditions and a one–dimensional velocity model (xα = x2 only), the point where caustics begin

to form can be predicted by

x̆1(xα) =

√√√√ −2

∂2

∂x2
α

(
p(xα)

p0(xα)

) , (3.3)

where the focal distance x̆1(xα) is a function of the offset xα, p(xα) is the one–dimensional slowness perturbation and p0(xα) is

the reference or background slowness (Spetzler & Snieder, 2001, equation 11). The focal distance (3.3) for the one–dimensional

velocity field defined by equation (3.2) is plotted in Figure 8 (b). Six caustics are predicted to develop over the total propagation

distance of 200 m in the x1–direction. The locations of these predicted caustics are represented by the minima; three early on

at an x1 distance of approximately 25 m, two at 40 and 50 m and the last at 90 m. It should be noted that the one–dimensional

velocity field and focal distance are sampled sparsely for lateral grid locations beyond 400 m. Application of the narrow–angle

wave equation within this severely oscillatory region is expected to be close to or beyond the limitations of the propagator.

In Figure 9, the evolution of the x1–component waveforms for an incident plane P–wave are displayed at increments of 20

m (or approximately every spatial pulse–width). At x1 = 20 m, the three predicted caustics are beginning to develop and are

clearly visible by the enhanced waveform amplitudes at x1 = 40 m (or points indicated by the lines numbered 1 through 3).

The fourth predicted caustic begins to form at x1 = 40 m at approximately x2 = 400 m and is indicated by line 4. Between

x1 =40 and 60 m, the fifth caustic forms and is visible on the x1 = 60 m panel plot near x2 = 350 m (i.e., line 5). Finally,

the last caustic begins to form between x1 =80 and 100 m as indicated by line 6. As predicted by equation (3.3), no other

caustics begin to form beyond x1 = 100 m, where the wavefront folding becomes increasingly chaotic at large x2.
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3.3 Random examples

Seismological studies of small–scale heterogeneities generally involve approximating inhomogeneous media with a random

distribution. Three random distributions are often considered; these are defined by the Gaussian, exponential and von Kármán

spatial autocorrelation functions (ACFs). The Gaussian ACF is better suited to model smooth media than the exponential

ACF and this is because the Gaussian function is infinitely differentiable, whereas the exponential function is piecewise

continuous and contains first–order discontinuities (van der Baan, 2001). The von Kármán function can describe media that

are smoother than the exponential ACF as well as media that have discontinuities on all length–scales (Tatarskii, 1961; van

der Baan, 2001). Media that are discontinuous on all length–scales display fractal characteristics and are referred to as being

self–similar (Fisk et al., 1992). Since a medium displaying fractal characteristics is beyond the limitations of the narrow–

angle wave equation, only the Gaussian and exponential type ACFs will be considered. A range of correlation lengths will be

investigated and this will allow characterization of various types of forward diffraction and scattering phenomena (e.g., wave

effects due to ‘deterministic’ regimes characterized by large–scale anomalies down to ‘pre–chaotic’ regimes characterized by

small–scale anomalies). It is important to note that although random media are not intended to model any particular portion

of the Earth’s interior, they are reasonable models of small–scale structure (Klimes̆, 2002). The objective here is to compare

qualitatively the likeness of the observed wave effects due to random heterogeneities with previously published results, since

no attempt has been made to compare the narrow–angle simulations with an exact reference solution.

3.3.1 ‘Mantle in a box’

The specific examples considered in this section are referred to as the ‘mantle in a box’ random heterogeneity models and are

the elastic equivalent of the acoustic models given by Baig et al. (2003). In these examples, the velocity field is defined by a

statistically homogeneous and isotropic random function and so no shape–induced anisotropy is introduced by the random

heterogeneities. The model is defined in the wavenumber–domain, k = (k1, k2, k3), for a cube having side dimension 1000 m

and grid defined by N3 = 2563 node points with inter–node spacing ∆x ≈ 4 m. The amplitude of the dimensionless random

field ĉ(k) is specified by the square–root of the Gaussian

Φg(k) = ε2a3 exp

[
−k2a2

4

]
(3.4)

or exponential

Φe(k) =
ε2a3

(1 + a2k2)2
(3.5)

power spectral density function (PSDF), where a is the correlation length and ε is the mean fractional fluctuation. The phases

are calculated randomly over a uniform distribution in the interval [0, 2π]. The random field in the wavenumber–domain is

then Fourier transformed into the space–domain x. The homogeneous isotropic reference medium has P– and S–wave velocities

of 4575 m/s and 2603 m/s, and a constant density of ρ = 2160 kg/m3. The random P– and S–wave velocity fields are obtained

by multiplying the dimensionless random field ĉ(x) with the reference medium values. Thus, the P– and S–wave velocity fields

share the same random sequence and only differ in terms of magnitude.

A total of eight correlation lengths are considered for both the Gaussian and exponential distributions and they range in

size between a = 500 m and 4 m (see Table 1). Figure 10 is a graphical representation of the Gaussian and exponential random

models for a cube having a side dimension of 1000 m and a correlation length of approximately 8 m (modified from Baig et

al., 2003). For all sixteen realizations, the media were limited to very–weak heterogeneity by setting ε = 1%. Furthermore,

the random phases were evaluated using a computer random–number generator, where the random sequence was initiated

with the same arbitrary value so that the same random sequence was generated for all realizations (Press et al., 1992). In

other words, all sixteen realizations represent a ‘close’ family of random media, where, for example, the Gaussian model with

correlation length a = 500 m could be considered a very–smooth version of the exponential model with correlation length

a = 4 m.

For all simulations, plane P– and S–waves were propagated within the random medium having Cartesian grid defined by

49×49 node points with lateral spacing ∆xα = 5 m and a forward extrapolation step of ∆x1 = 0.05 m. The Cartesian grid has

a lateral dimension of 240 m × 240 m, a depth extent of 1000 m and so represents a subvolume of the initial elastic random

model. The elastic constants of the subvolume are obtained by interpolating the initial model onto the Cartesian grid, using

the FORTRAN subroutines of FITPACK (Cline, 1981). For the interpolation, only the ‘regular’ cubic splines are applied. The

mean velocities for each realization in the local volume are given in Table 1. It should be noted that the particular dimensions

of the model are not consistent with global tectonic scenarios, but rather exploration seismology scenarios. However, the

particular dimensions and frequencies can be scaled to match those of global seismology applications (e.g., Angus et al.,

2004).

The source pulse is a Ricker wavelet sampled Nt = 128 times with time increment ∆t = 0.25 ms. For a background P–
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and S–wave velocity of 4275 m/s and 2270 m/s, the P– and S–waves have spatial pulse–widths of approximately 20 m and

10 m, respectively. For a total propagation distance of 1000 m, the P– and S–waves travel approximately 50 and 100 spatial

pulse–widths. Wave propagation is in the x1–direction, where the S–wave displacement is defined to be in the x2–direction.

Figures 11 and 12 display the x1–component of the incident plane P–wave and the x2–component incident plane S–wave

waveforms after propagating 1000 m through the Gaussian random media. For most of the correlation lengths considered, the

resulting wavefronts and waveforms are distinctly different. Thus, the eight realizations represent a broad range of length–

scales for the Gaussian random media for the waveform frequencies of interest. In Figure 11, the wavefront is mildly curved

and the waveforms are relatively unmodified for correlation lengths a = 500 m and 250 m. At a = 125 m and 60 m, the effects

of a random caustic are apparent from the enhanced waveform amplitudes within the central region. Below the correlation

length of a = 60 m, the effects of scattering become successively stronger, where the waveforms are increasingly modified.

For the correlation length a = 4 m, the wavefront is near–planar and the primary waveforms are only slightly modified, but

there is significant scattering. In Figure 12, the characteristics of S–wave scattering for correlation lengths above a = 32 m

are analogous to those of the P–wave, although the effects of the random caustic appear more pronounced. For correlation

lengths below a = 32 m, the scattering increases significantly, where the wavefront becomes progressively more incoherent

and the waveforms more distorted. This is expected because the S–wave travels a greater distance with respect to its spatial

pulse–width than does the P–wave and so the energy is more highly scattered.

Figures 13 and 14 display the x1–component of the incident plane P–wave and the x2–component incident plane S–wave

waveforms after propagating 1000 m through the exponential random media. For both the P– and S–wave propagation in

the exponential media, the effects of the high–wavenumber or smaller–scale scatterers are immediately apparent, even for the

correlation length a = 500 m. These small–scale scatterers tend to obscure the influence of the low–wavenumber or larger–scale

heterogeneities. For instance, the enhanced waveform amplitudes due to the random caustic discussed in the previous figures

are also visible in Figures 13 and 14 for the large correlation lengths, although they are not as prominent. As the correlation

length becomes smaller, the enhanced amplitudes appear to be increasingly overshadowed by the smaller–scale scatterers. In

Figure 14 below the correlation length a = 32 m, the wavefront is incoherent and a significant amount of the S–wave energy

appears to be multiply–scattered (i.e., transferred to the coda).

The appearance of the random caustic or anomalously large amplitudes in these examples may seem counter–intuitive

in media displaying very–weak heterogeneity (i.e., ε = 0.01), where the P– and S–wave velocities do not exceed ±4% of the

reference or background velocities. Such anomalously large amplitudes have also been observed in reflection seismic data

(White et al., 1988), where the enhanced amplitudes can be as large as a factor of two times greater than the mean amplitude,

with virtually no observable anomalous traveltimes. White et al. (1988) give an explanation for this phenomenon using the

theory of the ‘stochastic caustic’, where the appearance of random caustics is attributable to small random fluctuations in

the Earth’s material properties. In fact, the occurrence of random caustics is typical of wave propagation through smooth and

weak random inhomogeneities when the length–scale of the heterogeneities is large compared to the seismic wavelength, yet

small compared to the total propagation distance (e.g., over several tens of wavelengths or spatial pulse–widths).

Figures 15 and 16 compare the x2–component waveforms for a plane S–wave in the Gaussian correlated random medium

and those in a homogeneous equivalent (i.e., homogeneous medium defined by the mean P– and S–wave velocities of the

corresponding random medium) at a propagation distance of x1 = 1000 m. The enhanced waveform amplitudes among the

central receivers due to the random caustic are visible for correlation lengths a = 125 and 60 m. In Figure 15, it is interesting

to note that the enhanced amplitude signals arrive later and the lower–amplitude signals arrive earlier than the reference

wavefront (i.e., the plane–wave propagating in the homogeneous medium). This is consistent with the seismic traveltime study

of Müller et al. (1992), who observe that early arrivals are connected with low amplitude signals and later arrivals with strong

amplitude signals. For correlation lengths a = 32 and 16 m, the particular regions of enhanced waveform amplitudes appear

to be diminishing in spatial extent, whereas other portions of the wavefront display increasing waveform amplitudes. These

enhanced waveform amplitudes likely result from an increase in small–scale scattering, since the wavefront is becoming less

and less coherent. Also note that with decreasing correlation length the fluctuations of the first arrival times also decrease.

Furthermore, as the correlation length is decreased, the match between the first arrival traveltimes of the S–wave propagating

in the random media and those of the S–wave propagating in the mean homogeneous media improves dramatically. This is

consistent with the numerical results of Müller et al. (1992) as well as the laboratory ultrasonic and numerical modelling

study by Spetzler et al. (2002).

3.3.2 A thin slab of random material in a homogeneous medium

Subduction zones represent structurally complex regions of the Earth’s upper mantle and these regions are characterized

by strong variations in seismic velocities due to textural, compositional and thermal variations between the subducted slab

and the surrounding mantle (Kearey & Vine, 1990). An interesting experiment to consider is the wave propagation effects

associated with a thin slab of heterogeneous material within a homogeneous reference medium. This scenario could represent a

simplified model of subducted oceanic lithosphere within the upper–mantle, where the oceanic and continental lithosphere are
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in thermal equilibrium. The only distinguishing feature between the two regions is a random heterogeneous fabric associated

with oceanic crust. Of particular interest would be the effect of this random heterogeneous region on wave propagation along

the slab dip direction. In the following simulations, the effect of a random heterogeneous slab embedded within a homogeneous

background model is investigated. The background or mantle velocity is the mean velocity of the random heterogeneous slab

and so only the effects of the random scattering are significant.

For all examples, the Cartesian grid is defined by 49× 49 node points with a lateral spacing of ∆xα = 5 m and a forward

extrapolation step of ∆x1 = 0.05 m. A total of twelve models are examined and all have a lateral dimension of 240 m ×
240 m and a depth extent of 1000 m. The spatial dimensions and frequencies of the particular subducted slab model are

not consistent with upper–mantle scenarios, but can be scaled to match that of global seismology applications. The elastic

constants for each model are based on the corresponding ‘mantle in a box’ Cartesian models having the same correlation

length. However, only a representative strip or slab of the random heterogeneous medium of width w in the x2–direction is

used. The remaining volume is defined by the mean P– and S–wave velocities given in Table 1. The width of the slab ranges

between 120 m and 5 m and only three correlation lengths of the exponential media are considered (a ≈ 60, 16 and 4 m).

Figure 17 is a qualitative representation of the subducted slab model of width w.

The source pulse is a Ricker wavelet sampled Nt = 128 times with time increment ∆t = 0.25 ms. For a background P–

and S–wave velocity of 4575 m/s and 2603 m/s, the P– and S–waves have spatial pulse–widths of approximately 22 m and

12 m, respectively. For a total propagation distance of 1000 m, the P– and S–waves travel approximately 40 and 80 spatial

pulse–widths. The total S–wave displacement is chosen to be dominantly along the x2–direction.

Figures 18–20 display the x2–component waveforms for an incident plane S–wave after propagating a distance of 1000 m

through the slab models. For a correlation length a = 62.5 m, the wavefront in Figure 18 becomes less coherent along the edges

of the lateral grid as the width of the slab increases. As well, the effects of the large–scale heterogeneities on the waveforms

among the central receivers also become more pronounced. Edge diffractions due to the variable velocity contrast along the

slab boundary are also visible for slab widths of w = 20 and 5 m, where the wavefront outside the slab is being continuously

refracted or diffracted into and out of the heterogeneous slab. In Figure 19, the scattering effects of the slab having correlation

length a = 16 m are very similar to those for a = 62.5 m, although the edge diffractions are less pronounced. This is because the

velocities of the smaller–scale heterogeneities along the slab boundary better match, on average, the homogeneous background

velocities. The effects of the smaller–scale heterogeneities for the slab having correlation length a = 4 m, shown in Figure

20, are more pronounced. However, the wavefront is more coherent for all slab widths and, in fact, does not appear to be

modified at all for slab widths of w = 20 and 5 m. In all these examples, the continuous wavefront leakage or transfer into

and out of the heterogeneous slab represents a constant source of seismic energy for scattering. A greater understanding of

this phenomenon may be helpful in unraveling the finer–scale subduction–zone tectonics (e.g., Furumura & Kennett, 2004).

For the particular frequencies used in these simulations (i.e., period of 5 ms or frequency of 200 Hz), the presence of

the heterogeneous slab is visible for the models having correlation lengths of a = 62.5 and 16 m for all slab widths. For the

model with correlation length a = 4 m, the presence of a heterogeneous body is apparent, although the effects are significantly

weakened as the width of the slab decreases. For a random medium characterized by relatively small–scale heterogeneities

with respect to the seismic wavelength and for relatively large propagation distances (e.g., on the order of several tens of

wavelengths), this indicates that the heterogeneous body would need to be much more extensive in size than an equivalent

heterogeneous body characterized by relatively large scatterers (i.e., on the order of or larger than the seismic wavelength) in

order to be visible.

4 DISCUSSION

The above numerical simulations indicate that the narrow–angle wave equation can produce qualitatively realistic waveforms

for various types of heterogeneous isotropic medium. The three–dimensional ring–caustic of the high–velocity sphere and

pencil–point caustic of the low–velocity sphere lead to the expected enhanced waveform amplitudes and the later arriving

diffractive signals. Furthermore, it is satisfying that the creeping–wave diffraction along the edge of the high–velocity sphere

could be simulated. It is also encouraging that caustic formation for a plane–wave in the one–dimensional oscillating velocity

field could be predicted, especially in regions where the velocity field is extremely variable. The results from the random

heterogeneous examples are also qualitatively consistent with various published results. In particular, the appearance of the

enhanced waveform amplitudes due to the formation of random caustics are observed for models where the relative length–

scales of the inhomogeneities are large compared to the seismic wavelength.

Although not required by the narrow–angle equation, the random heterogeneous models presented in this chapter were

taken to be isotropic. Most studies of wave propagation in so–called random anisotropic media, in fact, investigate the

effects of inclusion–shape induced anisotropy (e.g., Wu & Aki, 1985; Gibson & Ben–Menahem, 1991; Kravtsov et al., 2003;

Müller & Shapiro, 2003), rather than random orientations of underlying intrinsically anisotropic single–crystal elasticities. For

inclusion–shape induced random anisotropy, the heterogeneous velocity field is no longer described by a spatially isotropic
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correlation function, but rather a spatially anisotropic correlation function. Inclusion–shape induced random anisotropic media

are particularly useful in characterizing media displaying preferentially–aligned cracks or fluid inclusions.

Regions of the Earth that have undergone plastic deformation may display an overall texture and preferred crystal

orientation and this orientation will be most coherent in regions of greatest coherent deformation and incoherent or random in

regions of weakest or no deformation. For example, faulting, slumping and failure of semi–competent rock around salt deposits

can lead to salt flows that display complex structures. The deformation process leading to the subsequent salt–dome structures

can produce zones of strong simple– and axial–shearing and generate polycrystalline assemblages that display texture as well

as preferred crystal alignment (e.g., Raymer et al., 2000). These regions of texture and preferred anisotropic crystal alignment

will likely have quasi–random orientations that have the potential of generating interesting anisotropic random heterogeneous

wave phenomena, that as yet are unexplored.

The heterogeneous examples presented above demonstrate the narrow–angle vector–wave approach for various determin-

istic and stochastic media, where the length–scales of the heterogeneities span several orders of size relative to the seismic

wavelength. For a narrow range of propagation, the 15◦ wave equation is an efficient tool for simulating elastic waves for an

assortment of three–dimensional seismic diffraction and scattering problems and is capable of incorporating the frequency–

dependent effects of wave propagation due to smooth variations in the medium down to the sub–Fresnel scale. Given the local

nature of the narrow–angle propagator and its computational efficiency, it has the potential of being a useful tool in the study

of more complicated three–dimensional Earth structure of present interest.
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Table Captions

Table 1. Mean P– and S–wave velocities of the Gaussian and exponential Cartesian grid random elastic models. Also shown

are the approximate ratios of the correlation length a to the spatial pulse–width of the P– and S–waves.

Figure Captions

Figure 1. Two–dimensional section of rays traced through the three–dimensional low–velocity sphere model, where the low–

velocity sphere is defined by equation (3.1). At a depth of approximately 700 m, a ‘conical–shaped’ caustic appears, which

would resemble a pencil–point cusp in three–dimensions.

Figure 2. Waveforms of the x1–component of displacement for an incident plane P–wave in the low–velocity sphere model

at x1–planes of 800, 900 and 1000 m, plotted as profiles along the x2–axis. The three columns represent the x3 position on

the lateral grid, where x3 = 500 m is the precise midline, x3 = 400 m skirts the side of the sphere and x3 = 450 bisects the

other two x3 positions.

Figure 3. A two–dimensional section of rays traced through the three–dimensional high–velocity sphere model, where the

sphere is defined by equation (3.1). The two regions where the rays cross form ‘funnel–shaped’ caustics, which would resemble

rings or circular cusps in three–dimensional space. Also note the geometrical spreading or de–focussing of the rays within the

central region. The dotted ellipse represents the region of influence of the ring–cusp diffraction.

Figure 4. Waveforms of the x1–component of displacement for an incident plane P–wave in the high–velocity sphere model

at x1–planes of 400, 1500 and 2000 m depth, plotted as profiles along the x2–axis. The three columns represent the x3 position

on the lateral grid, where x3 = 1970 m is just slightly off the midline, x3 = 1670 m skirts the side of the sphere and x3 = 1820

bisects the other two x3 positions.

Figure 5. Comparison of the x1–component of displacement for an incident plane P–wave in the high–velocity sphere model

for all three x3 grid locations shown in Figure 4 and depth x1 = 2000 m.

Figure 6. Sketch of ‘creeping–wave’ diffraction for a plane–wave incident on a smooth isotropic high–velocity spherical

anomaly.

Figure 7. Waveforms of the x1–component of displacement for an incident plane P–wave, plotted as profiles along the x2–axis.

This figure shows the creeping–wave diffraction of a plane P–wave for three high–velocity sphere models, 5%, 6% and 10%

velocity perturbation.

Figure 8. (a) The one–dimensional oscillatory velocity field and (b) the focal distance x̆1(x2) of a plane–wave propagating in

this velocity model. The propagating plane–wave is being focused in regions where the velocity is a minimum and de–focused

where the velocity is a maximum. The x1 distance where a caustic develops is described by the focal distance curve x̆1(x2).

Figure 9. Evolution of an incident plane P–wave within the one–dimensional oscillating velocity model defined by equation

(3.2). Each panel, after the initial x1 = 0 m panel, represents the evolved wavefield after propagating a distance of roughly

one spatial pulse–width. The numbered lines (1 through 6) point to the predicted caustics.

Figure 10. Cartoon of two realizations for the random three–dimensional isotropic, heterogeneous ‘mantle in a box’ model

(modified from Baig et al., 2003).

Figure 11. Waveforms of the x1–component of displacement for a plane P–wave after propagating 1000 m in the three–

dimensional random model with a Gaussian ACF.

Figure 12. Waveforms of the x2–component of displacement for a plane S–wave after propagating 1000 m in the three–

dimensional random model with a Gaussian ACF.

Figure 13. Waveforms of the x1–component of displacement for a plane P–wave after propagating 1000 m in the three–

dimensional random model with an exponential ACF.

Figure 14. Waveforms of the x2–component of displacement for a plane S–wave after propagating 1000 m in the three–

dimensional random model with an exponential ACF.
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Figure 15. Comparison of the x2–component waveforms for a plane S–wave in the Gaussian random media for correlation

lengths a = 500, 125 and 60 m. The solid line represents the wavefield propagating through the random model and the dashed

line the wavefield propagating through the homogeneous model.

Figure 16. Comparison of the x2–component waveforms for a plane S–wave in the Gaussian random media for correlation

lengths a = 32, 16 and 4 m.

Figure 17. Cartoon of the three–dimensional random heterogeneous subducted slab model of width w and exponential ACF

(modified from Baig et al., 2003).

Figure 18. Waveforms of the x2–component of displacement for a plane S–wave in the three–dimensional random slab model

with correlation length a = 62.5 m. In this and the next two figures, the thick horizontal lines represent the lateral spatial

extent of the heterogeneous thin slab.

Figure 19. Waveforms of the x2–component of displacement for a plane S–wave in the three–dimensional random slab model

with correlation length a = 16 m.

Figure 20. Waveforms of the x2–component of displacement for a plane S–wave in the three–dimensional random slab model

with correlation length a = 4 m.
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Correlation Gaussian distribution Exponential distribution Approximate ratio of
length Average velocity (m/s) Average velocity (m/s) a to spatial pulse–width
a (m) P–wave S–wave P–wave S–wave P–wave S–wave

500.00 4239.20611 2250.04865 4274.35700 2268.70573 25 50

250.00 4253.54024 2257.65679 4276.19876 2269.68329 12.5 25

125.00 4272.70524 2267.82903 4281.12487 2272.29793 6 12.5

62.500 4287.52834 2275.69671 4288.37607 2276.14665 3 6

31.250 4294.52645 2279.41110 4293.92544 2279.09210 3/2 3

15.625 4296.97958 2280.71315 4296.66976 2280.54871 3/4 3/2

7.8125 4297.90561 2281.20466 4297.74440 2281.11911 2/5 3/4

4.0000 4298.27984 2281.40329 4298.13893 2281.32851 1/5 2/5

Table 1.
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